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Abstract—The growing amount of intermittent renewables in
power generation creates challenges for real-time matching of
supply and demand in the power grid. Emerging ancillary power
markets provide new incentives to consumers (e.g., electrical
vehicles, data centers, and others) to perform demand response
to help stabilize the electricity grid. A promising class ofpotential
demand response providers includes energy storage systems
(ESSs). This paper evaluates the benefits of using various types
of novel ESS technologies for a variety of emerging smart grid
demand response programs, such as regulation services reserves
(RSRs), contingency reserves, and peak shaving. We model,
formulate and solve optimization problems to maximize the net
profit of ESSs in providing each demand response. Our solution
selects the optimal power and energy capacities of the ESS,
determines the optimal reserve value to provide as well as the
ESS real-time operational policy for program participation. Our
results highlight that applying ultra-capacitors and flywheels in
RSR has the potential to be up to 30 times more profitable than
using common battery technologies such as LI and LA batteries
for peak shaving.

I. I NTRODUCTION

A sustainable energy future mandates integrating a larger
portion of renewable generation into the grid. Most states in the
US and several European countries already have aggressive tar-
gets to increase the share of renewables in their portfolios[1],
[2]. The fact that many forms of renewable generation are
intermittent by nature (e.g., wind and solar) creates significant
challenges for grid operators, who need to match supply and
demand in real-time. In response to this challenge, emerging
ancillary power markets provide sizable monetary incentives
for the consumers to performdemand response, which refers
to a consumer adjusting its own electricity use following a set
of constraints or directives given by the grid operator.

Among potential demand response program participants,
data centers, electrical vehicles (EVs), and smart buildings are
especially promising, and have received recent attention from
the research community [3], [4], [5], [6]. This attention isdue
to their significant flexibility in energy consumption, as well
as the large cumulative power consumption levels and/or fast
growth these entities provide.

One of the most promising participation opportunities for
demand response comes from using energy storage systems
(ESSs), which can potentially charge/discharge dependingon
the demand response program requirements reliably. There are
a variety of energy storage startup companies [7], [8] that
use ESSs to participate directly in energy market programs
this way. Additionally, entities such as data centers and smart

buildings, which have on-site ESSs to manage power outages,
can make use of ESSs to receive monetary incentives without
having to alter their internal performance. ESSs have been
studied for participation in well-known power programs such
as real-time pricing [9], but the potential of ESS participation
in many of the most promising demand response programs
has yet to be understood, including regulation service reserves
(RSR), contingency reserves in emerging ancillary service
markets, and peak shaving programs. Some recent work has
begun to investigate these programs or ESS capacity plan-
ning [10], [11], [12], [13]; however, in most cases, these
papers use simplified participation models, e.g., an RSR model
that ignores regulation accuracy constraints and penalties [14].
Besides, few work studies the decisions of reserve value
and the ESS capacity planning. Furthermore, different ESS
technologies (e.g., lead-acid (LA) batteries, lithium-ion (LI)
batteries, ultra/super-capacitors (UC), flywheels (FW), and
compressed air energy storage (CAES)) have contrasting prop-
erties, which can dramatically impact profits of participation in
such programs. Systematic evaluation and comparison of the
benefits of using these ESS technologies in a variety of demand
response opportunities do not exist in current literature.

This paper’s goal is to thoroughly evaluate, optimize, and
contrast a range of ESS technologies for participation in a
variety of promising demand response programs. Our method
seeks to provide a strategy for the selection and managementof
ESSs for a broad range of consumers (data centers, EVs, smart
buildings) to maximize the incentives received from ancillary
power markets, and hence, to minimize the electricity cost
while helping stabilize the grid. Our specific contributions are:

First, we provide detailed models and optimization solu-
tions for participation of ESSs in multiple smart grid programs,
including RSR, contingency reserves and peak shaving (Sec-
tions II and III). We also design practical heuristic solutions
that handle the real life probabilistic constraints in RSR
provisioning problem (Section IV-A). In each model, the cost
of ESS equipment, the revenue received for demand response,
and constraints required by the demand response program
are formulated. The net profits are optimized based on these
models, and the corresponding optimal decisions of reserve
value, ESS capacity planning and the operational policies are
derived. The generality and wide applicability of the models
and solutions distinguish this paper from previous work.

Second, the proposed models and optimal solutions enable,
for the first time in the literature, a thorough comparison ofthe
benefits of different ESSs for participation in demand response
opportunities (Section III). We highlight the ESS technology
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that is the most appropriate for each power program (and vice-
versa). Results show that UC is the most profitable ESS for
RSR, while LI battery is the best choice for peak shaving.
Also, we show that none of today’s typical ESSs can earn
positive net profits from providing contingency reserves.

Finally, in addition to evaluation with offline optimization
solutions, this paper proposes heuristic practical onlinepolicies
for provisioning with different types of ESSs in RSR program
(Section IV-B), which is the most profitable program among
those studied. As opposed to the offline solution, our online
solution does not require information of RSR signal in ad-
vance, and thus, is applicable for real-life use. The solution
adaptively leverages the tolerable RSR signal tracking errors
for pursing larger profits. Our solution is able to satisfy all
constraints and thus guarantee the feasibility of the provision,
while still achieving significant profits.

II. ENERGY STORAGE SYSTEMS

Storage technologies are becoming more cost-effective and
wide spread and, at the same time, more lucrative market
participation opportunities are emerging. In this section, we
provide an overview of some potential storage technologies
and define a model that enables us to study the participation
of each ESS in various market opportunities.

A. Background on Energy Storage Systems

In this paper, we focus on five popular ESSs, namely,
lead-acid (LA) batteries, lithium-ion (LI) batteries, ultra/super-
capacitors (UC), flywheels (FW), and compressed air energy
storage (CAES). In the following, we briefly highlight impor-
tant characteristics of each. The interested reader can refer to
prior work [15] for more information.

Lead-Acid (LA) batteries are widely used in daily life,
e.g., in car batteries. They have very low self-discharge loss
rates, which makes them suitable for the demand response
programs with long durations, e.g., hours. Additionally, they
have moderate energy cost and power cost, and therefore are
robust under different market scenarios. However, the key
disadvantage of LA batteries is the relatively small number
of charge/discharge cycles and shorter float life. LA batteries
can only be used for several thousand circles.

Lithium-Ion (LI) batteries are also widely used in our
daily life, and have similar characteristics to LA batteries. The
key difference is that LI batteries have relatively higher costs,
longer lifetimes, more cycles, and higher efficiency.

Ultra/super-Capacitors (UCs)differ dramatically from LI
and LA batteries. UCs have an extremely high tolerance for
frequent charging/discharging. Additionally, UCs have high
efficiency and power density. However, they have a high energy
cost (around $10,000/kWh) and high self-discharge rate.

Flywheels (FWs) represent a middle ground between
LI/LA batteries and UCs. Like UCs, they have high efficiency
and power density, but also high energy cost and a high self-
discharge rate.

Compressed Air Energy Storage (CAES)has a very low
energy cost and self-discharge rate. However, it has a very slow
ramping time (10 min vs. 1ms in the other four ESSs). This
means that it cannot adapt quickly, which limits participation

TABLE I. A SELECTION OFTODAY ’ S TYPICAL CAPACITIES OFESSS,
BASED ON SPACE CONSTRAINTS.

LA LI UC FW CAES

Pcap (kW) 1,0001,00020,00010,000 20

Ecap (kWh) 250 250 250 250 250

of CAES in some market programs. Additionally, it has a very
low energy density (large space needed) and a high power cost.

B. Modeling Energy Storage Systems

There are two key components in modeling ESSs: costs
(both of procurement and operation) and operation constraints
(self-discharging, ramping, etc.). Operation constraints can be
classified into (i) constraints imposed by the ESS technology
and (ii) constraints imposed by the demand response program.
Constraints of type (i) are discussed here, and constraintsof
type (ii) are discussed in Section III.

ESS Costs:The life span of an ESS is normally years with
one-time upfront purchase/installation cost, yet participation in
a demand response program can span a year, a month, or even
a day. In order to handle the mismatch in time granularity,
we amortize the upfront cost evenly over the lifespan of the
ESS. LetPcap (in kW) andEcap (in kWh) represent the power
capacity and energy capacity of the ESS, respectively, andΠP

(in $/kW) andΠE (in $/kWh) are the corresponding prices.
Then the one-time upfront cost is1:

ΠPPcap + ΠEEcap. (1)

Two factors that need to be considered to calculate the
duration of use are the face-plate lifetimeTmax and the
maximal number of charge/discharge cyclesLcyc. Assuming
the charge/discharge frequency isfj , the effective duration of

use ismin
{

Tmax,
Lcyc

fj

}

. Since many of the demand response
programs clear the credits daily, we amortize the cost of ESSs
into daily prices, namely, for each type of ESSk, we define
its daily power and energy capacity prices asΠP,d

k andΠE,d
k

as:
ΠP,d

k =
ΠP

k

min
{

Tmax,
Lcyc

fj

} , ΠE,d
k =

ΠE
k

min
{

Tmax,
Lcyc

fj

} , (2)

wherefj is the frequency of the charge/discharge in program
j. Therefore, the daily amortized cost is:

ΠP,d
k Pcap +ΠE,d

k Ecap. (3)

ESS Operation Constraints: Assume that at timet,
the charge and discharge rates of an ESS arert and dt,
respectively. We denote the total energy stored in the ESS at
time t as et, and the overall power rate from the view of the
system level asut. Then we have:

et = et−1 − µet−1 + rt − dt, ∀t,

ut = rt/η − dt, ∀t,
(4)

whereµ is the self-discharge rate of the ESS, andη is the
energy charging efficiency. We haveη < 1, as there is always
amount of loss during the ESS charge process.µ andη vary

1Other ways of calculating the upfront cost exist (e.g., the upfront cost
is selected as the maximum of the costs on power capacity and energy
capacity [15]). Our method is adaptable to such calculations, e.g., an ancillary
variable can be introduced to convert the selection of the maximum on power
and energy capacities into two linear constraints.



with types of ESSs. For example, UC and FW in general have
higher efficiency than LA and LI batteries, however, they have
much higher self-discharge rate.

The charge and discharge rates are also constrained by the
charge/discharge capacities of the ESS, as follows:

0 ≤ rt ≤
Pcap

γ
, 0 ≤ dt ≤ Pcap, ∀t, (5)

wherePcap is the power capacity of the ESS defined before,γ
is the ratio of discharge rate to charge rate. For UC and FW,γ
is close to 1, which means they have almost same charge and
discharge capacities, however for LA and LI batteries,γ > 1,
representing a (much) slower recharge rate.

The amount of energy that is stored in the ESS is con-
strained by the ESS energy capacityEcap. In addition, it is
constrained by the Depth of Discharge (DoD), which helps
guarantee the lifetime of the equipment:

(1−DoD)Ecap ≤ et ≤ Ecap, ∀t. (6)

Finally, though most ESSs are able to ramp up their
discharge rate extremely fast, some ESSs, e.g., CAES, cannot.
Thus, we have the discharge rate ramp up constraint:

dt+1 − dt ≤
Pcap

T ramp
, ∀t, (7)

whereT ramp is the time for ESS to ramp up the discharge
rate from 0 toPcap.

III. M ARKET OPPORTUNITIES FOR
ENERGY STORAGE SYSTEMS

In this section, we propose detailed models of ESS par-
ticipation in various electricity market programs, including
RSR, contingency reserves, and peak shaving. We introduce
the revenue function,Revenuej that represents the revenue re-
ceived from participation in the programj, and the constraints,
Constraintj that are required by the program operator. The
net profit of participation equals toRevenuej minus the daily
amortized cost of ESS in Eq.(3). For each type of ESSk
and each programj, we derive the optimal selections of
ESS energy and power capacities, as well as the optimal
ESS operational policy (including the amount of reserves to
provide, and the solution of how to dynamically charge and
discharge over time, etc.) for maximizing profit. Then we
evaluate applying these ESSs with today’s typical capacities,
and conduct sensitivity analysis of the maximal net profit on
the price of reserves. Finally, we compare the benefits of these
ESSs participating in each program.

A. Regulation Service Reserves (RSR)

Historically, RSRs were mainly provided by centralized
generators, but market rules are changing to encourage
demand-side participation. This emerging demand response
opportunity is quite attractive due to the high payments com-
parable to the real-time market price [16], [17]. RSR programs
are typically quite demanding for participants. Each RSR
provider is obligated to modulate its power to track an RSR
signalβt broadcast every 4 seconds (this defines the length of
one time slot) by the independent system operator (ISO) [16].
The signal is between[−1, 1], with an average of zero over
long time intervals. It is updated every 4 seconds in increments
that do not exceed±4/τ , whereτ is in 100-300 seconds [18].
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(d) Impacts of price on net profit.

Fig. 1. ESSs in regulation service reserves.

1) Problem Formulation: A provider receivesΠRS · R
revenue for providingR (kW) amount of reserves, whereΠRS

is the price of reserves. The revenue is reduced based on the
tracking error of the RSR signal, i.e.,|ut − Rβt|, whereut

is the power rate defined in Eq.(4). The overall daily revenue
received from RSR participation (T = 1 day) is:

RevenueRS = ΠRSR− θ ·ΠRS(
1

T

T
∑

t=1

|ut −Rβt|), (8)

whereθ is the penalty coefficient on the tracking error.

The provider may lose the RSR contract if the constraint
on signal tracking performance is violated. We formulate this
using a probabilistic constraint:

T
∑

t=1

I{|
ut
Rβt

−1|≤ρ1} ≥ ρ2T (9)

whereρ1 andρ2 are parameters set by the ISO. This equation
shows that the probability of tracking error at each timet, (i.e.,
|ut−Rβt|) that is smaller thanρ1R|βt| should be greater than
or equal toρ2.

Putting Eq.(2) - Eq.(9) together, the overall optimization
formulation of ESSs in RSR is:

max
Ecap,Pcap,R,r,d,u,e

ΠRSR − θ · ΠRS 1

T

T
∑

t=1

|ut −Rβt|

−(ΠP,dPcap +ΠE,dEcap),

s.t.
T
∑

t=1

I{|
ut
Rβt

−1|≤ρ1}
≥ ρ2T,

et = et−1 − µet−1 + rt − dt, ∀t ∈ [1, T ],

ut = rt/η − dt, ∀t ∈ [1, T ],

0 ≤ rt ≤
Pcap

γ
, 0 ≤ dt ≤ Pcap, ∀t ∈ [1, T ],

(1−DoD)Ecap ≤ et ≤ Ecap, ∀t ∈ [0, T ],

dt+1 − dt ≤
Pcap

T ramp
, ∀t ∈ [1, T − 1],

Pcap ≥ 0, Ecap ≥ 0, R ≥ 0.

(10)

In the formulation we user, d, u ande to denote the vectors
of rt, dt, ut andet, respectively. The objective function is to
maximize the net profit of the participation, recalling thatthe



net profit equals the revenue for providing reserves (reduced by
the tracking error) minus the amortized cost of ESS equipment.
The constraints are imposed by both the demand response
program (RSR here) and the ESS technology. The decision
variables of this optimization problem are:

• Power and energy capacities of ESS, i.e., (Pcap, Ecap);

• The amount of reserve to provide, i.e.,R;
• r, d, u ande, which represent how the ESS is operated

dynamically, i.e., the operational policy.

2) Case Study:To evaluate the potential value from RSR
program, we solve the above optimization formulation for the
types of ESSs introduced before. We use parameters defined
by prior work [15]. The RSR signalβt that we use is a real
24-hour signal from PJM [16]. Additionally,ρ1 = 0.2, θ = 1
andΠRS = $0.1/kWh based on today’s markets [17].

The probabilistic constraint makes Eq.(10) not straightfor-
ward to solve. To simplify the problem, we first study the case
of ρ2 = 1, in which the probabilistic constraint in Eq.(9) can
be transformed to a deterministic constraint:

∣

∣

∣

∣

ut

Rβt

− 1

∣

∣

∣

∣

≤ ρ1, ∀t ∈ [1, T ]. (11)

Heuristic solutions ofρ2 < 1 will be discussed in Section IV.
Finally, the absolute value on the tracking error in Eq.(10)
and Eq.(11) leads to piecewise linear property. We simplify
the piecewise linear formulation to a linear one by introducing
ancillary variables.

At the current reserve prices (ΠRS = $0.1/kWh), the
optimal solution of Eq.(10) for LA, LI batteries and CAES
are allP ∗

cap = E∗
cap = R∗ = 0, which demonstrates that there

is no net profit of LA, LI batteries or CAES to participate
in RSR program, i.e., the ESS cost of them is always larger
than the revenue received from the program, no matter what
the power and energy capacities are used or how they are
operated dynamically. On the other hand, there is no feasible
optimal solution of Eq.(10) for UC and FW: the net profit keeps
increasing asPcap, Ecap andR increase, which demonstrates
that the maximal net profit is large for UC and FW, as long as
sufficiently large power and energy capacities can be offered.
This highlights that the revenue earned by UC and FW from
RSR is always larger than the amortized cost of the ESS.

We then study the sensitivity of net profit to energy, power
capacities and the amount of reserve provision. Fig.1(a) and
Fig.1(b) present the optimal net profit (the negative value
represents that the cost of ESS is larger than the revenue,
hence the net profit is less than 0) for varying energy and
power capacities (Ecap, Pcap), and for LI batteries and UC
respectively, in contour plots. LA batteries have similar results
to LI batteries, and FW is similar to UC. From the figures,
we see that for LA/LI batteries, the net profits of participating
RSR are always negative, and the larger capacities of them
are used, the higher cost there would be. On contrary, for UC
and FW, a larger (Ecap, Pcap) creates larger net profit. The
optimal net profit via varying amount of reserve, i.e.,R, is
shown in Fig.1(c). The net profits of LA, LI batteries and
CAES are always negative and monotonously decrease along
the increase ofR, while the net profits of UC and FW are
always larger than 0 and monotonously increase. Note that for
all ESSs, providing largerR requires larger ESS capacities.

The main factors that lead to such differences among ESSs
are related to the characteristics of the ESSs. Since the RSR
signal changes rapidly (every 4 seconds) and bidirectionally, in
order to track it, RSR providers must have a large power capac-
ity and large charge/discharge cycles. A large energy capacity,
however, is not necessary, as the RSR signal has an average of
zero over longer time intervals. UC and FW perfectly match
these RSR characteristics: they have extremely high tolerance
for frequent charging/discharging, high efficiency and power
density, and relatively low power capacity cost, whereas under
the high charge/discharge frequency in RSR, the lifetime of
LA or LI batteries is shortened to less than 10 days due to
the limited life cycle, which results in great cost and thus they
no longer gain any net profit from RSR participation. CAES
is even more limited due to the very large ramp up delay in
discharge and the extremely small power density.

Next we focus on the RSR participation of different ESS
technologies with today’s typical capacities. In practice, the
power and energy capacities of ESSs usually have upper bound
limitations due to the restrictions of manufacturing techniques,
unit prices and space constraints. Table I lists a selectionof
today’s typical capacities of different types of ESSs referring
to recent work [15], [19], [20], [21], estimated mainly based on
space constraints2. The power capacity of CAES is small due
to its extremely small power density. The optimal net profit
and the corresponding optimalR∗ of these typical ESSs in
RSR are listed in the3rd row of Table III3. From the table,
today’s typical UC or FW can provide around 6MW RSR, and
gain more than $10,000 net profit a day, which are close to the
power consumption and the cost of a data center with 10,000-
20,000 servers. The cost of this typical UC or FW is around
$4 million, which can be paid back in less than one year by
receiving RSR credit.

Fig. 1(d) shows the optimal net profit via varying reserve
price ΠRS , for different types of ESSs with their capacities
fixed and given in Table I. The black dashed line represents
where the current market reserve price is around. From the
figure, LI, LA batteries and CAES start to gain net profit (the
value of the net profit is larger than 0) when the reserve price
ΠRS is beyond $1/kWh.

B. Contingency Reserves

In ancillary markets, contingency reserves are used to
respond to loss of power supplies during generation or line
failures. They are typically called by the market less than
once a day, and some of them are called even less than
once a year. A call typically lasts from several minutes to
a few hours. Reserves that are able to respond immediately
are known asspinning reserves, whereas reserves that require
more time to respond are callednon-spinning reserves. For
example, NYISO provides 10-minute spinning and 10-minute
non-spinning reserves. Another type of reserves, theoperating
reserves, are also provided by NYISO, as supplements of other
reserves. Operating reserves have longer reaction time but
also last longer, e.g., more than 30 minutes [17]. 10-minute
spinning reserves have the highest price while the price of

2Since we have taken the cost and unit price information into account in the
problem formulation, we no longer consider it as a problem indetermining
typical capacities of ESSs here.

3All results listed in Table III are the optimization solutions of Eq.(10) when
Ecap andPcap are given as in Table I.
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Fig. 2. The optimal net profit via varying contingency reserve pricesΠCR

for ESSs with today’s typical capacities. The black dashed line shows where
the current reserve price is at.

30-minute operating reserves is the lowest. All these prices
are significantly lower than that of RSR. Overall, due to the
much lower frequency of calls as well as the lower price of
the reserves, the revenue received from contingency reserve
provision is much lower than revenue from RSR provision.

1) Problem Formulation:The revenue of contingency re-
serves can be modeled as:

RevenueCR = ΠCRR, (12)

whereR is the amount of contingency reserves provided and
ΠCR is the price of the reserve. Unlike RSR, the contingency
reserve provision is single directional with:

rt = 0, dt = R, ∀t ∈ [TS , TE], (13)

where[TS, TE ] is a subset of[1, T ], representing that only at
somet during a day, an ESS is used to provide contingency
reserves. For the rest of the day, the ESS is not used. When
providing contingency reserve, the ESS keeps discharging at
the fixed rate as the reserve valueR. In order to provide the
maximal amount of reserves, an ESS is charged to its full
energy capacity before response, i.e.,

eTS
= Ecap. (14)

We formulate the optimization problem for ESS in con-
tingency reserves by putting Eq.(2)-(7) together with Eq.(12)-
(14). The objective function is still to maximize the net profit.
The decision variables are the same as those of RSR.

2) Case Study:We focus on the 10-minute spinning reserve
as an example of contingency reserves, as it is expected
to have the highest revenue.ΠCR = $0.025/kW is selected
for the 10-minute spinning reserve based on today’s market
information [17]. We assume the 10-minute spinning reserve
is called once a day in our case, andTE − TS = 10min.

The optimal solution for all five ESSs in contingency
reserve are:P ∗

cap = E∗
cap = R∗ = 0, which shows that none

of five ESSs gain net profit by only providing contingency
reserves at today’s market reserve price, no matter what the
power and energy capacities are used, and how they are
operated. The larger the capacities (Ecap, Pcap) are used, the
more reservesR that an ESS can provide, however, as well as
the higher the cost of ESS would be, and the cost is always
larger than the revenue from providingR.

The 4th row in Table III shows results of maximal net
profit of contingency reserve and corresponding amount of
reserve for today’s typical ESS capacities, i.e., (Ecap, Pcap)
given from Table I. It highlights that none of today’s typical
ESSs earn profit from contingency reserves at today’s reserve
prices. Contingency reserves are demanding in terms of energy
capacity (as opposed to power capacity), though the power
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Fig. 3. ESSs in peak shaving.

capacity cannot be too low either. From the table, LA and
LI batteries perform better than UC and FW, because of
their lower price on energy capacity and relatively low self-
discharge rate, but still not well enough to be profitable. Fig.2
presents the optimal net profit via varying reserve pricesΠCR

for different ESSs. LI and LA batteries start to gain profit
when the price is close to $1/kWh, whereas the critical points
of CAES, UC and FW are around $5-8/kWh.

C. Peak Shaving

The electricity bill charged monthly by utilities to large
commercial and industrial power consumers, i.e., the opera-
tional expenditure (op-ex), typically consists of two parts: (i)
the energy charge and (ii) the charge for the peak power during
the month. The peak power is the maximum in the month of
average power over each 15-30 minute duration. The price
of the peak power (i.e., the op-ex peak power price) is around
$12/kW/Month currently. The one-time cost of building power
infrastructure to provide capacities to satisfy the peak power
requirements, i.e., the capital expenditure (cap-ex), is around
$10-20/W on peak power based on current estimates [15].
Thus, cutting peak power is an important way to reduce costs.
This approach, termed peak shaving, is common and ESS
provides a key method for implementation.

1) Problem Formulation:When participating in peak shav-
ing, an ESS that shavesR amount of power from the peak
power can gain revenue:

RevenuePS = ΠPSR, (15)

whereΠPS is the overall price on shaved power, i.e., the sum-
mation of the amortized capital (cap-ex) price and operational



TABLE II. O PTIMAL SOLUTIONS FORPEAK SHAVING .

LA LI UC FW CAES

P ∗
cap (kW) 1.30 ∗ 10

3 769.19 148.39147.85 645.36

E∗
cap (kWh) 2.15 ∗ 103 2.40 ∗ 103 29.82 29.93 1.83 ∗ 103

Profit ($/day) 607.40 592.57 326.68354.08 933.94

R∗(kW) 377.75 399.04 148.39147.85 388.80

(op-ex) peak power price. The peak shaving constraints in
formulation, i.e.,ConstraintPS are:

0 ≤ pt + ut ≤ max(pt)−R, ∀t ∈ [1, T ],

e0 = eT ,
(16)

wherept is the power curve before peak shaving, andmax(pt)
is the original peak power.ut is the power change rate from the
view of system level.pt+ut is the new power curve after peak
shaving, andmax(pt) − R is the new peak power.e0 = eT
represents that energy stored in ESS is kept the same at the
beginning and in the end of the time frame (in our studyT = 1
day). We formulate the optimization problem for ESS in peak
shaving by putting Eq.(2)-(7) together with Eq.(15)-(16).The
objective goal is to maximize the net profit and the decision
variables are the same as those of RSR.

2) Case Study:We generatept from a real HP workload
trace collected from a data center that consists of 5,000 servers.
The peak power of this trace is 1MW, commonly seen in
today’s mid-size data center, and matches with the typical
capacities of ESSs. Fig.3(a) is an example ofpt in a day.

Unlike the optimal solution of RSR or contingency reserves
that is either 0 or maximal capacity allowed (i.e., no feasible
optimal solution), the optimal solution of peak shaving can
be in between. Table II lists the optimal solutions of different
ESSs for peak shaving of the power tracept shown in Fig.3(a).
All these optimal solutions lead to positive net profit. CAES
has the maximal optimal net profit, though the corresponding
capacities in the optimal solution is unrealistic due to itsex-
tremely small power and energy densities. LA and LI batteries
have larger optimal net profit than UC and FW, though UC and
FW can gain promising profit with very small capacities.

Fig.3(b) to 3(d) show the optimal net profit for varying
energy and power capacities (Ecap, Pcap) in peak shaving, for
LI, UC and CAES, respectively. These contour plots present
where the optimal solution for each ESS is located. Fig.3(b)
also shows that LI batteries can gain profit from peak shaving
in most cases, except when the power capacity is very small.
In Fig.3(c), the profit of UC is larger than 0 only when both
power and energy capacities are small, which shows that the
marginal increase of the credit received from peak shaving by
enlarging UC capacities is smaller than the increase in UC
capacity cost. In Fig.3(d), CAES is always able to gain profit
in peak shaving though large profit is not practical due to the
limitations of power and energy densities.

Next, considering today’s typical ESS capacities in peak
shaving, the last row in Table III shows the optimal net profit
and the corresponding optimal shaved powerR∗ of ESSs with
typical capacities in Table I, and under today’s cap-ex and
op-ex market prices. From the table, UC and FW fail to gain
net profit, whereas LA, LI and CAES earn net profit around
$300-400 per day.

TABLE III. C OMPARING THE OPTIMAL NET PROFIT OFMULTIPLE

TYPES OFESSS (WITH Ecap , Pcap LISTED IN TABLE I) IN PARTICIPATING

DIFFERENTPROGRAMS.

LA LI UC FW CAES

Profit R∗ Profit R∗ Profit R∗ Profit R∗ Profit R∗

RSR -16.4k0.17 -11.1k0.29 13.0k 5.95 10.3k 5.94 -0.3k 0.004

CR -0.12k1.00 -0.10k1.00 -1.02k 1.50 -0.85k1.49 -0.006k 0.02

PS 0.41k 0.20 0.44k 0.20 - 0.46k0.21 -0.31k0.20 0.31k 0.13
athe unit of profit andR∗ in table are $/day and MW.

bCR: contingency reserve; PS: peak shaving.

Fig.3(e) and Fig.3(f) presents the optimal net profit of peak
shaving for multiple ESSs, via varying op-ex and cap-ex peak
power prices, respectively. The black dashed lines show where
the current market prices are around. Note that in Fig.3(e),
the cap-ex price is fixed at $10/W, while in Fig.3(f) the op-
ex price is fixed at $12/kW/Month (both of them are current
prices). Fig.3(e) illustrates that CAES, LI, and LA gain net
profit (larger than 0) under most cases including the current
situation, while UC and FW need much higher payment to gain
net profit. Similar results hold for cap-ex price in Fig.3(f).

The peak shaving results presented here can be generalized
to any scenario as long as its power trace has a similar pattern
to Fig.3(a). This pattern is common in many scenarios [15],
such as, weekday power consumption of offices, buildings
and industries, power consumption of many types of data
centers, e.g., data centers dealing with search workload (e.g.,
Google), communication workload (e.g., MSN), commercial
and financial workload (e.g., stock exchange), etc.

D. Discussion

We provide the optimal net profit of each ESS technology
across the programs in Table III for today’s typical capacities
and market reserve prices. From the table, LA, LI batteries and
CAES gain profit from peak shaving, whereas UC and FW gain
profit from RSR. None of them gain profit from contingency
reserve, due to its low price and low calling frequency. The
maximal profit earned from emerging RSR (by today’s typical
UC or FW) is up to 30 times of the maximal profit that can be
earned from traditional peak shaving program (by LA or LI
batteries), which shows that there is a great opportunity for an
ESS to gain significant profit from RSR provision in today’s
ancillary market. For providing RSR, UC and FW are the
best choices due to their extremely high tolerance for frequent
charging/discharging, high efficiency and power density, and
relatively low power capacity cost, while LA, LI batteries and
CAES are better choices for peak shaving, or contingency
reserves (though are not profitable), because of their relatively
lower cost on energy capacity and lower self-discharge rate.

IV. M ANAGING PARTICIPATION IN
REGULATION SERVICE RESERVES

Given the potential profitability of ESS participation in
RSR program, we now focus on the design of policies to
enable this participation in practice. There are many challenges
involved in such participation. For example, the provider is
required to track an RSR signal that varies rapidly, bidirection-
ally, and is not known ahead of time. In addition, the revenueis
deducted by tracking error, which creates a trade-off between
reserve maximizing and signal tracking. In this section, we
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Fig. 4. The revenue of providing RSR via varyingρ2, for LI batteries
(in 4(a)) and UC (in 4(b)), with three heuristic offline solutions, respectively.
The revenue is normalized to the value ofρ2 = 1.

start by developing offline optimal solutions (assuming the
RSR signal is known a priori), and then design practical online
policies, in which the RSR signal is not known in advance.

A. Offline policies for RSR

In Section III-A, we introduce the offline optimal solution
in the case whenρ2 = 1 in Eq.(9). ρ2 = 1 simplifies the
probabilistic constraint in Eq.(9) to a deterministic constraint
in Eq.(11). However, normallyρ2 < 1 in practice, i.e., some
violations of signal tracking are tolerable, which makes the
optimization challenging.

1) Policy overview: In this section, we propose three
heuristic offline solutions to deal with the probabilistic con-
straint in Eq.(9) whenρ2 < 1. The key idea behind these
solutions is to determine when the signal should be tracked
within the toleranceρ1 (i.e., satisfying Eq.(11)), and when the
tolerance can be violated. Three solutions are as follows:

RandSelect: Randomly selectρ2T time intervals in[1, T ]
to satisfy Eq. (11).

MinCapSelect: Select ρ2T time intervals in [1, T ] with
smallest|βt| to satisfy Eq.(11). This design is based on the
fact that tracking RSR signal at the time intervalt with larger
|βt| requires larger power capacity.

FixIntSelect: Equally distributeT − ρ2T time intervals
that are allowed to violate the Eq.(11) in[1, T ]. This is
for the purpose of enabling the policy to adjust amount of
energy stored in ESSs without closely following the tracking
constraint once a while.

2) Case study: Fig.4 shows the optimal RSR revenue
solved based on Eq.(10) with three proposed offline methods
via varyingρ2, for LI batteries and UC with typical capacities
listed in Table I, respectively.ρ1 is fixed at 0.2, as in Sec-
tion III-A. Note that since we use the typical capacities in all
cases, the cost of ESS is fixed. Thus, it is equivalent to make
comparisons of these three methods based on either the RSR
revenue, i.e.,RevenueRS or the net profit originally used in
the objective function of Eq.(10). In the figure, all the revenues
are normalized by the revenue atρ2 = 1.

From Fig.4(a),MinCapSelectalways achieves largest rev-
enue for LI batteries whenρ2 varies. The charge/discharge
capacities, i.e., the power capacity are the main bottleneck
for LI batteries to offer more reserves, whileMinCapSelect
can help reduce the requirement on power capacity by only
tracking small|βt| and giving up tracking large|βt|, hence
enabling LI batteries to provide additional reserves. The results
for UC, however, are different. The power capacity is no

longer the bottleneck, as today’s typical UC has a much
stronger power capacity compared to its energy capacity. Asa
consequence, energy capacity turns out to be the bottleneck. In
that case,MinCapSelectdoes not help, and is even worse than
the random algorithmRandSelect. A solution that is able to
utilize the limited energy capacity in a more efficient way can
provide more reserves and earn higher revenue.FixIntSelect
becomes a better solution shown in Fig.4(b), because it equally
distributes time points where constraint violations are allowed
across the whole time frame, so that the energy amount stored
in ESS can be adjusted periodically and uniformly. Fig.4 also
shows that the optimal revenue increases whenρ2 decreases.
Relaxing the signal tracking constraints by decreasingρ2 in
general offers more flexibilities for ESSs to participate the RSR
program, and therefore, enables them to gain larger profits.

B. Online policies for RSR

Prior offline solutions are based on the fact that RSR signal
is known a priori, which is, however, not for the real case
in practice. RSR signal is broadcast to demand side every
few second in real time. In this section, we propose heuristic
online ESS operational policies for RSR participation, where
no information on the RSR signal is required in advance. In
a practical scenario, the online policies handle the following
problems: given the types and capacities of the ESS (i.e.,
assuming the ESS has been setup), how much reserve should
be provided and how the ESS should be operated so that
higher revenue from RSR participation can be gained and the
feasibility of the participation can be guaranteed.

1) Policy overview: As discussed before,MinCapSelect
provides the highest revenue for ESSs such as LI and LA
batteries in the offline solution. Hence we design the online
operational policies for LI and LA batteries based on the
MinCapSelectsolution, as follows:

Initialization: we calculate two thresholdsθ0 andθ1, based
on the requirement input (ρ1, ρ2) from the market operator
introduced before, and the historical data of RSR signalβH

t ,
such that: Prob{|βH

t | ≤ θ0} = ρ2,

θ1 = (1− ρ1)θ0.

Real-time Operation: at each timet, assuming the RSR
signal value isβRT

t , we determine the power rateut by:

1) If |βRT
t | < θ1: we setut = βRT

t , i.e., accurately track
the signal;

2) If θ0 ≥ |βRT
t | ≥ θ1: we setut = θ1sign(βRT

t ), i.e.,
cap the power rateut at θ1;

3) If |βRT
t | > θ0: we no-longer track the signal, instead,

we setut to adjust the current energy storedet back
to a middle levelem =

DoD∗Ecap

2(1−µ) for future use
(recall thatµ is the self discharge rate);

4) Check and caput andet based on power and energy
capacity (Pcap, Ecap) constraints of the ESS.

An advanced algorithm could be updatingθ0 and θ1
adaptively and dynamically in real time based on tracking
performance feedback.

For ESSs such as UC and FW, theFixIntSelectsolution
offers the highest revenue from the previous study of the offline
solution. Therefore, we propose the online operational policy
for UC and FW based on theFixIntSelectheuristic, as follows:



Initialization: we calculate the intervals that adjust the
stored energy in ESS based on the inputρ2: Tint = ⌈ 1

1−ρ2

⌉,
i.e., we adjust the stored energy everyTint period. In addition,
we setθ1 = 1− ρ1;

Real-time Operation: at each timet, assuming the RSR
signal value isβRT

t , we determine the power rateut by:

1) Everyt = Tint, we setut to adjust the current energy
storedet back to middle levelem =

DoD∗Ecap

2(1−µ) ;
2) For t 6= Tint, if |βRT

t | < θ1: we setut = βRT
t , i.e.,

accurately track the signal;
3) For t 6= Tint, if |βRT

t | ≥ θ1: we set ut =
θ1sign(βRT

t ), i.e., cap the power rateut at θ1;
4) Check and caput andet based on power and energy

capacity (Pcap, Ecap) constraints of the ESS.

Another essential issue in an online policy is the determina-
tion of the amount of reserve to provide, i.e.Ronl. Unlike the
offline solution, in which the RSR signal is known ahead, thus
an optimalR can be calculated directly from the optimization
formulation, theRonl for the online policies is required to be
carefully estimated. We propose an approach to learnRonl

from historical offline solutions, asRonl = λRmin, where
Rmin is the minimum of the offline optimalR in the past 12
hours (the signal has been known in those hours, so offline
optimal R can be calculated),λ is a discount value. We use
Rmin and selectλ to avoid aggressive estimation ofRonl, and
to guarantee feasibility of our policies. We selectλ = 90%
for LI batteries andλ = 75% for UC, because LI batteries
have more stable results, much smaller provision and are less
sensitive to variations ofρ2 than UC shown in Section IV-A.

2) Case study:An aggressive claim ofRonl may lead to
failure in reserve provisioning (i.e., constraints are violated)
during the real-time operation, due to the limitations of ESS
capacities. Hence, we first evaluate the feasibility of our online
policies. We test the feasibility of our policies in the last12
hours of a 1-day RSR signal. Each hour is a test case. In each
test, we first calculateRonl based on the offline optimalR in
previous 12 hours as proposed, and then simulate the online
policies to check whether all constraints are satisfied during the
test hour. We also evaluate the policies with differentρ2. Our
results show that these safely estimatedRonl together with our
policies satisfy all constraints and thus are feasible solutions
in all test cases, for both LI batteries and UC.

Then we compare the RSR revenue of our online policies
to the offline solutions in Fig.5, via varyingρ2. For offline
solutions,MinCapSelectis selected for LI batteries, andFix-
IntSelectis selected for UC, as they perform the best for LI
batteries and UC respectively shown in Fig.4, and our online
policies are designed based on them. All results in Fig.5 are
normalized to the offline solution ofρ2 = 1. From the figure,
the proposed online solutions still receive promising revenues,
though there is (as expected) a noticeable gap compared to
offline solutions, due to the lack of RSR signal information,
and the safe estimation of the reserve valueRonl. More
importantly, however, the feasibility of such online policies
is guaranteed with high confidence. There is the following
tradeoff: an aggressive online policy may bring the revenue
close to optimal offline solutions, while the real-time feasibility
of such solution decreases at the same time.
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Fig. 5. The revenue of providing RSR via varyingρ2, for LI batteries (in 5(a))
and UC (in 5(b)), respectively, with offline and online solutions. The revenue
is normalized to the value ofρ2 = 1 in offline solutions.

V. RELATED WORK

Today’s most popular ESSs include batteries, flywheels,
ultra-capacitors and other emerging techniques, e.g., CAES,
etc [19], [20]. These ESSs are modeled, for either ideal or
non-ideal behaviors, and their system performance is evalu-
ated [15], [21]. Recently, the hybrid electric energy storage
system (HESS) is designed and investigated to enlarge the
system storage capacity and improve the efficiency [22].

In tandem with the developments of ESSs, there is a
growing attention on consumer (e.g., data centers, smart
buildings and EVs) demand response and reserve provision
in ancillary service markets. A few studies closely explore
opportunities and challenges in demand response and ancillary
service market for data centers to reduce cost [3], [4], [17],
[23], [24]. Among them, RSR is especially of interest due
to its high clearing price on reserves, and thus potentially
large profits [18]. Other work proposes to jointly leverage a
data center and Plug-in Hybrid EVs in regulation market to
maximize the profit [5]. Some approaches co-schedule heating,
ventilation, air conditioning (HVAC) and EVs for reducing the
energy consumption and the peak energy demand [6].

ESSs are considered promising options for participation in
power markets and demand response. A few previous studies
propose control policies and evaluate the benefit of ESSs in
real-time dynamic energy pricing programs [9], [25], peak
shaving [15], [26], and frequency control [27], [28], respec-
tively. However, most previous studies focus on traditional
power market programs, though, ESSs are able to potentially
receive higher profit from emerging ancillary service market,
especially from RSR. In the space of RSR, some prior work
surveys potential market chances and evaluates maturity of
ESS participation in RSR [10], [11], [12], [13], but without
formulating the detailed models of participation and evaluating
the optimal solutions. The closest paper to the current work
is [14]. However, [14] uses a simplified RSR participation
model that does not consider the details of regulation accuracy
constraints and penalties. Further, it assumes that the RSR
signal always follows a statistical distribution known a pri-
ori, and without considering the reserve value and capacity
planning for different ESSs. To the best of our knowledge,
ours is the first paper to provide detailed models, evaluate and
optimize the profits of various ESS technologies in not only
traditional power market programs such as peak shaving, but
also in emerging smart grid demand response such as RSR and
contingency reserves, by proposing detailed reserve valueand
capacity planning, as well as online ESS operational policies.



VI. CONCLUSION

In this paper, we have modeled and studied the optimization
solutions that maximize the net profit of various ESSs in
different demand response programs. Our results show that
typical UC and FW are the most profitable selections for RSR,
while common battery techniques such as LI and LA batteries
are the best choices for peak shaving. None of today’s ESS
technologies can earn positive net profits from merely provid-
ing contingency reserves. More importantly, applying UC/FW
in RSR has the potential to be up to 30 times more profitable
than LI/LA batteries for peak shaving. Additionally, we have
proposed online policies for managing ESS participation in
RSR program, the novel but most profitable option according
to our studies. Our online policies guarantee the feasibility of
RSR provisions, while also achieving significant profits.
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