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Abstract—The growing amount of intermittent renewables in  buildings, which have on-site ESSs to manage power outages,
power generation creates challenges for real-time matchinof ~ can make use of ESSs to receive monetary incentives without
supply and demand in the power grid. Emerging ancillary powe  having to alter their internal performance. ESSs have been
markets provide new incentives to consumers (e.g., eleatal  gydied for participation in well-known power programs lsuc
vehicles, data centers, and others) to perform demand respse as real-time pricing [9], but the potential of ESS partitipa
to help stabilize the electricity grid. A promising class ofpotential in many of the most bromising demand response programs

demand response providers includes energy storage systems h t1o b derstood. includi lati )
(ESSs). This paper evaluates the benefits of using variouspgs as yet 1o be underslood, Iincluding regulation servicervese

of novel ESS technologies for a variety of emerging smart gii  (RSR), contingency reserves in emerging ancillary service
demand response programs, such as regulation services reges ~ Markets, and peak shaving programs. Some recent work has
(RSRs), contingency reserves, and peak shaving. We model, begun to investigate these programs or ESS capacity plan-
formulate and solve optimization problems to maximize the et~ ning [10], [11], [12], [13]; however, in most cases, these
profit of ESSs in providing each demand response. Our solutio  papers use simplified participation models, e.g., an RSReinod
selects the optimal power and energy capacities of the ESS, that ignores regulation accuracy constraints and pesdlti.
determines the optimal reserve value to provide as well as &1 pesjdes, few work studies the decisions of reserve value
ESSltreil.-tmehc:ptira;tmnall pollcyltfor progrim part:;:lﬁatu;]n. ?u.r and the ESS capacity planning. Furthermore, different ESS
results highlight that applying ultra-capacitors and flywheels in : : : S
RSR has the potential to be up to 30 times more profitable than teChHQIOQ'eS (e.g., lead'ac'q (LA) batteries, lithium-icL1)
using common battery technologies such as LI and LA batterie batteries, uItra/super-capacnors (UC), flywheels (FW)d a
for peak shaving. compressed air energy storage (CAES)) have contrasting pro
erties, which can dramatically impact profits of participatin
such programs. Systematic evaluation and comparison of the
l. INTRODUCTION benefits of using these ESS technologies in a variety of ddman

A sustainable energy future mandates integrating a |argé’|esponse opportunities do not exist in current literature.

portion of renewable generation into the grid. Most statebé This paper’s goal is to thoroughly evaluate, optimize, and
US and several European countries already have aggreasive tcontrast a range of ESS technologies for participation in a
gets to increase the share of renewables in their portffillos  variety of promising demand response programs. Our method
[2]. The fact that many forms of renewable generation areseeks to provide a strategy for the selection and manageshent
intermittent by nature (e.g., wind and solar) creates figanit  ESSs for a broad range of consumers (data centers, EVs, smart
challenges for grid operators, who need to match supply anBuildings) to maximize the incentives received from aacjll
demand in real-time. In response to this challenge, emgrginpower markets, and hence, to minimize the electricity cost
ancillary power markets provide sizable monetary incestiv. while helping stabilize the grid. Our specific contributioare:

for the consumers to perforlemand responsevhich refers ) ) _ o

to a consumer adjusting its own electricity use followingea s First, we provide detailed models and optimization solu-

of constraints or directives given by the grid operator. tions for participation of ESSs in multiple smart grid pragrs,
including RSR, contingency reserves and peak shaving (Sec-

Among potential demand response program participantsions[I] and[Ill). We also design practical heuristic sobuis

data centers, electrical vehicles (EVs), and smart bugklavre that handle the real life probabilistic constraints in RSR
especially promising, and have received recent attentimm f  provisioning problem (Sectidn TVAA). In each model, the tcos
the research community][3].1[4].][5].][6]. This attentiondse  of ESS equipment, the revenue received for demand response,
to their significant flexibility in energy consumption, aslive and constraints required by the demand response program
as the large cumulative power consumption levels and/dr fasare formulated. The net profits are optimized based on these
growth these entities provide. models, and the corresponding optimal decisions of reserve
value, ESS capacity planning and the operational polidies a
derived. The generality and wide applicability of the madel
W¥d solutions distinguish this paper from previous work.

One of the most promising participation opportunities for
demand response comes from using energy storage syste
(ESSs), which can potentially charge/discharge depenaing
the demand response program requirements reliably. There a  Second, the proposed models and optimal solutions enable,
a variety of energy storage startup companigs [7], [8] thafor the first time in the literature, a thorough comparisohef
use ESSs to participate directly in energy market programbenefits of different ESSs for participation in demand resgo
this way. Additionally, entities such as data centers andrsm opportunities (SectioflIl). We highlight the ESS techrplo
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. . . ~TABLE I. A SELECTION OF TODAY'S TYPICAL CAPACITIES OFES S,
that is the most appropriate for each power program (and vice BASED ON SPACE CONSTRAINTS.

versa). Results show that UC is the most profitable ESS for
RSR, while LI battery is the best choice for peak shaving. LA | LI | UC | FW |CAES
Also, we show that none of today’s typical ESSs can earn Peap (kW) [1,0001,00020,00020,00 20

positive net profits from providing contingency reserves.

Eeap (KWh)| 250 | 250| 250 | 250 | 250

Finally, in addition to evaluation with offline optimizatio

solutions, this paper proposes heuristic practical orginigies 5t CAES in some market programs. Additionally, it has a very

for provisioning with different types of ESSs in RSR program|q\y energy density (large space needed) and a high power cost
(Section[1V=B), which is the most profitable program among

those studied. As opposed to the offline solution, our onlind3. Modeling Energy Storage Systems
solution does not require information of RSR signal in ad-
vance, and thus, is applicable for real-life use. The sofuti
adaptively leverages the tolerable RSR signal trackingrerr
for pursing larger profits. Our solution is able to satisfy a
constraints and thus guarantee the feasibility of the gromij
while still achieving significant profits.

There are two key components in modeling ESSs: costs
(both of procurement and operation) and operation comsgrai
| (self-discharging, ramping, etc.). Operation constga#n be
classified into (i) constraints imposed by the ESS technplog
and (ii) constraints imposed by the demand response program
Constraints of type (i) are discussed here, and constraints

type (ii) are discussed in Sectionllll.
Il. ENERGY STORAGE SYSTEMS ype (i)

ESS CostsThe life span of an ESS is normally years with
e-time upfront purchase/installation cost, yet pgutition in
demand response program can span a year, a month, or even

Storage technologies are becoming more cost-effective a
wide spread and, at the same time, more lucrative mark

participation opportunities are emerging. In this sectioe a day. In order to handle the mismatch in time granularity,

provide an overview of some potential storage technologieg o s mortize the upfront cost evenly over the lifespan of the
and define a model that enables us to study the participatiofgg | etp (in kW) and E...,, (in kWh) represent the power

. . s . cap cap
of each ESS in various market opportunities. capacity and energy capacity of the ESS, respectivelylHnd

A. Background on Energy Storage Systems (in $/kwW) andTI¥ (in $/kwWh) are the corresponding prices.

In this paper, we focus on five popular ESSs, namel Then the one-time upfront cosflis
i , W u iv u , .
e pop y 117 Py + 117 By, 1)

lead-acid (LA) batteries, lithium-ion (LI) batteries, tdtsuper-
capacitors (UC), flywheels (FW), and compressed air energy 15 tactors that need to be considered to calculate the
storage (CAES). In the following, we briefly highlight impor 4, ration of use are the face-plate lifetimB,.. and the

tant characteristics of each. The interested reader cant®f maximal number of charge/discharge cycles,.. Assuming
prior work [15] for more information. the charge/discharge frequencyfis the effective duration of

Lead-Acid (LA) batteries are widely used in daily life, use ismin {TmaX7 Lj—;} Since many of the demand response
e.g., in car batteries. They have very low self-dischargs lo programs clear the credits daily, we amortize the cost ofsESS
rates, which makes them suitable for the demand responseto daily prices, namely, for each type of E&Swe define
programs with long durations, e.g., hours. Additionalyeyt it daily power and energy capacity pricesi&s* and 117
have moderate energy cost and power cost, and therefore aas: i p
robust under different market scenarios. However, the key P 1L N § E - 1L,
disadvantage of LA batteries is the relatively small number min {Tmax, Lf_y}
of charge/discharge cycles and shorter float life. LA baser ’
can only be used for several thousand circles. where f; is the frequency of the charge/discharge in program
j. Therefore, the daily amortized cost is:

—_—, (2
min {T L} @
fj

Lithium-lon (LI) batteries are also widely used in our P 5.d
daily life, and have similar characteristics to LA batteri¢he I, Peap + 11" Eeap. 3)
key difference is that LI batteries have relatively highests,

longer lifetimes, more cycles, and higher efficiency. ESS Operation Constraints: Assume that at time,

the charge and discharge rates of an ESS rareand d;,
Ultra/super-Capacitors (UCs)differ dramatically from LI respectively. We denote the total energy stored in the ESS at

and LA batteries. UCs have an extremely high tolerance fotime ¢ ase;, and the overall power rate from the view of the

frequent charging/discharging. Additionally, UCs haveghhi system level as;. Then we have:

efficiency and power density. However, they have a high gnerg er = ey — per_1+ 1 — dy, Vi,

cost (around $10,000/kWh) and high self-discharge rate. we = 1o/ — di, Vit

Flywheels (FWs) represent a middle ground between
LI/LA batteries and UCs. Like UCs, they have high efficiency
and power density, but also high energy cost and a high sel
discharge rate.

Compressed Air Energy Storage (CAEShas a very low 10ther ways of calculating the upfront cost exist (e.g., tipérant cost

T : is selected as the maximum of the costs on power capacity apd)e
energy cost and self dISCharge rate. However, it has a W‘W S capacity [[15]). Our method is adaptable to such calculatieng., an ancillary

ramping time (10 min vs. 1ms in the other four ESSs). ThiSyariable can be introduced to convert the selection of theimmam on power
means that it cannot adapt quickly, which limits participat and energy capacities into two linear constraints.

(4)

where 1 is the self-discharge rate of the ESS, ands the
gnergy charging efficiency. We haye< 1, as there is always
amount of loss during the ESS charge procgsandn, vary
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(a) Profit of LI batteries ($/day). (b) Profit of UC ($/day).

whereP,,,, is the power capacity of the ESS defined befare, X

is the ratio of discharge rate to charge rate. For UC and+W, 5 X1 A
is close to 1, which means they have almost same charge anc_
discharge capacities, however for LA and LI batteries; 1,
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The amount of energy that is stored in the ESS is con- & _i " ~

strained by the ESS energy capachy,,. In addition, it is ——cAES ekl :
_15

constrained by the Depth of Discharge (DoD), which helps 0 500 1000 1500
guarantee the |Ifet|me Of the equipment: Amount of Reserve (kW) Price on Reserve ($/kWh)
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(c) Impacts ofR on net profit. (d) Impacts of price on net profit.
(1 - DOD)Ecap <e < Ecapa vt. (6) Fig. 1. ESSs in regulation service reserves.

Finally, though most ESSs are able to ramp up their

on- ; Y ac[ RS
discharge rate extremely fast, some ESSs, e.g., CAES, tanng 1) Problem Formulation: A provider receivesIl ™ - I
Thus, we have the discharge rate ramp up constraint: revenue for providing? (kW) amount of reserves, whefé"
p is the price of reserves. The revenue is reduced based on the
cap

. Vi, (7)  tracking error of the RSR signal, i.€y; — RS:|, whereu,
Tramp is the power rate defined in Eig.(4). The overall daily revenue
where 77" is the time for ESS to ramp up the dischargereceived from RSR participatiod’ (= 1 day) is:
rate from O toF.,.

diy1 —dy <

T
1
Revenuerg = MR —6 - HRS(T Z lus — RB:]), (8)
t=1

1. M ARKET OPPORTUNITIES FOR _ o = _
ENERGY STORAGE SYSTEMS whered is the penalty coefficient on the tracking error.

In this section, we propose detailed models of ESS par- The provider may lose the RSR contract if the constraint
ticipation in various electricity market programs, indiugl  on signal tracking performance is violated. We formulats th
RSR, contingency reserves, and peak shaving. We introdugésing a probabilistic constraint:
the revenue functiomevenue; that represents the revenue re- )
ceived from participation in the prograjnand the constraints, Z H{%gfugpl} > poT 9)
Constraint; that are required by the program operator. The t=1
net profit of participation equals tBevenue; minus the daily  wherep, andp, are parameters set by the 1SO. This equation
amortized cost of ESS in EQI(3). For each type of ESS shows that the probability of tracking error at each timg.e.,
and each programy, we derive the optimal selections of |, — R,|) that is smaller thap; R|3;| should be greater than
ESS energy and power capacities, as well as the optim@r equal top..

ESS operational policy (including the amount of reserves to

provide, and the solution of how to dynamically charge andformulation of ESSs in RSR is.

Putting Eql(R) - EqL{9) together, the overall optimization

discharge over time, etc.) for maximizing profit. Then we 1 X

evaluate applying these ESSs with today’s typical capes;iti max nR— 0. 117 = Z |us — Rt

and conduct sensitivity analysis of the maximal net profit on ~ FeerFear for.due T

the price of reserves. Finally, we compare the benefits afethe —(I"Peyy + TP By,

ESSs patrticipating in each program. T

A. Regulation Service Reserves (RSR) st ZH{\%A\SM 2 paT,
t=1

Historically, RSRs were mainly provideql by centralized et =e—1— pe—1 + 1y —di, VEELT], (10)

generators, but market rules are changing to encourage w =1 /0 —di, Yt € [1,T],

demand-side participation. This emerging demand response Prap

opportunity is quite attractive due to the high payments-com 0<r < v 0 <di < Peap, Vt € [1,T],

parable to the real-time market price [16],[17]. RSR progsa L= DODVE... < e < E . T

are typically quite demanding for participants. Each RSR ( oD)Ecap —;t— capy V¢ € [0, ],

provider is obligated to modulate its power to track an RSR dip1 —dy < =2 Vte[1,T - 1],

— TTramp ’

signal 3, broadcast every 4 seconds (this defines the length of Poay > 0, Boap > 0, R > 0.

one time slot) by the independent system operator (1SQ) [16]
The signal is betweeifi-1, 1], with an average of zero over In the formulation we use, d, u ande to denote the vectors
long time intervals. It is updated every 4 seconds in increne of r,, d;, u;, ande;, respectively. The objective function is to
that do not exceed-4/7, wherer is in 100-300 second5 [18]. maximize the net profit of the participation, recalling tfia¢



net profit equals the revenue for providing reserves (redibye The main factors that lead to such differences among ESSs
the tracking error) minus the amortized cost of ESS equiggmenare related to the characteristics of the ESSs. Since the RSR
The constraints are imposed by both the demand respons@nal changes rapidly (every 4 seconds) and bidirectigral
program (RSR here) and the ESS technology. The decisioorder to track it, RSR providers must have a large power capac
variables of this optimization problem are: ity and large charge/discharge cycles. A large energy dgpac
however, is not necessary, as the RSR signal has an average of

p d ities of ESS, i.Buf, Foay); oSS!
¢ Fowerandenergy capacilies o | Beals Bear)s 2610 over longer time intervals. UC and FW perfectly match

e The amount of reserve to provide, i.€; these RSR characteristics: they have extremely high todera
e r,d, uande, which represent how the ESS is operatedfor frequent charging/discharging, high efficiency and pow
dynamically, i.e., the operational policy. density, and relatively low power capacity cost, whereadeun

i the high charge/discharge frequency in RSR, the lifetime of
2) Case Study:To evaluate the potential value from RSR | o oL | batteries is shortened to less than 10 days due to
program, we solve the above optimization formulation @& th e jimited life cycle, which results in great cost and thioeyt
types of ESSs introduced befqre. We use parameters defingd longer gain any net profit from RSR participation. CAES
by prior work [15]. The RSR signaB; that we use is a real s eyen more limited due to the very large ramp up delay in
24-hour signal from PIM_[16]. Additionallyy = 0.2, =1 gischarge and the extremely small power density.
andIT7S = $0.1/kWh based on today’s markefs [17].
Next we focus on the RSR patrticipation of different ESS

The probabilistic constraint makes Eqi(10) not straightfo echnologies with today’s typical capacities. In practitee
ward to solve. To simplify the problem, we first study the caseyower and energy capacities of ESSs usually have upper bound
of p; =1, in which the probabilistic constraint in EGl(9) can |imitations due to the restrictions of manufacturing tecioes,

be transformed to a deterministic constraint: unit prices and space constraints. TaBle | lists a seleaifon
)< p1,Vt € [1,T]. (11) today’s typical capacities of different types of ESSs nefey
RpB: to recent work([15],[[19],[120],[121], estimated mainly bdsen

Heuristic solutions of» < 1 will be discussed in Sectidn V. Space constrairisThe power capac_ity of CAES. is small due_
to its extremely small power density. The optimal net profit

Finally, the absolute value on the tracking error in Eq.(10) i P X .
and Eq.(11) leads to piecewise linear property. We simplify;r‘Sthhe clprregponcrillngdoptlma: Tolf)lﬂléleIEe éyplcthESStfl n
the piecewise linear formulation to a linear one by intrddgc are listed In thé’ row of Tablell'H. From the table,

; ; today’s typical UC or FW can provide around 6MW RSR, and
ancillary variables. gain more than $10,000 net profit a day, which are close to the

At the current reserve pricedI(*® = $0.1/kwh), the  power consumption and the cost of a data center with 10,000-
optimal solution of Eq[(10) for LA, LI batteries and CAES 20,000 servers. The cost of this typical UC or FW is around
are all P, = E,, = R* = 0, which demonstrates that there $4 million, which can be paid back in less than one year by
is no net profit of LA, LI batteries or CAES to participate receiving RSR credit.
in RSR program, i.e., the ESS cost of them is always larger _. . L .
than the revenue received from the program, no matter what . F'g'g@ ShO.WS the optimal net profit via varying reserve
the power and energy capacities are used or how they a ice I1™, for d|_fferent types of ESSs with th"z" capacities
operated dynamically. On the other hand, there is no feasibl Ixed and given in Tabl€] I. The black dashed line represents

: : i : here the current market reserve price is around. From the
optimal solution of EqL{I0) for UC and FW: the net profit keeps"” ) . .
increasing a%,up, Fuap and R increase, which demonstrates figure, LI, LA batteries and CAES start to gain net profit (the

that the maximal net profit is large for UC and FW, as long asl\f[aégeis‘)fbtehyeogg%plrﬁ(%f larger than 0) when the reserve price

sufficiently large power and energy capacities can be affere
This highlights that the revenue earned by UC and FW fromB. Contingency Reserves

RSR is always larger than the amortized cost of the ESS. In ancillary markets, contingency reserves are used to

We then study the sensitivity of net profit to energy, powerrespond to loss of power supplies during generation or line
capacities and the amount of reserve provision[Fid.1(d) anfailures. They are typically called by the market less than
Fig[I(b) present the optimal net profit (the negative valueonce a day, and some of them are called even less than
represents that the cost of ESS is larger than the revenuence a year. A call typically lasts from several minutes to
hence the net profit is less than 0) for varying energy and few hours. Reserves that are able to respond immediately
power capacities K.q,, Prqp), and for LI batteries and UC are known aspinning reserveswvhereas reserves that require
respectively, in contour plots. LA batteries have similesults more time to respond are calletn-spinning reserves-or
to LI batteries, and FW is similar to UC. From the figures, example, NYISO provides 10-minute spinning and 10-minute
we see that for LA/LI batteries, the net profits of participgt non-spinning reserves. Another type of reservespiperating
RSR are always negative, and the larger capacities of themeservesare also provided by NYISO, as supplements of other
are used, the higher cost there would be. On contrary, for UCeserves. Operating reserves have longer reaction time but
and FW, a larger K., P.qp) Creates larger net profit. The also last longer, e.g., more than 30 minutes [17]. 10-minute
optimal net profit via varying amount of reserve, i.®, is  spinning reserves have the highest price while the price of
shown in Fid.1(d). The net profits of LA, LI batteries and —— — — :
CAES are always negative and monotonously decrease alon%s'nce we have taken the cost and unit price information iotmant in the

- : . problem formulation, we no longer consider it as a problendétermining
the increase ofz, while the net profits of UC and FW are i capacities of ESSs here.
always larger than 0 and monotonously increase. Note that fo 3 results listed in TabIETIl are the optimization solutie of Eq D) when
all ESSs, providing largeR requires larger ESS capacitieS.  Fcqp and P.qp are given as in Tablg |.
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1) Problem Formulation:The revenue of contingency re- Energy Capacity (kWh) Energy Capacity (kh)
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reserves. For the rest of the day, the ESS is not used. Whe() impact of op-ex price on profit. (f) Impact of cap-ex price on profit.
providing contingency reserve, the ESS keeps discharding @ig 3. Esss in peak shaving.
the fixed rate as the reserve valize In order to provide the

maximal amount of reserves, an ESS is charged to its fulfapacity cannot be too low either. From the table, LA and
energy capacity before response, i.e., LI batteries perform better than UC and FW, because of

J— (14) their lower price on energy capacity and relatively low self
s cap: discharge rate, but still not well enough to be profitablgZi
We formulate the optimization problem for ESS in con- presents the optimal net profit via varying reserve pride€
tingency reserves by putting EQ.(2)-(7) together with [Eg){ for different ESSs. LI and LA batteries start to gain profit
(I4). The objective function is still to maximize the netfito  when the price is close to $1/kWh, whereas the critical [goint

The decision variables are the same as those of RSR. of CAES, UC and FW are around $5-8/kWh.

2) Case StudyWe focus on the 10-minute spinning reserve C. Peak Shaving

as an example of contingency reserves, as it is expected - .
to have the highest revenuBC? = $0.025/kW is selected The electricity bill charged monthly by utilities to large

for the 10-minute spinning reserve based on today’s markdiommercial and industrial power consumers, i.e., the epera

information [17]. We assume the 10-minute spinning reservdonal expenditure (op-ex), typically consists of two sarfi)
is called once a day in our case, afig — Ts = 10min. the energy charge and (ii) the charge for the peak power glurin
the month. The peak power is the maximum in the month of

The optimal solution for all five ESSs in contingency average power over each 15-30 minute duration. The price
reserve arery;, = E,, = R* = 0, which shows that none of the peak power (i.e., the op-ex peak power price) is around
of five ESSs gain net profit by only providing contingency $12/kW/Month currently. The one-time cost of building powe
reserves at today’s market reserve price, no matter what th@frastructure to provide capacities to satisfy the peawgro
power and energy capacities are used, and how they arequirements, i.e., the capital expenditure (cap-ex)rasirad
operated. The larger the capacitids.{,, P..;) are used, the $10-20/W on peak power based on current estimdtes [15].
more reservest that an ESS can provide, however, as well asThus, cutting peak power is an important way to reduce costs.
the higher the cost of ESS would be, and the cost is alway$his approach, termed peak shaving, is common and ESS
larger than the revenue from providirg provides a key method for implementation.

The 4'" row in Table[Tll shows results of maximal net 1) Problem Formulation:\When participating in peak shav-
profit of contingency reserve and corresponding amount ofng, an ESS that shave® amount of power from the peak
reserve for today’s typical ESS capacities, i.&d, Peap) power can gain revenue:
given from Tabld]l. It highlights that none of today’s typlica PS
ESSs earn profit from contingency reserves at today’s reserv Revenueps = II"° R, (15)
prices. Contingency reserves are demanding in terms ofjgner whereII” is the overall price on shaved power, i.e., the sum-
capacity (as opposed to power capacity), though the powenation of the amortized capital (cap-ex) price and openatio



TABLE II. OPTIMAL SOLUTIONS FORPEAK SHAVING . TABLE III. C OMPARING THEOPTIMAL NET PROFIT OFMULTIPLE
TYPES OFESSs (WITH Ecap, Peap LISTED IN TABLE[I) IN PARTICIPATING

LA LI UC | FW | CAES DIFFERENTPROGRAMS.
B 3
Prop (KW) |1.30 x 10°| 769.19 |148.39147.85 645.36 LA LI uc EW CAES
* 3 3 3
Bap (KWh)[2.15 + 107240 + 107] 29.82) 29.93]1.83 + 10 Profit| R* || Profit| R* || Profit | R* || Profit| R* || Profit | R*

Profit ($/day) 607.40 | 592.57 |326.68354.08 933.94
R* (kW) 377.75 | 399.04 [148.39147.8% 388.80

RSR|-16.4K0.17(-11.1K0.29| 13.0k|5.95| 10.3k|5.94/| -0.3k |0.004
CR[-0.1241.00|-0.10K1.00|-1.02k|1.50|-0.85k1.49|-0.006k 0.02

(op-ex) peak power price. The peak shaving constraints in PS||0-41k|0.2Q| 0.44k|0.20)- 0.46K0.21}-0.31K0.2G| 0.31k | 0.13

formulation, i.e.,Constraintpg are: 3the unit of profit andR* in table are $/day and MW.
BCR: conti ; PS: peak shaving.
0< py+us < max(pt) _R, Vte [17T]a " contingency reserve peak shaving
eo = er, (16) Fig[3(e) and Fif.3(f) presents the optimal net profit of peak

) _ shaving for multiple ESSs, via varying op-ex and cap-ex peak
wherep, is the power curve before peak shaving, amdr(p:)  power prices, respectively. The black dashed lines showevhe
is the original peak powet, is the power change rate fromthe the cyrrent market prices are around. Note that in[Fig.3(e),
view of system levelp; +u; is the new power curve after peak the cap-ex price is fixed at $10/W, while in Fig.3() the op-
shaving, andnaz(p;) — R is the new peak powery = er ey price is fixed at $12/kW/Month (both of them are current
represents that energy stored in ESS is kept the same at 3@ces). Fig3(@) illustrates that CAES, LI, and LA gain net
beginning and in the end of the time frame (in our stddy 1 ,rofit (larger than 0) under most cases including the current
day). We formulate the optimization problem for ESS in peaks;tyation, while UC and FW need much higher payment to gain
shaving by putting EA.2]{7) together with EQX16H(1Bhe et profit. Similar results hold for cap-ex price in Eig.B(f)
objective goal is to maximize the net profit and the decision . .
variables are the same as those of RSR. The peak shaving results presented here can be generalized

to any scenario as long as its power trace has a similar patter

2) Case StudyWe generate, from a real HP workload to Fig[3(@). This pattern is common in many scenarios [15],

trace collected from a data center that consists of 5,00@e2r such as, weekday power consumption of offices, buildings

The peak power of this trace is 1MW, commonly seen inand industries, power consumption of many types of data
today's mid-size data center, and matches with the typicatenters, e.g., data centers dealing with search workloagd, (e
capacities of ESSs. Hg.3[a) is an examplgpofn a day. Google), communication workload (e.g., MSN), commercial

Unlike the optimal solution of RSR or contingency reservesand financial workload (e.g., stock exchange), etc.

that is either O or maximal capacity allowed (i.e., no felesib D. Discussion
optimal solution), the optimal solution of peak shaving can
be in between. Tablelll lists the optimal solutions of difiet
ESSs for peak shaving of the power trageshown in Fid.3(3).
All these optimal solutions lead to positive net profit. CAES
has the maximal optimal net profit, though the correspondin X 4 . )
capacities in the optimal solution is unrealistic due toets ~ Profit from RSR. None of them gain profit from contingency
tremely small power and energy densities. LA and LI batterie FEServe, due_to its low price and .lOW calling frequepcy. '_I'he
have larger optimal net profit than UC and FW, though UC anc{;'éxc')rpgw)r?é'tu%‘?‘g'gg Er%rgsecr)??rzgelr:r?asi?nill(g¥ot1%dtﬁgfégﬁlgael
FW can gain promising profit with very small capacities. earned from traditional peak shaving program (by LA or LI
Fig[3(B) to[3(d) show the optimal net profit for varying batteries), which shows that there is a great opportunityfo
energy and power capacitieB{,,, P.q.,) in peak shaving, for ESS to gain significant profit from RSR provision in today’s
LI, UC and CAES, respectively. These contour plots presenancillary market. For providing RSR, UC and FW are the
where the optimal solution for each ESS is located.[Figl3(bpest choices due to their extremely high tolerance for feaqu
also shows that LI batteries can gain profit from peak shavingharging/discharging, high efficiency and power densitd a
in most cases, except when the power capacity is very smalielatively low power capacity cost, while LA, LI batteriesch
In Fig[3(c), the profit of UC is larger than 0 only when both CAES are better choices for peak shaving, or contingency
power and energy capacities are small, which shows that theserves (though are not profitable), because of theirivehat
marginal increase of the credit received from peak shaving blower cost on energy capacity and lower self-discharge rate
enlarging UC capacities is smaller than the increase in UC
capacity cost. In Fif.3(H), CAES is always able to gain profit IV. MANAGING PARTICIPATION IN
in peak shaving though large profit is not practical due to the REGULATION SERVICE RESERVES
limitations of power and energy densities.

We provide the optimal net profit of each ESS technology
across the programs in Talilel 1l for today’s typical capesit
and market reserve prices. From the table, LA, LI battens a

AES gain profit from peak shaving, whereas UC and FW gain

Given the potential profitability of ESS participation in
Next, considering today’s typical ESS capacities in peaRSR program, we now focus on the design of policies to
shaving, the last row in Tablelll shows the optimal net profitenable this participation in practice. There are many ehals
and the corresponding optimal shaved powérof ESSs with  involved in such participation. For example, the provider i
typical capacities in Tablgl I, and under today’s cap-ex andequired to track an RSR signal that varies rapidly, bidicee
op-ex market prices. From the table, UC and FW fail to gainally, and is not known ahead of time. In addition, the revesue
net profit, whereas LA, LI and CAES earn net profit arounddeducted by tracking error, which creates a trade-off betwe
$300-400 per day. reserve maximizing and signal tracking. In this section, we
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Fig. 4. The revenue of providing RSR via varying, for LI batteries
(in[A@)) and UC (i 4{@)), with three heuristic offline soduts, respectively.
The revenue is normalized to the value®f = 1.

start by developing offline optimal solutions (assuming th
RSR signal is known a priori), and then design practicalrenli
policies, in which the RSR signal is not known in advance.

A. Offline policies for RSR

In SectiorII[-A, we introduce the offline optimal solution
in the case whem, = 1 in Eq.(3). p» = 1 simplifies the
probabilistic constraint in EQ9) to a deterministic cvamt

e

longer the bottleneck, as today’s typical UC has a much
stronger power capacity compared to its energy capacitya As
consequence, energy capacity turns out to be the bottlelreck
that caseMinCapSelectioes not help, and is even worse than
the random algorithnRandSelectA solution that is able to
utilize the limited energy capacity in a more efficient way ca
provide more reserves and earn higher reveriddntSelect
becomes a better solution shown in Fig.#(b), because itlgqua
distributes time points where constraint violations atevetd
across the whole time frame, so that the energy amount stored
in ESS can be adjusted periodically and uniformly.[Big.4 als
shows that the optimal revenue increases whgrlecreases.
Relaxing the signal tracking constraints by decreasingn
general offers more flexibilities for ESSs to participate RSR
program, and therefore, enables them to gain larger profits.

B. Online policies for RSR

Prior offline solutions are based on the fact that RSR signal
is known a priori, which is, however, not for the real case
in practice. RSR signal is broadcast to demand side every
few second in real time. In this section, we propose hearisti

in Eq.(11). However, normallp, < 1 in practice, i.e., some online ESS operational policies for RSR participation, vehe
violations of signal tracking are tolerable, which makes th ng information on the RSR signal is required in advance. In
optimization challenging. a practical scenario, the online policies handle the fdlgw

1) Policy overview: In this section, we propose three Problems: given the types and capacities of the ESS (i.e.,
heuristic offline solutions to deal with the probabilistions ~ 2SSuming the ESS has been setup), how much reserve should

straint in EqI®) wherp, < 1. The key idea behind these be provided and how the ESS should be operated so that

solutions is to determine when the signal should be tracke
within the tolerance; (i.e., satisfying Eql{d1)), and when the
tolerance can be violated. Three solutions are as follows:

RandSelect Randomly selecp,T" time intervals in[1, T']
to satisfy Eq. [II).

MinCapSelect Selectp,T' time intervals in[1,7] with
smallest|s;| to satisfy Eq[(IlL). This design is based on the
fact that tracking RSR signal at the time intervakith larger
|8:| requires larger power capacity.

FixIntSelect: Equally distributeT — p,T time intervals
that are allowed to violate the EQ.{11) in,7]. This is

for the purpose of enabling the policy to adjust amount of

energy stored in ESSs without closely following the tragkin
constraint once a while.

2) Case study: Fig[4 shows the optimal RSR revenue

solved based on E.(1L0) with three proposed offline methods

via varyingp., for LI batteries and UC with typical capacities
listed in Tablell, respectivelyp; is fixed at 0.2, as in Sec-
tion [[II=A] Note that since we use the typical capacities in a

cases, the cost of ESS is fixed. Thus, it is equivalent to make
comparisons of these three methods based on either the RSR

revenue, i.e.Revenuegrg or the net profit originally used in
the objective function of Eq.(10). In the figure, all the reues
are normalized by the revenue @t = 1.

From Fig:4(d) MinCapSelectilways achieves largest rev-
enue for LI batteries whem, varies. The charge/discharge

capacities, i.e., the power capacity are the main bottlenec

for LI batteries to offer more reserves, whiMinCapSelect

?igher revenue from RSR participation can be gained and the
easibility of the participation can be guaranteed.

1) Policy overview: As discussed beforeMinCapSelect
provides the highest revenue for ESSs such as LI and LA
batteries in the offline solution. Hence we design the online

operational policies for LI and LA batteries based on the
MinCapSelecsolution, as follows:

Initialization: we calculate two thresholds andf,, based
on the requirement inputp(, p2) from the market operator
introduced before, and the historical data of RSR sigtfal

such that: Prob{|BY| < 6} = ps,

91 = (1 — p1)90.
Real-time Operation: at each timef, assuming the RSR
signal value is3;**, we determine the power ratg by:

1) If |BET| < 0;: we setu; = BT, i.e., accurately track

the signal,

2) If 6 > |BET| > 01: we setu, = O1sign(BET), i.e.,
cap the power rate; at 6;;
3) If [BET| > 6y: we no-longer track the signal, instead,

we setu,; to adjust the current energy storedback
to a middle levele,, = 222 T« for future use

. . 2
(recall thaty is the self discharge rate);
Check and cap, ande; based on power and energy
capacity Ceqp, Ecqp) constraints of the ESS.

4)

An advanced algorithm could be updatirfly and 6,
adaptively and dynamically in real time based on tracking
performance feedback.

can help reduce the requirement on power capacity by only For ESSs such as UC and FW, th&IntSelectsolution

tracking small|3;| and giving up tracking largés;|, hence
enabling LI batteries to provide additional reserves. Tasults
for UC, however, are different. The power capacity is no

offers the highest revenue from the previous study of thaeffl
solution. Therefore, we propose the online operationaicpol
for UC and FW based on tHéxIntSelectheuristic, as follows:



Initialization: we calculate the intervals that adjust the
stored energy in ESS based on the inpstt T}, = (ﬁ},
i.e., we adjust the stored energy evéry, period. In addition,
we setf; =1 — pq;

Real-time Operation: at each timef, assuming the RSR
signal value is3/*", we determine the power rate by:

1) Everyt = Ty, we setu, to adjust the current energy
storede; back to middle levek,, = %;

2)  Fort # Ty, if |BFT] < 61: we setu, = 877, i.e.,
accurately track the signal;

3) Fort # Ty, if |BET| > 6;: we setu, =
6,sign(BR7T), i.e., cap the power rate; at 6;;

4) Check and cap,; ande; based on power and energy

capacity Cqp, Ecqp) constraints of the ESS.
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Fig. 5. The revenue of providing RSR via varyipg, for LI batteries (i 5(@))
and UC (i 5(B)), respectively, with offline and online s@us. The revenue
is normalized to the value gf2 = 1 in offline solutions.

V. RELATED WORK

Today’s most popular ESSs include batteries, flywheels,
ultra-capacitors and other emerging techniques, e.g., SAE

Another essential issue in an online policy is the determinagic [19], [20]. These ESSs are modeled, for either ideal or

tion of the amount of reserve to provide, iR,,;. Unlike the

non-ideal behaviors, and their system performance is evalu

offline solution, in which the RSR signal is known ahead, thus,;gq [15], [21]. Recently, the hybrid electric energy stera

an optimalR can be calculated directly from the optimization
formulation, theR,,,; for the online policies is required to be
carefully estimated. We propose an approach to le@gp,
from historical offline solutions, a%,,.,; = AR,.in, Where
Rynin i1s the minimum of the offline optimak in the past 12

system (HESS) is designed and investigated to enlarge the
system storage capacity and improve the efficiedcy [22].

In tandem with the developments of ESSs, there is a
growing attention on consumer (e.g., data centers, smart

hours (the signal has been known in those hours, so offlingyjidings and EVs) demand response and reserve provision

optimal R can be calculated)) is a discount value. We use
R,.:n and select to avoid aggressive estimation &f,,,;, and
to guarantee feasibility of our policies. We select= 90%
for LI batteries and\ = 75% for UC, because LI batteries

in ancillary service markets. A few studies closely explore
opportunities and challenges in demand response andamcill

service market for data centers to reduce cost [3], [4]l,[17]
[23], [24]). Among them, RSR is especially of interest due

have more stable results, much smaller provision and ase legg jts high clearing price on reserves, and thus potentially

sensitive to variations o, than UC shown in Sectidn TVAA.

2) Case study:An aggressive claim of?,,; may lead to
failure in reserve provisioning (i.e., constraints arelated)
during the real-time operation, due to the limitations ofSES
capacities. Hence, we first evaluate the feasibility of mline
policies. We test the feasibility of our policies in the ldst

hours of a 1-day RSR signal. Each hour is a test case. In eac

test, we first calculaté?,,,; based on the offline optima® in
previous 12 hours as proposed, and then simulate the onli
policies to check whether all constraints are satisfiedndytie
test hour. We also evaluate the policies with differgnt Our
results show that these safely estimaigg; together with our
policies satisfy all constraints and thus are feasible tswig

in all test cases, for both LI batteries and UC.

large profits [[18]. Other work proposes to jointly leverage a
data center and Plug-in Hybrid EVs in regulation market to
maximize the profit[5]. Some approaches co-schedule tggatin
ventilation, air conditioning (HVAC) and EVs for reduciniget
energy consumption and the peak energy demand [6].

h ESSs are considered promising options for participation in
power markets and demand response. A few previous studies

fyopose control policies and evaluate the benefit of ESSs in

real-time dynamic energy pricing programis [9].][25], peak
shaving [15], [26], and frequency contrél [27],]28], respe
tively. However, most previous studies focus on traditlona
power market programs, though, ESSs are able to potentially
receive higher profit from emerging ancillary service marke
especially from RSR. In the space of RSR, some prior work

Then we compare the RSR revenue of our online policiesurveys potential market chances and evaluates maturity of

to the offline solutions in FiQl5, via varying,. For offline
solutions,MinCapSelecis selected for LI batteries, arfeix-
IntSelectis selected for UC, as they perform the best for LI

ESS participation in RSR_[10][[11][[12]_T13], but without
formulating the detailed models of participation and eaéihg
the optimal solutions. The closest paper to the current work

batteries and UC respectively shown in Elg.4, and our onlinés [14]. However, [[14] uses a simplified RSR participation
policies are designed based on them. All results in(Fig.5 arenodel that does not consider the details of regulation aogur

normalized to the offline solution gf; = 1. From the figure,
the proposed online solutions still receive promising newes,
though there is (as expected) a noticeable gap compared

offline solutions, due to the lack of RSR signal information,

and the safe estimation of the reserve vallg,,. More
importantly, however, the feasibility of such online padis

constraints and penalties. Further, it assumes that the RSR
signal always follows a statistical distribution known a-pr
toi, and without considering the reserve value and capacity
planning for different ESSs. To the best of our knowledge,
ours is the first paper to provide detailed models, evaluade a
optimize the profits of various ESS technologies in not only

is guaranteed with high confidence. There is the followingtraditional power market programs such as peak shaving, but
tradeoff: an aggressive online policy may bring the revenuelso in emerging smart grid demand response such as RSR and

close to optimal offline solutions, while the real-time fiedlity
of such solution decreases at the same time.

contingency reserves, by proposing detailed reserve \aide
capacity planning, as well as online ESS operational pesici



VI.

In this paper, we have modeled and studied the optimizatiopzo]
solutions that maximize the net profit of various ESSs in
different demand response programs. Our results show that
typical UC and FW are the most profitable selections for RSR21]
while common battery techniques such as LI and LA batteries
are the best choices for peak shaving. None of today’s ESS
technologies can earn positive net profits from merely mrovi [22]
ing contingency reserves. More importantly, applying W/F
in RSR has the potential to be up to 30 times more profitabl?23]
than LI/LA batteries for peak shaving. Additionally, we leav
proposed online policies for managing ESS participation in
RSR program, the novel but most profitable option accordingp4;
to our studies. Our online policies guarantee the feasihol
RSR provisions, while also achieving significant profits.

CONCLUSION [19]
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