CaltechAUTHORS
  A Caltech Library Service

Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications

Warren, W. S. and Zewail, Ahmed H. (1983) Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications. Journal of Chemical Physics, 78 (5). pp. 2279-2297. ISSN 0021-9606. https://resolver.caltech.edu/CaltechAUTHORS:20160922-133201864

[img] PDF - Published Version
See Usage Policy.

1MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20160922-133201864

Abstract

In this series of papers we report on the generation and application of multiple pulse phase coherent sequences in optical spectroscopy. In this paper the effects of intense pulse trains on systems with only two resonant energy levels are analyzed, with particular attention to the effects of extreme inhomogeneous broadening and population depletion to nonresonant levels. It is shown that these effects, which are present in virtually all optical systems, make the simple gyroscopic model of optical coherent transients invalid. Exact calculations show, e.g., that a two‐pulse photon echo is not maximized by a 1:2 length ratio for the pulses; that the maximum excited state population is not created by a 180° pulse; and that three equal pulses are almost as effective as a 1:2:1 ratio for producing three pulse echoes. The role of pulse phase is extensively analyzed. Pulse sequences are proposed and experimentally demonstrated which permit optical phase sensitive detection and measurement of ground state relaxation parameters. The experimental results are based on an extension of the acousto‐optic modulation and fluoresence detection techniques of Zewail and Orlowski [Zewail e t a l., Chem. Phys. Lett. 4 8, 256 (1977); Orlowski e t a l., ibid. 5 4, 197 (1978)]. The relative merits of fluorescence and transverse polarization detection are discussed, and fluorescence detection is shown to be more generally useful for these new sequences. Finally, composite pulse trains are shown to be capable of substantially increasing the signal available from highly inhomogenously broadened transitions. In paper II we extend the treatment to multilevel systems with some emphasis on solid state applications.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1063/1.445083DOIArticle
http://scitation.aip.org/content/aip/journal/jcp/78/5/10.1063/1.445083PublisherArticle
Additional Information:© 1983 American Institute of Physics. Received 28 July 1982; accepted 4 November 1982. W. R. Lambert's generous help in the initial stage of this work is greatly appreciated; his expertise and efforts facilitated our success in observing these transients. We also wish to thank Russell Chipman and Ed Sleva for experimental assistance. This work was supported by the National Science Foundation under Grant No. DMR81-05034.
Funders:
Funding AgencyGrant Number
NSFDMR81-05034
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Arthur Amos Noyes Laboratory of Chemical Physics6647
Issue or Number:5
Record Number:CaltechAUTHORS:20160922-133201864
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20160922-133201864
Official Citation:Multiple phase‐coherent laser pulses in optical spectroscopy. I. The technique and experimental applications Warren, W. S. and Zewail, Ahmed H., The Journal of Chemical Physics, 78, 2279-2297 (1983), DOI:http://dx.doi.org/10.1063/1.445083
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:70539
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:30 Sep 2016 19:18
Last Modified:03 Oct 2019 10:31

Repository Staff Only: item control page