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ABSTRACT

This is an online supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for
obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star
mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions
and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a
manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new
HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample
code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of
likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm.
Keywords: gravitational waves — galaxies: distances and redshifts — catalogs — surveys

1. OUTLINE OF THIS SUPPLEMENT

In Singer et al. (2016), we discussed the measurement of
luminosity distances of compact binary coalescence (CBC)
events using the Advanced Laser Interferometer GW Ob-
servatory (LIGO) and Virgo ground-based interferometric
gravitational-wave (GW) detectors. In the main Letter, an
algorithm was introduced for rapidly extracting directionally
dependent distance estimates from GW observations and il-
lustrated the typical 3D shape of GW volume reconstructions
during early Advanced LIGO. Finally, we argued that the 3D
structure and distance information can be leveraged to guide
searches of likely nearby host galaxies for X-ray, optical, and
infrared counterparts of binary neutron star (BNS) mergers.

This Supplement provides the following supporting mate-
rial. First, in §2, we document a file format for the rapid
transmission of 3D volume reconstructions in GW alerts. It

is based on and is backward-compatible with the 2D localiza-
tion formation that we introduced in Singer et al. (2014) and
that was employed in GW alerts that were sent in Advanced
LIGO’s first observing run (O1; Abbott et al. 2016). Second,
in §3, we describe the online data release, which provides a
browsable collection of simulated 3D sky maps. Third, in §4,
we provide a Python primer for performing basic operations
on 3D sky maps, all the way through selecting a list of the
most likely host galaxies. In §5, we provide additional de-
tails of the position reconstruction algorithm. Finally, in §6,
we show that the algorithm produces faithful representations
of the full 3D probability distributions.

The reader who is interested in leveraging GW distance in-
formation for planning electromagnetic (EM) follow-up ob-
servations or performing archival research needs only consult
§2 and §4.
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2. 3D LOCALIZATION FILE FORMAT

The 3D localization for a single GW candidate is stored as
a Flexible Image Transport System (FITS; Wells et al. 1981)
file. The FITS file contains a single binary table (Cotton et al.
1995) that represents a Hierarchical Equal Area isoLatitude
Pixelization (HEALPix; Górski et al. 2005) all-sky image.
The table has four floating-point columns, listed in Table 1,
which represent four channels of the HEALPix image. The
first column, PROB, is simply the probability that the source
is contained within the pixel i that is centered on the direction

ni, the same as in the 2D localization format. The second and
third columns, DISTMU and DISTSTD, are the ansatz loca-
tion and scale parameters, respectively. The fourth column,
DISTNORM, is the ansatz normalization coefficient, included
for convenience.

In pixels on the sky that contain very little probabil-
ity, sometimes the conditional distance distribution can-
not be represented using the ansatz. This is signaled by
DISTMU=∞, DISTSIGMA=1, and DISTNORM=0.

Table 1. HEALPix Columns

FITS Name Symbol Units Description

PROB ρi pixel−1 Probability that the source is contained in pixel i, centered on the direction ni

DISTMU µ̂i Mpc Ansatz location parameter of conditional distance distribution in direction ni, or∞ if invalid

DISTSIGMA σ̂i Mpc Ansatz scale parameter of conditional distance distribution in direction ni, or 1 if invalid

DISTNORM N̂i Mpc−2 Ansatz normalization coefficient, or 0 if invalid

The FITS header, an example of which is shown in Table 2,
provides metadata including the UTC time of the GW trigger
and the list of GW instruments that contributed to the local-

ization. The header also provides values for DISTMEAN and
DISTSTD, respectively, being the posterior mean and stan-
dard deviation of distance marginalized over the whole sky.

Table 2. Example FITS Header

Key Value Comment

HDU 0

SIMPLE T conforms to FITS standard

BITPIX 8 array data type

NAXIS 0 number of array dimensions

EXTEND T

HDU 1

XTENSION ’BINTABLE’ binary table extension

BITPIX 8 array data type

NAXIS 2 number of array dimensions

NAXIS1 16384 length of dimension 1

NAXIS2 3072 length of dimension 2

PCOUNT 0 number of group parameters

GCOUNT 1 number of groups

TFIELDS 4 number of table fields

TTYPE1 ’PROB ’

TFORM1 ’1024E ’

Table 2 continued
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Table 2 (continued)

Key Value Comment

TUNIT1 ’pix-1 ’

TTYPE2 ’DISTMU ’

TFORM2 ’1024E ’

TUNIT2 ’Mpc ’

TTYPE3 ’DISTSIGMA’

TFORM3 ’1024E ’

TUNIT3 ’Mpc ’

TTYPE4 ’DISTNORM’

TFORM4 ’1024E ’

TUNIT4 ’Mpc-2 ’

PIXTYPE ’HEALPIX ’ HEALPIX pixelisation

ORDERING ’NESTED ’ Pixel ordering scheme, either RING or NESTED

COORDSYS ’C ’ Ecliptic, Galactic or Celestial (equatorial)

EXTNAME ’xtension’ name of this binary table extension

NSIDE 512 Resolution parameter of HEALPIX

FIRSTPIX 0 First pixel # (0 based)

LASTPIX 3145727 Last pixel # (0 based)

INDXSCHM ’IMPLICIT’ Indexing: IMPLICIT or EXPLICIT

OBJECT ’coinc event:coinc event id:18951’ Unique identifier for this event

INSTRUME ’H1,L1 ’ Instruments that triggered this event

DATE-OBS ’2010-09-03T06:12:26.60324’ UTC date of the observation

MJD-OBS 55442.2586412414 modified Julian date of the observation

DATE ’2015-04-13T10:17:11’ UTC date of file creation

CREATOR ’bayestar localize coincs.py’ Program that created this file

DISTMEAN 68.54061620909769 Posterior mean distance in Mpc

DISTSTD 17.14006463067744 Posterior standard deviation of distance in Mpc

3. DATA RELEASE

An online data release provides a browsable catalog of
simulated 3D GW localizations. One may select events from
O1 or Advanced LIGO’s second observing run (O2). Events
may be sorted by detector network (a one- or two-letter com-
bination consisting of ‘H’ for LIGO Hanford Observatory,
‘L’ for LIGO Livingston Observatory, ‘V’ for Virgo), 90%
credible volume in Mpc3, 90% credible area in deg2, or su-
pernova (SN). For each event, a BAYESTAR or LALInfer-
ence FITS file may be downloaded. A screen shot of the data
release is shown in Fig. 1.

4. PYTHON EXAMPLE CODE

In this section, we provide some Python sample code to
perform some simple manipulations of 3D sky maps. The
triple greater-than signs (>>> ) and triple-dots (... ) are the
Python interactive prompt; the reader should type everything
on the line after these.

4.1. Python Environment

These examples will work in Python 2.7 and later on Linux
or UNIX systems. If the reader does not already have a
Python environment of preference, we suggest the Anaconda
Python distribution1 for desktop use or the lightweight Mini-
conda variant2 for computing clusters. Only the Astropy,
Healpy, and Numpy packages are essential for working with
the 3D localizations, but the examples below will also use
Matplotlib, Scipy, and Astroquery. All of these packages can
be installed with Pip3:

$ pip install astropy astroquery healpy matplotlib scipy

4.2. Reading Sky Maps

For all of the samples below, start by importing the Healpy
for working with HEALPix files, the Numpy for vector op-
erations, Matplotlib for plotting, and Scipy for probability

1 https://www.continuum.io/anaconda

2 http://conda.pydata.org/miniconda.html

3 https://pip.pypa.io

https://www.continuum.io/anaconda
http://conda.pydata.org/miniconda.html
https://pip.pypa.io
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Figure 1. Screen shot of data release page.

functions:
$ python
>>> import healpy as hp
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from scipy.stats import norm

Next, select download an example sky map from the data
release. In this example, we use the simulated event that is
shown in Figs. 1 and 2 of Singer et al. (2016). A convenient
way to download it is using Astropy’s download file
utility, which will retrieve the file and cache it locally:
>>> from astropy.utils.data import download_file
>>> url = ('https://dcc.ligo.org/P1500071/public'
... + '/18951_bayestar.fits.gz')
>>> filename = download_file(url, cache=True)

The new 3D localization format is backward-compatible
with the 2D format introduced in Singer et al. (2014). By
default, when we read the HEALPix file with Healpy (or any
other common-place HEALPix library or tool), we get just
the first layer, the probability sky map:
>>> prob = hp.read_map(filename)

To read both the probability layer and the three additional
distance layers, we need to pass the optional field= param-
eter to Healpy:
>>> prob, distmu, distsigma, distnorm = hp.read_map(
... filename, field=[0, 1, 2, 3])

or slightly more concisely:

>>> prob, distmu, distsigma, distnorm = hp.read_map(
... filename, field=range(4))

Last, it will be useful for subsequent Healpy calls to have
the HEALPix resolution on hand:

>>> npix = len(prob)
>>> npix
3145728
>>> nside = hp.npix2nside(npix)
>>> nside
512

4.3. 2D Probability in a Given Line of Sight

In this example, we compute the 2D probability per stera-
dian or per deg2 that the source is in a given direction. Let’s
take as an example the following equatorial coordinates:

>>> ra, dec = 137.8, -39.9

which, coincidentally, happen to be the true simulated posi-
tion to the source.

Healpy uses “physicist’s” spherical coordinates (θ, φ), with
θ ∈ [0, π] being the colatitude from the north celestial pole in
radians, and φ ∈ [0, 2π) being the right ascension in radians.
We convert

>>> theta = 0.5 * np.pi - np.deg2rad(dec)
>>> phi = np.deg2rad(ra)
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Next, we use Healpy to look up the index of the HEALPix
pixel that contains that direction:

>>> ipix = hp.ang2pix(nside, theta, phi)
>>> ipix
2582288

Healpy will tell us the area per pixel in steradians at the
current HEALPix resolution:

>>> pixarea = hp.nside2pixarea(nside)
>>> pixarea
3.994741635118857e-06

or in deg2:

>>> pixarea_deg2 = hp.nside2pixarea(nside, degrees=True)
>>> pixarea_deg2
0.013113963206424481

All that is left to do is look up the probability contained
within pixel ipix and (if desired) divide by the area per
pixel to obtain the probability per steradian:

>>> dp_dA = prob[ipix] / pixarea
>>> dp_dA
7.4387317043042076

or the probability per deg2:

>>> dp_dA_deg2 = prob[ipix] / pixarea_deg2
>>> dp_dA_deg2
0.0022659672582507331

4.4. Conditional Distance Distribution Along a Line of
Sight

Next, we calculate the conditional distance distribution
along a given line of sight, which is the probability per unit
distance under the assumption that the source is in a given di-
rection. We will use the same sky position as in the example
above. We lay out a grid in distance along that line of sight:

>>> r = np.linspace(0, 150)

Then, we plug everything into the ansatz distribution:

>>> dp_dr = r**2 * distnorm[ipix] * norm(
... distmu[ipix], distsigma[ipix]).pdf(r)

Finally, we plot the result:

>>> plt.plot(r, dp_dr)
>>> plt.xlabel('distance (Mpc)')
>>> plt.ylabel('prob Mpc$ˆ{-1}$')
>>> plt.show()
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4.5. Probability per Unit Volume at a Point

Now, we calculate the probability density per Mpc3 at a
point. We will use the same right ascension and declination
as above and a distance of 74.8 Mpc:

>>> r = 74.8

Finally,

>>> dp_dV = prob[ipix] * distnorm[ipix] * norm(
... distmu[ipix], distsigma[ipix]).pdf(r) / pixarea
>>> dp_dV
3.1173200109121657e-05

4.6. Marginal Distance Distribution Integrated over the Sky

As our next example, we compute the marginal distance
distribution, the probability density per unit distance inte-
grated over the entire sky:

>>> r = np.linspace(0, 150)
>>> dp_dr = [np.sum(prob * rr**2 * distnorm
... * norm(distmu, distsigma).pdf(rr)) for rr in r]

Finally, we plot the result:

>>> plt.plot(r, dp_dr)
>>> plt.xlabel('distance (Mpc)')
>>> plt.ylabel('prob Mpc$ˆ{-1}$')
>>> plt.show()
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4.7. Ranked List of Galaxies

As our final example, we will generate a ranked list of
galaxies.

For the purpose of this demonstration, we will use the
2MASS Redshift Survey (2MRS; Huchra et al. 2012) be-
cause it is a flux-limited all-sky spectroscopic redshift cat-
alog. This greatly simplifies the issues of completeness, sky
coverage, and accuracy of redshift estimates. First, download
the entire catalog from VizieR (Ochsenbein et al. 2000) using
Astroquery:

>>> from astroquery.vizier import Vizier
>>> Vizier.ROW_LIMIT = -1
>>> cat, = Vizier.get_catalogs('J/ApJS/199/26/table3')

According to Tully (2015), the 2MRS luminosity func-
tion is well fit by a Schechter function with a cutoff abso-
lute magnitude of M∗K = −23.55 and a power-law index of
αK = −1. We find the maximum absolute magnitudeMmax

K

for a completeness fraction of 0.5:

>>> from scipy.special import gammaincinv
>>> completeness = 0.5
>>> alpha = -1.0
>>> MK_star = -23.55
>>> MK_max = MK_star + 2.5 * np.log10(
... gammaincinv(alpha + 2, completeness))
>>> MK_max
-23.947936347387156

We select only galaxies with positive redshifts and absolute
magnitudes greater than Mmax

K :

>>> from astropy.cosmology import WMAP9 as cosmo
>>> from astropy.table import Column
>>> import astropy.units as u
>>> import astropy.constants as c
>>> z = (u.Quantity(cat['cz']) / c.c).to(
... u.dimensionless_unscaled)
>>> MK = cat['Ktmag'] - cosmo.distmod(z)
>>> keep = (z > 0) & (MK < MK_max)
>>> cat = cat[keep]
>>> z = z[keep]

Then, we calculate the luminosity distance and HEALPix
index of each galaxy:

>>> r = cosmo.luminosity_distance(z).to('Mpc').value
>>> theta = 0.5 * np.pi - cat['_DEJ2000'].to('rad').value
>>> phi = cat['_RAJ2000'].to('rad').value
>>> ipix = hp.ang2pix(nside, theta, phi)

We find the probability density per unit volume at the po-
sition of each galaxy:

>>> dp_dV = prob[ipix] * distnorm[ipix] * norm(
... distmu[ipix], distsigma[ipix]).pdf(r) / pixarea

Finally, we sort the galaxies by descending probability
density and take the top 50:

>>> top50 = cat[np.flipud(np.argsort(dp_dV))][:50]
>>> top50['_RAJ2000', '_DEJ2000', 'Ktmag']
<Table masked=True length=50>
_RAJ2000 _DEJ2000 Ktmag
deg deg mag

float64 float64 float32
--------- --------- -------
344.01190 36.36136 8.772
343.81122 36.67177 9.958
137.19089 -38.60788 9.566

334.86545 29.39581 9.835
359.81589 46.88923 9.307
0.00695 47.27456 9.499

... ... ...
123.16494 -16.05073 9.727
341.26642 33.99616 9.799
339.33075 34.44790 9.204
137.27219 -35.90259 10.822
188.13953 -68.53886 9.609
339.01483 33.97575 10.032

5. VOLUME RECONSTRUCTION ALGORITHM

The volume reconstruction algorithm consists of a compu-
tationally trivial postprocessing stage that is added to the two
established LIGO/Virgo methods for localization of CBC
events, the BAYESTAR rapid triangulation code (Singer
et al. 2014; Singer 2015), and the LALInference parameter
estimation pipeline (Aasi et al. 2013).

The conditional mean and standard deviation of distance
are extracted from BAYESTAR as described in §5.1 and from
LALInference as explained in §5.2 below. Then, the mean
and standard deviation are converted to the ansatz parameters
as described in §5.3.

5.1. Volume Reconstruction in BAYESTAR

BAYESTAR (Singer et al. 2014; Singer 2015) is a rapid po-
sition reconstruction algorithm for BNS mergers. Its inputs
are a trio of numbers for each detector: the matched-filter es-
timates of the arrival time, phase, and amplitude at each GW
site. It marginalizes over polarization angle, inclination an-
gle, coalescence time, and distance by performing low-order
Gaussian quadrature integration in a series of nested loops.
The output is a HEALPix all-sky map of posterior probabil-
ity, consisting of Npix equal-area pixels.

The BAYESTAR distance prior is a power law of rk, with
k being supplied by the user and normally set to k = 2

for a spatially homogeneous source population. To evalu-
ate the distances, we run BAYESTAR two more times, with
k′ = k+1 and k′′ = k+2. The resulting three sky maps are
denoted 〈1〉, 〈r〉, and 〈r2〉. The HEALPix-sampled marginal
sky posterior ρ̂, conditional mean distance m̂, and condi-
tional standard deviation of distance ŝ are then given by

ρ̂ = 〈1〉, (1)

m̂ = 〈r〉/〈1〉, and (2)

ŝ =
√
〈r2〉/〈1〉 − m̂2. (3)

Finally, the moments m̂ and ŝ are converted to the ansatz
parameters µ̂, σ̂, and N̂ using the procedure described in §5.3
below.

BAYESTAR takes about a minute to run (Singer 2015);
the conventional one-dimensional sky map is ready with a
response time of a few minutes. Since we will now run
BAYESTAR three times, the total number of computations
will increase by about a factor of 3. Fortunately, since
BAYESTAR is able to make effective use of many CPU
cores, we can offset the modest increase in computational
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cost by moving the analysis to a machine with more cores,
resulting in a negligible overall change in running time.

5.2. Volume Reconstruction in LALInference

LALInference (Aasi et al. 2013) is the Advanced LIGO
Bayesian parameter estimation library. It includes several al-
gorithms that perform full modeling of the GW signal and
stochastic sampling of the CBC parameter space. The inputs
to LALInference are the GW time series from all of the de-
tectors. The output is a cloud of sample points drawn from
the GW posterior.

The samples are converted to a smooth multidimensional
probability distribution by clustering them into N disjoint
sets, each consisting of Ni spatially neighboring points, and
building a kernel density estimator (KDE) for each cluster.4

In Cartesian coordinates, the smoothed distribution is given
by a double sum over the clusters and the samples within
each cluster:

p(x) =

N∑
i=1

Wi |2πCi|−1/2Ni
−1

Ni∑
j =1

exp

[
−1

2
(x−Xij)

T

Ci
−1 (x−Xij)

]
. (4)

Here, Wi is a weight associated with cluster i, and each clus-
ter is described by its KDE covariance Ci and Ni samples
Xij . The |. . .| denotes the matrix determinant.

The stochastic sampling takes hours to weeks depending
on the sophistication of the waveform models that are used
and on the treatment of uncertainty in detector calibration. It
takes up to tens of minutes to build the KDE.

We can exactly calculate the conditional mean and stan-
dard deviation of the distance for the KDE posterior. First,
we evaluate Eq. (4) at the position x = rn:

p(rn) =

N∑
i=1

(2πci)
−1/2

Ni
−1

Ni∑
j =1

wij exp

[
−(r − xij)2

2ci

]
,

(5)

with

ci = (n
T

Ci
−1n)−1, (6)

xij = (n
T

Ci
−1Xij)ci, and (7)

wij =
1

2π

√
ci
|Ci|

exp

[
1

2

(
xij

2

ci
−X

T

ijCi
−1Xij

)]
Wi.

(8)

We compute the integrals of 1, r, and r2, weighted by

4 https://github.com/farr/skyarea

p(rn)r2:

〈1〉 =
∫ ∞
0

p(rn)r2 dr =
∑
ij

wij〈1ij〉/Ni, (9)

〈r〉 =
∫ ∞
0

p(rn)r3 dr =
∑
ij

wij〈rij〉/Ni, (10)

〈r2〉 =
∫ ∞
0

p(rn)r4 dr =
∑
ij

wij〈r2〉ij/Ni, (11)

with

〈1〉ij =
(
xij

2 + ci
)
a+ xijb, (12)

〈r〉ij =
(
xij

3 + 3xijci
)
a+

(
xij

2 + 2ci
)
b, (13)

〈r2〉ij =
(
xij

4 + 6xij
2ci + 3ci

2
)
a+

(
xij

3 + 5xijci
)
b,

(14)

a =
1

2

(
1 + erf

[
xij√
2ci

])
, and (15)

b =

√
ci
2π

exp

[
−xij2

2ci

]
. (16)

Then 〈1〉, 〈r〉, and 〈r2〉 are converted to ρ̂, m̂, and ŝ using
Equations (1)–(3). Finally, m̂ and ŝ are converted to µ̂, σ̂,
and N̂ using the procedure described in §5.3 below.

5.3. Method of Moments

For both BAYESTAR and LALInference, the parameters
of the ansatz distribution are extracted using the method of
moments. The ansatz is that the conditional distribution of
distance is described by the function

p(r|n) = N(n)√
2πσ(n)

exp

[
− (r − µ(n))2

2σ(n)2

]
r2 (17)

for r ≥ 0.

The nth moment of the distance ansatz is

rn(µ, σ) =

∫ ∞
0

N√
2πσ

exp

[
− (r − µ)2

2σ2

]
r2+n dr. (18)

The conditional mean and standard deviation of the ansatz
distribution are

m(µ, σ) = r(µ, σ) and (19)

s(µ, σ) =

√
r2(µ, σ)− r2(µ, σ). (20)

Our task is, given the conditional mean m̂ and standard devi-
ation ŝ as measured from the actual posterior probability dis-
tribution, to numerically solve the following system of equa-
tions for µ̂ and σ̂:

m̂ = r(µ̂, σ̂) and (21)

ŝ =

√
r2(µ̂, σ̂)− r2(µ̂, σ̂). (22)

We can reduce this to a single equation by defining z =

µ/σ and ẑ = µ̂/σ̂. With this substitution, the moments can

https://github.com/farr/skyarea
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be written as

rn = NQ(−z)σ2+nx2+n(z),

with

x2(z) = z2 + 1 + zH(−z),
x3(z) = z3 + 3z + (z2 + 2)H(−z), and

x4(z) = z4 + 6z2 + 3 + (z3 + 5z)H(−z).

The function Q(x) = erfc(x/
√
2)/2 is the upper tail of the

normal distribution, P (x) = exp
(
−x2/2

)
/
√
2π is the nor-

mal distribution function, and H(x) = P (x)/Q(x) is the
hazard function. Then Equations (21) and (22) become

f(ẑ) =

(
1 +

(
ŝ

m̂

)2
)
x3(ẑ)

2 − x2(ẑ)x4(ẑ) = 0. (23)

The derivative of the left-hand side, f ′(ẑ), is given by

f ′(ẑ) = 2

(
1 +

(
ŝ

m̂

)2
)
x3(ẑ)x3

′(ẑ)

− x2(ẑ)x4′(ẑ)− x2′(ẑ)x4(ẑ) (24)

with

x′2(z) = 2z +H(−z) + z∂zH(−z),
x′3(z) = 3z2 + 3 + 2zH(−z) + (z2 + 2), ∂zH(−z)
x′4(z) = 4z3 + 12z + (3z2 + 5)H(−z) + (z3 + 5z)∂zH(−z),

and ∂zH(−z) = −H(−z)(z +H(−z)).

We solve Equations (23) and (24) for ẑ using Steffensen’s
method5, an accelerated Newton solver. Starting from an ini-
tial value of ẑ0 = m̂/ŝ, the solution converges to machine
precision in 10 iterations.

Finally, we calculate µ̂, σ̂, and N as follows:

σ̂ = mx2(ẑ)/x3(ẑ),

µ̂ = σ̂ẑ,

N̂ =
(
Q(−ẑ)σ̂2x2(ẑ)

)−1
.

In the rare event that the solution does not converge, or yields
an invalid value such that r2(µ̂, σ̂)− r2(µ̂, σ̂) < 0, we set

µ̂ =∞,
σ̂ = 1,

N̂ = 0.

6. FAITHFULNESS

The ansatz guarantees that the first two moments of dis-
tance are exactly reproduced along all lines of sight (LOSs).

However, we must ask how accurately the ansatz represents
the 3D posterior as a whole. The P–P plot graphical test,
popularized in the GW parameter estimation literature by
Sidery et al. (2014), compares two populations by plotting
their cumulative distributions against each other. If the two
distributions match, then the result should be a diagonal line.

In our case, we compare the KDE to the LALInference
posterior samples by projecting both the KDE and the pos-
terior samples along the distribution’s three principal axes,
yielding three P–P tests. As shown in Fig. 2a, the plot is
nearly diagonal, indicating that the KDE is a faithful rep-
resentation of the posterior samples. We then compare the
KDE with the ansatz by drawing samples from the ansatz
distribution (Fig. 2b). Some deviation is perceptible; in the
most extreme cases we find a maximum difference in credi-
ble levels of about 5%. P–P tests of the conditional distance
distribution itself along individual LOSs generally also agree
within 5% or better, except in directions of low probability
(small ρi).

We test the statistical self-consistency of the entire ensem-
ble of simulated events in Fig. 3. Here, we show a cumulative
histogram of the number of simulated events whose true 2D
and 3D coordinates are found within a given credible level.
We find that both the 2D sky maps and the 3D ansatz are self-
consistent within a binomial 95% tolerance band due to the
finite sample size of 250 events.

Our interpretation is that the ansatz is a reasonable approx-
imation of the full 3D posterior, in the sense that a stated
50% credible volume has a 50%±5% chance of containing
the source. The most obvious alternative to the ansatz is a
densely sampled 3D grid, or a stack of 2D sky maps for a se-
ries of distance shells. Either would be just as conceptually
simple, but computationally cumbersome due to size. The
KDE is an accurate representation of the posterior, but is ex-
pensive to evaluate because it is a sum of 104 − 105 Gaus-
sians. As a rapidly available data product and as a tool for
real-time observation planning, the ansatz distribution is a
reasonable compromise.

We thank the Aspen Center for Physics and NSF grant
#1066293 for hospitality during the conception, writing, and
editing of this paper. We thank P Shawhan and F Tombesi for
detailed feedback on the manuscript. The online data release
is available at https://dcc.ligo.org/P1500071/
public/html. This is LIGO document P1500071-v7.

Software: Astropy (Robitaille et al. 2013), GNU Sci-
entific Library (Galassi & Gough 2009), HEALPix (Górski
et al. 2005), Matplotlib (Hunter 2007), Yt (Turk et al. 2011)

5 The gsl root fdfsolver steffenson method in the GNU Sci-
entific Library.

https://dcc.ligo.org/P1500071/public/html
https://dcc.ligo.org/P1500071/public/html
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(a) KDE versus posterior samples

1D marginal cdf cu
m

. 
fr

a
c.

 a
n
sa

tz
 s

a
m

p
le

s

x

y

z

100 50 0 50 100

100

50

0

50

100

y (Mpc)

1
D

 m
a
rg

in
a
l 
p
d
f,

 c
d
f

1D marginal pdf, cdf

z 
(M

p
c)

(b) KDE versus samples from ansatz

Figure 2. Comparison between the posterior sample chain, the KDE, and the ansatz distribution. In panel (a), the heat map shows a 2D
projection of the KDE. The black dots are the LALInference posterior samples from which the KDE was built. The top right and bottom left
plots show the 1D projections. The dark, smooth, orange line is the 1D marginal KDE and the dark, purple, stepped line is a 1D histogram of
the LALInference posterior samples. The faint lines of the corresponding colors and styles are the respective 1D cumulative distributions. The
bottom right plot is a P–P plot of the 1D cumulative distribution of the KDE versus the 1D cumulative histogram of the posterior samples.
Panel (b) is the same as panel (a), except that samples from the ansatz distribution are substituted for samples from the posterior.
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Figure 3. Ensemble P–P plot test for the 250 events from the O1 scenario (a) and the 250 events from the O2 scenario (b).
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