INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 17 (2007) 220-228

doi:10.1088/0960-1317/17/2/006

Dynamic simulation of a peristaltic
micropump considering coupled fluid
flow and structural motion

Qiao Lin', Bozhi Yang?, Jun Xie? and Yu-Chong Tai’

1 Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
2 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,

PA 15213, USA

3 Division of Engineering and Applied Science, California Institute of Technology, Pasadena,

CA 91125, USA
E-mail: ql2134@columbia.edu

Received 9 June 2006, in final form 24 November 2006
Published 22 December 2006
Online at stacks.iop.org/JMM/17/220

Abstract

This paper presents lumped-parameter simulation of dynamic characteristics
of peristaltic micropumps. The pump consists of three pumping cells
connected in series, each of which is equipped with a compliant diaphragm
that is electrostatically actuated in a peristaltic sequence to mobilize the
fluid. Diaphragm motion in each pumping cell is first represented by an
effective spring subjected to hydrodynamic and electrostatic forces. These
cell representations are then used to construct a system-level model for the
entire pump, which accounts for both cell- and pump-level interactions of
fluid flow and diaphragm vibration. As the model is based on first
principles, it can be evaluated directly from the device’s geometry, material
properties and operating parameters without using any experimentally
identified parameters. Applied to an existing pump, the model correctly
predicts trends observed in experiments. The model is then used to perform
a systematic analysis of the impact of geometry, materials and pump loading
on device performance, demonstrating its utility as an efficient tool for

peristaltic micropump design.

1. Introduction

Micropumps are among the most important microfluidic
devices for integrated lab-on-a-chip systems [1-3]. In general,
pumps can be divided into two categories: mechanical and
non-mechanical pumps. Non-mechanical (e.g., electrokinetic
and electrohydrodynamic) pumps can be realized using simple
structures without moving parts, but their performance mostly
depends on fluid and surface properties [1, 2]. Mechanical
pumps, typically employing actuated compliant diaphragms,
can handle a large variety of fluids but often involve
complicated structures (e.g., as required by check valves)
and present integration challenges. Peristaltic micropumps
[4-9], however, are a class of mechanical pumps that are
relatively simple in structure and amenable to miniaturization
and integration. In such devices, a series of diaphragms
are actuated in sequence in a manner emulating wave-like
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muscle contractions of a tube-shaped organ, resulting in
forward motion of fluids. We have previously demonstrated
a surface-micromachined, electrostatically actuated peristaltic
pump [10], which will be the subject of this simulation study.

Simulations of diaphragm-based micropumps that use
passive valves have been pursued quite extensively in the
literature. While finite element (e.g., [11-14]) and boundary
element (e.g., [13, 15]) methods have been used to study
the motion of diaphragm actuators in such pumps, lumped-
parameter methods have been commonly used to simulate
the behavior of complete pumps consisting of diaphragm
actuators and check valves. For example, bond graphs have
been used, which are based on lumped-parameter energy and
power relationships [16]. More commonly, lumped-parameter
descriptions of fluid flow and quasistatic diaphragm motion
have been employed [17]. These descriptions have also been
formulated to represent micropumps in terms of equivalent
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Figure 1. (a) Schematic of the peristaltic pump. (b) Actuation in a
period 7.

electrical networks [18, 19]. In related work, modeling and
simulations have also been reported on pumps consisting of
diaphragm actuators and diffuser valves [20-22].

The modeling of peristaltic micropumps, in contrast, has
been relatively scarce. Peristalsis theory, developed about
40 years ago [23, 24], considers fluid motion in an infinitely
long tube whose wall contracts in a prescribed traveling wave
form. As such, it does not apply to peristaltic micropumps
whose channel wall motion is coupled to fluid flow. Analytical
and numerical calculations of static diaphragm deflections
and pumping stroke volumes have been considered for
piezoelectric peristaltic micropumps [25]. Also restricted to
static characteristics, piezoelectric [4] and electrostatic [26]
peristaltic pumps have been modeled by assuming the flow
rate to be proportional to the actuation frequency and stroke
volume, which is determined from the diaphragm motion by
ignoring its interaction with fluid flow. More recently, a
lumped-parameter analysis has been reported for diaphragm-
based micropumps working peristaltically using active valves
driven by general actuation schemes [27]. While pumping
dynamics is considered, the coupling of viscous fluid flow and
diaphragm motion is not adequately accounted for.

This paper presents a simulation study to address the need
for understanding the dynamics of peristaltic micropumps
involving coupled fluid flow and structural motion. While the
basic concept is applicable to general peristaltic micropumps,
the study will focus on a surface-micromachined device
(figure 1) [10]. Three compliant diaphragms are each located
in a thin pumping cell and are actuated electrostatically in a
peristaltic sequence to mobilize the fluid. With a preliminary
analysis given in [10], we here consider the systematic and
in-depth simulation of such a device. Diaphragm motion in
each pumping cell is first represented by an effective spring
subjected to hydrodynamic and electrostatic forces. These
cell representations are then used to construct a system-
level model for the entire pump, which accounts for both
cell- and pump-level interactions of fluid flow and diaphragm
vibrations. The first-principle-based model correctly predicts
trends observed in experiments and can be evaluated from the
device’s geometric and material properties without using any
parameters that must be experimentally identified. As such,
the model can be used as an efficient tool for optimal design
of peristaltic micropumps.

The paper is organized as follows. We will first
describe the design of the electrostatically actuated peristaltic
micropump (section 2). Models for individual pumping
cells, including diaphragm vibration and fluid flow, are then
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Figure 2. Representation of a pumping cell.

presented in section 3. The system-level model for the
entire micropump is then obtained by linking the models for
individual pumping cells (section 4). Modeling results are
presented in section 5 and concluding remarks are finally given
in section 6.

2. Peristaltic pump design

A schematic of the surface-micromachined peristaltic
micropump is shown in figure 1 [10]. The pump has three
pumping cells connected in series. Essential components of
each pumping cell include a fluid chamber, an electrode gap
and a moving diaphragm that separates them. The electrode
gap lies between a fixed ground electrode located on the
substrate, and a moving electrode embedded in the diaphragm.
Air in the electrode gap is vented to the ambient through
a venting hole. The fluid chambers in the three pumping
cells are connected in series. When an actuation voltage is
applied between the two electrodes, electrostatic force will
pull the diaphragm downward and cause expansion of the
fluid chamber volume. When the pumping cells are actuated
using a three-phase peristaltic sequence [6], the resulting
peristaltic motion will induce pumping of the fluid inside
the chambers. The device is fabricated using parylene-based
surface-micromachining technology [28].

3. Pumping cell representation

This section considers a representation of the individual
pumping cells, which will then be used to construct a model
for the entire pump in section 4. The upstream, middle
and downstream pumping cells, including their associated
diaphragms, fluid chambers and electrode gaps, are given
indices i = 1, 2, 3, respectively. They are assumed to
have identical shape and dimensions. These include the
fluid chamber height (%) and electrode gap thickness (d), both
measured in the absence of diaphragm deflection. In addition,
the fluid chamber, diaphragm and electrodes are assumed to
have the same radius (@), and the channels connected to each
chamber have equal width b. A representation of the pumping
cell i is shown in figure 2. Here, the pressure and flow rate at
the entrance of the fluid chamber are, respectively, p; and Q;,
and those at the exit are p;;; and Q;,;. Actuated with a voltage
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Vi, the diaphragm has deflection §;, which is represented by
the displacement of a spring-attached rigid plate (below). Note
that when V; is periodic with frequency f, so are the pressure,
flow rate and diaphragm deflection. We first consider the
diaphragm deflection under electrostatic and hydrodynamic
forces and then model the fluid flow in the fluid chamber.

3.1. Diaphragm vibrations

The diaphragm in a pumping cell vibrates elastically under the
action of electrostatic and hydrodynamic forces. While the
deflection varies continuously with location on the diaphragm,
for a lumped-parameter representation we approximate the
diaphragm as a rigid plate attached to an elastic spring
with spring coefficient K (figure 2), whose determination
will be described below. The diaphragm deflection is then
represented by the displacement of the rigid plate, §;. This
approximation drastically simplifies the description of the
diaphragm vibration as well as the associated fluid flow.

In general, in addition to the electrostatic and
hydrodynamic forces, the diaphragm vibration is influenced
by the effects of diaphragm inertia as well as damping due to
air flow in the electrode gap. However, as the electrode gap is
connected to the ambient by vent holes, the air flow is largely
unimpeded. Thus, air damping effects are small compared
to hydrodynamic squeeze-film damping effects (below) and
can be neglected. Additionally, vibration theory [29, 30]
can be used to estimate that the natural frequency of the
diaphragm is about three orders of magnitude higher than the
actuation frequency, which is typically below 100 Hz. This
implies that the diaphragm inertia is also negligible. Thus, the
spring-attached plate is approximately massless and undergoes
quasistatic vibration, which is governed by the following
algebraic equation:

K&‘ — Fvielec + Fvih)’dro (1)
where F”"" is the hydrodynamic force as will be considered
in the next subsection and F£l° is the electrostatic actuation
force given by [31]

elec _ €0 VizA (2)
' 2(desr — 8:)?
Here, ¢y is the free-space permittivity, A = ma® is the
approximate diaphragm area and dey = d +1,/¢, is the

effective separation of the moving and ground electrodes with
t, and ¢, being the thickness and dielectric constant of the
insulation layers between the electrodes. For the parylene-
based pump, #, =2 um and ¢, = 3.1 [10].

The spring coefficient (K), representing the stiffness of the
diaphragm, consists of contributions from diaphragm bending,
in-plane pretension and stretching of the diaphragm’s middle
surface [30]. The bending effects are characterized by the
plate’s bending rigidity, D = Et / 12(1 —v?), and pretension
by the in-plane force per unit length, N = ot,,, where E is
the Young’s modulus, v is Poisson’s ratio, o is the in-plane
residual stress that results from the temperature history of the
fabrication process [32], and @ and t,, are the diaphragm radius
and thickness. For simplicity middle-surface stretching of
the diaphragm is neglected [30], so that K is approximately a
constant. For the particular case of an electrostatically actuated
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diaphragm, K can be approximately determined in a way
consistent with the determination of the critical voltage, V,,
at which the electrostatic pull-in instability [31] occurs. That
is, while the pull-in voltageis V,, = (8 K dgff / 27£0A) "2 for the
spring-attached rigid plate, itis V, = (4.87Nd3; /1e0A)'*for
the diaphragm, where . = 1+ 2(1 — coshgq)/(g sinhgq) < 1
with ¢ = 0.825(Na?/D)"/? [33]. We choose the spring
coefficient as

K =164N/A 3)

so that these two expressions will consistently give the same
pull-in voltage. Note that in the cases A — 1 and X < 1,
diaphragm stiffness is predominantly due to pretension and
bending effects, respectively.

3.2. Fluid flow

In a fluid chamber, the diaphragm vibration induces the motion
of the thin fluid film confined between the narrow gap formed
by the diaphragm and the chamber ceiling. In reality, the
fluid film thickness varies continuously with location due
to the diaphragm’s continuous deflection. However, the
approximation of the diaphragm as a spring-attached rigid
plate results in a fluid film with uniform thickness, which is
only a function of time, . The dynamics of this fluid film is
now considered to obtain an expression for the hydrodynamic
force Fl.hydm (equation (1)) as well as a relationship relating the
pressures and flow rates at the entrance and exit of the fluid
chamber.

Since the fluid film thickness is small compared with
the diaphragm radius (i.e., h/a <« 1), its motion can be
represented by use of lubrication theory [34]. To begin
with, let f be the diaphragm’s vibration frequency. Then,
the flow velocity in the z-direction has a characteristic value
of wy = w(der/3), where w = 27 f is the circular frequency
and d.¢r/3, the diaphragm displacement at which electrostatic
pull-in instability occurs [33], is taken to be the diaphragm’s
characteristic displacement. An in-plane characteristic flow
velocity can be defined as uy = wo(wa?)/(bh). We next
define an out-of-plane Reynolds number Re, = pwoh/n
and an in-plane Reynolds number Re = (puoh/n)(h/a) =
Re,(ma/b), where p and p are the fluid density and dynamic
viscosity, respectively. When these Reynolds numbers are
of order h/a or smaller, inertial effects in the flow can be
ignored when compared with viscous and pressure effects
[34]. Also, unsteady flow and gravity effects can be neglected
if the squeeze number o, = pwh®/i = Re.(3h/du)
and the dimensionless parameter pgh?®/(uug) are of order
h/a or smaller, respectively. When these conditions hold,
the classical Reynolds equation of lubrication theory [34]
adequately describes the hydrodynamics of the fluid film. In
the coordinate frame shown in figure 2, this equation takes the
form

V- ((h+8)’Vp) = 12ub;
ap “4)

Plrow = Di+ls an e — Y

P|Fi,. = Pi»

where the pressure, p, inside the chamber is assumed not to

vary along the fluid film thickness and V = 9/dxi + 3/dy
is the planar gradient operator. Here, the equation is defined
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over the planar domain corresponding to the fluid chamber,
which approximately has the same area, A, as the diaphragm.
The domain, also denoted as A, has its boundary consist of the
entrance (I'y,), exit (I'yy) and sidewalls (I'gqe) (figure 2). Note
that the last boundary condition, in which d/9dn is the derivative
along the normal to the boundary, represents the requirement
that no fluid penetrates the sidewalls of the chamber.

The fluid film thickness, given by / + §; in the presence of
diaphragm deflection, does not vary with in-plane coordinates
x and y. As shown in the appendix, this greatly simplifies the
solution of equation (4). In particular, if the fluid chamber
is symmetric about the y-axes, we obtain the hydrodynamic
force

2
hydro Ol/'Ll A, 1
F7 = —————0; + - B(pi + pi+1)A 5
, Gyt 3P+ pis) )
and the flow rates at the chamber inlet and outlet
1 . yh+6)?
Qi ==x-As+————(pi — pi+1)- (6)
i+l 2 121

Here, the coefficients «, 8 and y are given by

12 - 2 -
= ¢ dA, ﬂ:—_/WdA and
A JA

o= —=
A

_/aw
"= o

where the functions ¢ and ¢ are solutions to the following
normalized equations:

. (N

dr
Cin

Vip = —1
0 and
¢|Fill =0, ¢|f0u( =0, 87 Fyge = 0
n
, ®)
V2 =0
oy
Ylp, =1, ¥Ip, =0, 7 [T = 0.
il

Equations (7) and (8) are given in terms of dimensionless
in-plane coordinates ¥ = x// and y = y/I with V =
9/0%i +9/0yj and A = A/I?, where [ is a characteristic
length scale of the fluid chamber domain. Here, A also
denotes the fluid chamber domain scaled by /, with [y, Tou
and [j¢e denoting the corresponding boundaries scaled by /. It
is important to note that these coefficients need to be calculated
only once for pumping cells of the same shape but different
size.

In equation (5), the first term accounts for the squeeze-
film damping effects from interactions of viscous fluid flow
and diaphragm motion [34] and the second term represents
the hydrostatic effects of inlet and outlet pressures. Similarly,
in equation (6), the first and second terms account for flow
rate contributions from the diaphragm motion and inlet—outlet
pressure difference, respectively. It can be observed that in
the absence of diaphragm motion, this equation reduces to the
classical relationship for Poiseuille flow [35].

Equation (6) provides an integral description of fluid
flow in the chamber. Meanwhile, a differential description
of diaphragm vibration can be obtained by substituting
equation (5) into equation (1):

aul’A . e VA

1
8 = —B(pi + pis1)A. (9
+ h+8) 2o — 5)2 + 2,8(17 + pis1) &)
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Figure 3. System-level model for the entire peristaltic pump.

4. System-level pump model

We can now represent the entire peristaltic pump as a system.
This system consists of components including the individual
pumping cells and loads connected in series, whose behavior
is given by component-level representations described in the
previous section. Specifically, each individual pumping cell
i (i =1, 2,3) is represented by equations (6) and (9), which
relate six basic variables and parameters characterizing fluid
flow and diaphragm motion in the cell: p;, piy1, Qi Oit1, iy
and V;. The loads upstream and downstream of the pump are
typically in the form of microchannels. Neglecting unsteady
flow effects and provided the channel length is long compared
with the channel’s cross-sectional dimensions, such channels
can be represented respectively as pure flow resistances, Rj,
and R, at the pump inlet and outlet. These flow resistances,
based on elementary considerations of Poiseuille flow [35],
relate the pressures and flow rates by the following algebraic
equations:

—p1 = Rin Q01

where pp,ck 1S the back pressure at the outlet. The pressure at
the pump inlet is set to zero without loss of generality.

The entire pump is thus modeled by equations (6), (9)
and (10). As shown in figure 3, the model can be represented
using a diagram and corresponds to a system of 11 algebraic
and nonlinear ordinary differential equations for the pressures,
flow rates and diaphragm deflections which can be readily
solved. Note that the model is based on first principles and
can be evaluated directly from the device’s geometric and
material properties without using any experimentally identified
parameters.

and P4 — Pback = Rout Q4 (10)

5. Results and discussion

This section presents simulation results obtained from the
model obtained in the previous sections. We first apply
the model to a device that has been previously tested [10]
and use the modeling results to predict the trend in the
experimental data. We then use the model to perform a
systematic parametric analysis of the impact of geometry,
materials and pump loading on device performance.

In all simulations, which are performed using MATLAB
[36], the pump is actuated with a three-phase square-wave
voltage (figure 1):

i1
v,:v(t—'TT> with

Viax 1f0 <t <T/30r2T/)3 <t <T
V()=

. (1)
0 if T/3<t<2T/3
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Figure 4. Time course of the flow rate at the pump outlet (Qy).

where i = 1, 2, 3 is the pumping cell index and T = 1/fis
the period of the voltage. We assume for simplicity that the
pumping loads consist of identical microchannels upstream
and downstream of the pump, that is, R, = Row = Ry.
The following properties will be used: E = 3.2 GPa, v =
0.4, 0 = 20 MPa and ¢, = 3.1 for the parylene diaphragm
[10, 32]. Consistent with experiments of [10], the liquid being
pumped is taken to be ethanol (p =789 kgm > and 1 = 1.2 x
1073 Pas).

We first consider the modeling of the previously tested
pump [10]. The device’s dimensions are ¢ = 100 um, b =
60 pum, t,, = 2 um and £, = 2 um. To obtain the spring
coefficient using equation (3), we calculate A = 0.81. This
gives K = 815 N m~!, which is mostly due to the in-plane
tensile residual stress. Primarily due to diaphragm deflections
that occur in the fabrication process, the initial fluid chamber
height and electrode separation are more difficult to determine
and are estimated to be # = 0.9 um and d = 2 um. The
estimated pumping loads are R = Ry = 0.407 kPa (nl min)~".
The actuation voltage amplitude is Vi, = 140 V. Choosing
I = VA = J/ma, we obtain « = 2.611, § = 1.000 and
y = 0.6175 from equations (7) and (8).

For this pump, it can be verified that the assumptions
and approximations described in sections 3 and 4 are valid.
The model, given by equations (6), (9) and (10), is thus used
to study the dynamic behavior of the pump, with the results
presented in figures 4 and 5. The back pressure has been set
to zero, consistent with the experiment [10]. The time course
of the flow rate at the pump outlet (Q,) is shown in figure 4,
with the initial conditions set such that the diaphragms are
initially at rest in their undeformed equilibrium positions. The
actuation frequency is f = 20.3 Hz, which is actually the
optimal frequency for the pump (below). From the figure it can
be seen that the flow rate reaches steady state within a fraction
of a second. This time scale is determined by the diaphragm
compliance and hydrodynamic damping due to the squeeze-
film effects and pump loading. Additionally, the flow rate
exhibits large fluctuations (41.7 nl min~!) about the average
value (1.7 nl min~"). This is characteristic of peristalsis: as the
diaphragms are sequentially actuated, the diaphragms do not
completely close the fluid chambers. Therefore, the motion of
a downstream diaphragm would cause significant back flow in
the upstream chambers.
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Figure S. Frequency dependence of the time-averaged flow rate Q,,
and the time-averaged value of the pressure difference p, — p;.

When the actuation frequency (f) is varied, the time-
averaged flow rate can be computed and compared with
experimental observations. The simulation shows that the
flow rates Q;, foralli =1, ..., 4, have the same time-averaged
value, denoted as Q,y, as expected from continuity of fluid
flow. This average flow rate is shown in figure 5, along with the
time-averaged value of the pressure difference p4, — p;, which
is the pressure head generated by the pump. It can be seen
that the average flow rate and pressure both initially increase
with f'as a result of increasing membrane vibration frequency,
respectively reaching the maxima of 1.66 nl min~' and
1.35 kPa at an optimal frequency f,,« = 20.3 Hz. The average
flow rate and pressure then steadily decrease as f further
increases. This is because at high frequencies the diaphragm
vibrations cannot keep up with the excitation and their
amplitudes become increasingly diminished. This frequency
response is consistent with the trend in the experimental
data, in which the average flow rate exhibits a peak value of
1.7 nl min~" at 20 Hz [10].

It is also interesting to note that for this pump the voltage
amplitude Vi, exceeds the static pull-in voltage, which can
be calculated (section 3.1) to be V, = 126.7 V. Thus, the
diaphragms vibrate beyond the static critical displacement
derr/3 = 0.88 pum, at which electrostatic pull-in instability
occurs [33]. The vibration is adequately described by our
model provided f is greater than a critical value f, (9.2 Hz
for the pump tested) to prevent membrane touchdown on the
fixed ground electrode. We call f, the electrostatic instability
bandwidth; when f < f;, electrostatic instability occurs and
the model ceases to be valid.

Having considered a particular set of experimentally
used pump design parameters, we now perform a systematic
investigation of how variations of these parameters impact
the performance of the pump. This parametric study will
focus on the time-averaged flow rate Q,, as a function of
actuation frequency f. From dimensional analysis [35] of the
governing equations (6), (9) and (10), it can be shown that the
parametric dependence of this functional relationship can be
most generally studied by varying b, h, d, R and py,« while
holding K, 1, a and V.« fixed at the experimentally used
values above. For simplicity, we focus on pump designs that
have the same shape as the tested pump, by also keeping b/a
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Figure 6. Effects of the variation of the initial fluid chamber height,
h, on the time-averaged flow rate as a function of actuation
frequency.

constant (figure 2). Thus, we will consider below Q,, as a
function of f as h, d, R and py, are varied from the values
corresponding to the tested device.

The effect of the initial fluid chamber height / is first
considered in figure 6. It can be seen that as / increases,
fopt» the optimal frequency at which Q,, achieves its peak
value, steadily increases as a result of decreased damping on
membrane vibrations. Atrelatively small 4, the maximum flow
rate initially increases and then decreases with 4. This is due
to the competing effects of increased squeeze-film damping
on membrane vibrations and reduced backward flow, both
resulting from the decrease in 4. Additionally, as Viax >
V,, reduced damping effects due to an increasing / also imply
that the diaphragms must vibrate at higher frequencies to
avoid touching the bottom electrode. Thus, the electrostatic
instability bandwidth f, increases consistently with 4. Further,
it can be observed that Q,, has local minima at 2.1 and
21.5 Hz for h = 0.3 and 1.2 um, respectively. These
minima, which are relatively insignificant, possibly arise from
the strong nonlinearities due to squeeze-film damping as
well as proximity of the deflected diaphragms to the bottom
electrodes.

The effect of the initial electrode separation d is next
investigated (figure 7). These results show that the maximum
flow rate decreases with d, as a larger electrode separation
(with Vi = 140 V unchanged) gives a smaller actuation
force. As d decreases from 2 to 1.8 um, the pull-in voltage
V), < Vinax further decreases, leading to a larger electrostatic
instability bandwidth f.. The optimal frequency, expected
to be smaller than f, cannot be computed for the case d =
1.8 um as diaphragm touchdown on the bottom electrode
is not validly represented by the model. For d = 2.2 and
2.5 pm, Ve < V), and the pump operation is always stable.
It is interesting to observe that the optimal frequency fop,
calculated for d = 2, 2.2 and 2.5 um, is not significantly
influenced by d. This is because d does not directly influence
the hydrodynamic force on the diaphragm (equation (5)),
but rather only slightly affects the attenuation of diaphragm
vibrations by modifying the diaphragm’s effective stiffness
through the nonlinear dependence of the electrostatic force on
diaphragm deflection (equation (2)).

3 — : :
N ---d=18um

‘\ — d=2um
2.5} == d=22um |
. o d=25um
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0 20 40 60 80 100
Frequency (Hz)

Figure 7. Effects of the variation of the initial electrode separation d
on the time-averaged flow rate as a function of actuation frequency.
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Figure 8. Effects of the pumping load resistance on the
time-averaged flow rate as a function of actuation frequency.

We next consider the effect of pumping load R; on the
frequency-dependent average flow rate. Figure 8 depicts Qg
as a function of f, for different R that is given relative to the
load (R;¢) used in the experiment. It can be seen that the flow
rate increases consistently with decreasing load resistance as
expected. Decreases in Ry also cause a larger electrostatic
instability bandwidth f.. This is because the decreased
pumping load implies that, similar to the case of increasing
initial fluid chamber height, the hydrodynamic damping
on diaphragm vibrations is reduced and higher actuation
frequencies are needed to avoid diaphragm touchdown on the
bottom electrode. For Ry = 0, f, is maximal and f,,; cannot
be computed from the model. For the other load resistance
values, the calculated f, decreases moderately with R; as a
result of increased damping on diaphragm vibrations.

Finally, we examine the effects of back pressure on
the performance of the pump (figure 9). It can be seen
that either in the presence (R, = Rpp) or absence (R, =
0) of a pumping load the time-averaged flow rate decreases
with the back pressure. Also, at sufficiently large back
pressures, the flow rate direction is reversed, as can be seen for
Prack = 2 kPa with R, = Ry, indicating that the forward flow
generated by peristalsis is insufficient to overcome the back
flow generated by the back pressure. We also observe that
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Figure 9. Effects of the variation of back pressure on the
time-averaged flow rate as a function of actuation frequency.

the back pressure generates a dc component of the diaphragm
deflection towards the bottom electrode and hence causes the
electrostatic actuation instability bandwidth f. to consistently
increase.

6. Conclusions

We have presented a simulation study of a surface-
micromachined peristaltic micropump, which consists of
three pumping cells each having an electrostatically actuated
diaphragm. Diaphragm motion in each pumping cell is first
represented by an effective spring-attached plate subjected
to hydrodynamic and electrostatic forces.  These cell
representations are then used to construct a system-level model
for the entire pump, which accounts for both cell- and pump-
level interactions of fluid flow and diaphragm vibrations. As
the model is based on first principles, it can be evaluated
directly from the device’s geometric and material properties
without using any parameters that must be experimentally
identified. Therefore, the model allows for fast, quantitative
determination of the pump’s dynamic characteristics and can
be used as an efficient tool for optimal design of peristaltic
micropumps.

The model has been applied to simulate a surface-
micromachined peristaltic pump that has been experimentally
tested. The results from this simulation have revealed bi-
directional flow rate fluctuations with amplitudes that are about
an order of magnitude larger than the time-averaged flow rate.
These fluctuations can be attributed to the pulsatile nature of
diaphragm motion as well as backward leakage flow caused
by the inability of the diaphragm motion to completely close
the fluid chambers. It has also been observed that the time-
averaged flow rate and pumping pressure depend strongly
on the actuation frequency f. They initially increase with
f as a result of increasing membrane vibration frequency,
each reaching a maximum (1.66 nl min~! and 1.35 kPa,
respectively) at an optimal frequency fo, = 20.3 Hz and then
steadily decrease with f'due to diminished membrane vibration
amplitude. This frequency dependence correctly predicts the
trend in the experimental observations [10], suggesting that
the model correctly describes the physics of the device.
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The model, expressed in geometric and operating
parameters, has allowed a systematic analysis of the impact of
geometry, materials and pump loading on device performance.
This parametric study has yielded the following general
observations. First, as the fluid chamber height % increases,
the maximum value of the time-averaged flow rate Q,, initially
increases and then decreases, as a result of the competing
effects of reduced damping on membrane vibrations and
increased backward flow. Deceased damping also leads to the
steady increase of the optimal frequency f,, with /. Second, as
the electrode separation d is decreased, Q,, increases, although
fopt does not vary significantly. This is because a smaller
electrode separation for a given actuation voltage amplitude
affords a larger actuation force, while d does not directly affect
the hydrodynamic damping on the diaphragm. Third, Q,,
increases consistently with decreasing pump load resistance
as expected, with f, increasing moderately due to reduced
damping on diaphragm vibrations. Finally, Q,, decreases with
the back pressure. At sufficiently large back pressures, the
flow rate direction is reversed, indicating that the forward flow
generated by peristalsis is insufficient to overcome the back
flow generated by the back pressure.

Building on the work presented in this paper, future work
can be pursued in several directions. First, the accuracy or
efficiency of the model can be further improved. For improved
accuracy, it will be necessary to consider the continuous
diaphragm deflection and the resulting spatial dependence
of the fluid film thickness in a pumping cell. This could
be accomplished by numerically solving a coupled system of
partial differential equations governing diaphragm vibrations
and fluid flow. This would likely only require two-dimensional
discretization of the fluid chamber domain and therefore be
reasonably efficient. Inclusion of post-pull-in electrostatics of
diaphragm motion is another possibility for improving the
model accuracy [37]. Improved model efficiency, on the
other hand, could be accomplished with the development
of a full analytical model. Such a model, which could be
obtained by linearization approximations, would also give
more intuitive insights into the influence of various parameters
on the pump performance, as the role of such parameters can
be easily inspected or evaluated from closed-form solutions.
Finally, future work will pursue more extensive experimental
validation. Due to limited experimental data available for
surface-micromachined electrostatic peristaltic pumps, we
have focused on using the model to examine the trend observed
in the experiments. To allow more detailed comparisons,
peristaltic micropumps can be fabricated according to designs
generated from the model and tested to yield experimental
data needed. These comparisons could also lead to
appropriate correction coefficients to reflect real-world issues
not accounted for by the model, thereby making the model
more generally applicable.
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Appendix. Details of hydrodynamic force and flow
rate computation

We provide the details of computing the hydrodynamic force
(equation (5)) and flow rates (equation (6)) in this appendix.
The solution of the Reynolds equation (equation (4)),
expressed in terms of dimensionless in-plane coordinates Xand
¥, can be decomposed into the following three subproblems
by the principle of superposition:

Vi =—1 Vi =0
¢lr, =0, I, =0 vip, =1 ¥lg, =0  and
(09/0m)|rg,, =0, @y/on)|r,, =0
Vi =0
Ve, =0, ¥lr, =1
0Oy /dm)|ry, =0
with the pressure given by
5
p= —%WPWWHWC (A1)

Note that the first two subproblems also appear in
equation (8). Here, ¢ can be interpreted as the pressure in
the fluid film, normalized by the factor —12.1%8; /(h + 8;)°,
generated by the diaphragm motion when the inlet and outlet
pressures are set to zero. On the other hand, v and v/ are the
fluid pressure when the diaphragm is fixed; ¥ corresponds to a
unit inlet pressure and zero outlet pressure and v/ corresponds
to a unit outlet pressure and zero inlet pressure.

The hydrodynamic force, F;*"® = [, pdA, can thus be
computed as follows.

PA . (12 _ 1 2 _
prie - 2 g T/¢dA + o piA f/wdA
h+5) I\ A4 J; 2 Als

! 2/1//%1/&
2pl+1 A 1 .

The flow rate at the inlet is given by Q; =

(A.2)

- Jr, @ndl
where ¢, = —[(h +8;)3/(1211)]10p/dn is the flow rate across
a unit-width section of the boundary I'j, [34]. Substituting
equation (A.1) then yields
3
Qi = —128,-/ 99 g 4 200 (pi/ W ar
r, 0 12 r, 07
+ Pint / %df) : (A3)
£, Of

Equations (A.2) and (A.3) are valid for a pumping chamber
of arbitrary shape. Now consider the special case that the
chamber is symmetric about the y-axis in the plane. Then,
V(x,9) = ¥(—=%,9) and [;¥'dA = [;¥ dA. Using
the definitions of the coefficients « and B (equation (7)),
equation (A.2) reduces to the desired form given in
equation (5).

Furthermore, using the symmetry as well as the condition
that the flow fields corresponding to the functions @, v and
¥’ must satisfy continuity at the inlet and outlet, it can be
shown that [ 8¢/d9adl = —A/2 and [r 9y'/ondl =
— [r, 8%/ dT". Thus, using the definition of the coefficient
y in equation (7), equation (A.3) reduces to the desired form
for the inlet flow rate Q; given in equation (6). Finally, using
Q; and the continuity condition Q; — Q,,; = A$; yields the
outlet flow rate expression (Q;,1) in equation (6).
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