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This document provides supplementary information for “Diffraction tomography with Fourier 
ptychography," http://dx.doi.org/10.1364/optica.3.000827. It analyzes the convergence of the 
Fourier ptychographic tomography (FPT) algorithm in the presence of noise, then examines the 
connection between the first Born approximation and the multi-slice model, and finally includes 
additional experimental results for a sample that does not obey the first Born condition. © 2016 
Optical Society of America
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1. ALGORITHM CONVERGENCE

In this section, we examine the convergence of the FPT algorithm
in simulation. We test two different samples that follow the first
Born approximation. As discussed in the main text, a sample
obeys the first Born approximation when it is valid to substitute
the scattered field within the sample, U(r) = Ui(r) +Us(r), with
the incident field, Ui(r). This requires the inequality Ui(r) �
Us(r). As detailed in [1], this inequality leads to the approximate
first Born condition in the main text,

kt |∆n| /2� 1, (S1)

where ∆n = n(r) − nb, t is the sample thickness, k is the
wavenumber in vacuum and the background medium index
of refraction is nb.

Our first simulated sample consists of several transparent mi-
crospheres, each with a maximum index of refraction n = 1.505
and a 7 µm diameter, that are immersed in oil with background
index nb = 1.5 (see Fig. S1(a)). We note that these simu-
lated beads approximately obey the above first Born condition
(kt∆n/2 ≈ 0.2). For simplicity and ease of visualization, our
simulations here are in two dimensions along (x, z). We expect
our findings to easily generalize to the 3D case.

Similar to our experimental system, the simulated microscope
has an objective numerical aperture (NA) of 0.4 and an illumina-
tion NA of 0.4. We simulate 64 intensity images, generated from
64 individual LEDs that emit quasi-monochromatic light (cen-
tral wavelength λ = 0.5µm), with each 1D image containing 200

pixels that sample the field at the Nyquist-Shannon limit. An ex-
ample reconstruction is shown in Fig. S1(c). The FPT algorithm
here uses light field initialization, similar to reconstructions in
the main text.

The convergence of the FPT algorithm in the presence of noise
is shown in Fig. S1(d). First, we show the reconstruction mean
squared error (MSE), which we define as,

EM =
∑(x,z) |ψ(x, z)− γv(x, z)|2

∑(x,z) |ψ(x, z)|2
. (S2)

Here, ψ is the reconstructed scattering potential and v(x, z) is the
ideal scattering potential that our microscope could reconstruct
if it could directly measure phase and then perform standard
diffraction tomography with the measured complex fields (as
shown in Fig. S1(b)). Put another way, we compute the MSE by
only considering values of the sample and reconstruction that
fall within the limited k-space bandpass of the FPT system, and
do not consider values that fall outside of this finite bandpass
(where we assume our setup cannot measure anything). The pa-
rameter γ is a constant phase factor that shifts our reconstructed
scattering potential phase to optimally match the ground truth
phase:

γ =
∑(x,z) ψ(x, z)v∗(x, z)

∑(x,z) |v(x, z)|2
, (S3)

We also add Gaussian noise to each simulated intensity image.
We summarize the amount of noise with a signal-to-noise ratio
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(SNR) defined as,

SNR = 10 log10

(
〈I〉
〈N〉

)
, (S4)

where 〈I〉 is the mean intensity over all images and 〈N〉 is the
mean intensity of the uncorrelated Gaussian noise added to each
simulated image. We show example convergence plots for 4
levels of noise, ranging from a high amount of noise (SNR=13
dB) to a relatively low amount (SNR = 30 dB).

At the bottom of Fig. S1(d), we also plot the peak signal-to-
noise ratio (PSNR) as a function of iteration. PSNR is defined
as,

PSNR = 10 log10

(
max(|V|)2

ÊM

)
, (S5)

where ÊM = 1
N EM and N is the number of reconstruction pix-

els. Convergence of the algorithm is quite clear across the 4
tested noise levels. Remaining error is likely caused by the fi-
nite amount of added noise, an imperfect degree of overlap at
some k-space pixels, and possible misalignments in the light
field initialization.

Second, we simulate a similar sample with both real and
imaginary variations in its index of refraction (i.e., the micro-
spheres also absorb light). In the example in Fig. S2, each of the
12 microspheres has a maximum index shift of Re(∆n)=.005 and
Im(∆n)=.01, where this latter imaginary index shift indicates
absorption. The plots in Fig. S2(d) demonstrate that FPT still
successfully converges in the presence of absorption.

2. SIMULATING FPT WITH THE MULTI-SLICE MODEL

In this section, we briefly connect FPT (operating under the first
Born approximation) to the multi-slice model as used in [2] and
[3]. First, we use each model to simulate microscope images of a
relatively thin and weakly scattering sample that we expect to
obey both the first Born and multi-slice approximations. Then,
we perform FPT using the two distinct image sets, allowing us
to compare the performance of FPT under the two unique for-
ward models. We first demonstrate that for a weakly scattering
sample, each approximation leads to a roughly equivalent re-
construction. Second, we use the multi-slice model to simulate
images from a sample that does not meet the first Born criterion,
and once again we achieve an accurate FPT reconstruction using
these multi-slice images as input, which highlights algorithm
robustness.

Here are the steps for our first FPT-multi-slice comparison
in Fig. S3. First, we define an example index of refraction map
n(x, z) that contains three microspheres of different sizes (with
diameters t = 6, 12 and 25 µm), each exhibiting the same shift in
index of refraction (Re(∆n)=.001 and Im(∆n)=.001). The real part
of this index is shown in Fig. S3(a). All three of these spheres
obey the first Born condition.The total sample size is 300 µm
wide and 125 µm thick.

Second, we compute the associated k-space scattering poten-
tial v̂(kx, kz) and sample this function to create a set of optical
fields that lead to “FPT images", gFPT(x, j), following Eq. 6 in
the main text. Here, 1 ≤ j ≤ q again denotes the jth plane wave
angle, leading to q = 64 uniquely illuminated images. The FPT
image set, gFPT , is displayed in Fig. S3(c) (after subtraction of
the illumination field) and it implicitly assumes the validity of
first Born approximation. The simulated system here matches
the specifications described above (NAo = 0.4, NAi = 0.4) and
includes independent Gaussian noise.

Third, we use the same index of refraction map for multi-
slice simulation. Here, we propagate q = 64 plane waves with
the same angles through the same sample index of refraction
map, but now propagation proceeds one slice at a time. At each
discretized slice zd, we assume that n(x, zd) acts as an infinitely
thin phase plate with an absorption profile exp(−ktnim(x, zd))
and phase shift profile exp(−ktnr(x, zd)). Between slices, we
assume free space propagation. After propagating the incident
field through the entire sample, we then refocus the scattered
fields to the center of the sample and subsequently simulate im-
age formation through the limited numerical aperture objective
focused at this central plane. This creates a second image set,
gMS(x, j), which we display in Fig. S3(e). All steps, including
the propagation kernel and method of image formation, follow
from the techniques presented in [2].

Finally, we perform FPT reconstruction using each image set,
gFPT and gMS, as separate inputs. The results after 10 iterations
(using SNR=20 dB) are shown in Fig. S3(d) and (f), respectively.
The two reconstructions match quite closely, as expected given
that the two detected image sets shown in Fig. S3(c) and (e) are
quite similar.

For our second FPT-multi-slice comparison, we again use
the multi-slice method to create uniquely illuminated images of
a thick sample and perform FPT, but now with a sample that
does not obey the first Born condition (see Fig. S4(a)). The index
shift for each sphere is higher (Re(∆n)=.01 and Im(∆n)=.01), the
sphere diameters are again t = 6, 12 and 25 µm and there are
more spheres that may lead to multiple scattering. The recon-
struction in Fig. S4(d) using q = 128 images is not as accurate
as the prior example in Fig. S3. However, this example demon-
strates that FPT, using multi-slice images, can still successfully
recover the approximate size, location and refractive index shift
of each sphere, even when they do not obey the first Born con-
dition and the effects of multiple scattering are present. Future
work will attempt to improve the quality of the reconstruction
in (d) by taking into account multiple-scattered light.

3. RECONSTRUCTING SAMPLES THAT DO NOT OBEY
THE FIRST BORN APPROXIMATION

Fig. S5 presents an experimental FPT reconstruction of a sample
that does not obey the first Born condition: a large pollen grain
immersed in oil. The grain dimensions are approximately 50 µm
thick and 125 x 50 µm wide along x and y. As is clear in the raw
images in Fig. S5(a), the pollen grain is quite absorptive. As we
vary the focus for our raw images, the overall brightness across
the sample remains low, leading us to conclude that these low
intensities are not caused by interference alone. Even without
considering the effects of sample absorption, we do not expect
this sample to follow the first Born condition. If we estimate the
thickness of the pollen grain at 50 µm (from manual focusing),
assume the background material is Kleermount and Xylene with
an index of refraction nb = 1.52, and also assume the index of
refraction of the pollen grain matches previous studies [4] as
approximately n = 1.53, then from Eq S1 we find that kt∆n/2 =
2.5.

FPT reconstructions of this pollen grain are in Fig. S5(b),
where we use the same data capture and processing steps as
outlined in the main text. We display 3 separate slices of the
real component of the recovered refractive index. This may
be compared with the corresponding light field reconstruction,
where each image has been refocused to the same axial plane, in
Fig. S5(c), as well as the raw refocused images in Fig. S5(a).
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FPT recovers the general shape of the grain and different
structures within each slice, although it is not clear if the large
variations within the middle slices accurately match the internal
structure of the sample. FPT also still reveals several features
that are not present within the raw images or the light field
reconstruction. Since the total optical path through the grain at
its edges (i.e., along the grain wall in Fig. S5) remains relatively
short, we expect minimal sample absorption and phase shift
here. Thus, we expect these wall regions to more closely satisfy
the first Born condition. At these edge locations, we observe
(especially within the middle FPT slice) that the pollen grain
wall is roughly patterned. This roughness is consistent with
the commonly observed patterning of the exine layer of pollen
grains. The high-resolution patterning is missing or not resolved
within the raw and light field images.
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Fig. S1. FPT simulation of a 2D set of non-absorbing microspheres that satisfy the first Born condition. (a) The real component of
the scattering potential. (b) The ideally recovered scattering potential, created by filtering the complex k-space scattering potential
with the simulated microscope’s limited bandpass (NAo = 0.4, NAi = 0.4). (c) The FPT reconstruction with SNR = 20 dB. (d) MSE
and PSNR between the ideal and FPT reconstructions as a function of iteration number for 4 levels of SNR.
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Fig. S2. FPT simulation following the same outline as Fig. S1. (a) The imaged microspheres (with Re(∆n)=.005 and Im(∆n)=.01)
now also absorbs light. (b) Ideal reconstruction, (c) FPT reconstruction and (d) MSE and PSNR plots across different noise levels
showing algorithm convergence.
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Fig. S3. FPT and multi-slice simulation: sample obeys first Born condition. (a) Real part of scattering potential includes three
different sized spheres at slightly different depth planes. (b) Ideal reconstruction expected by DT for a microscope system with
NAo = 0.4, NAi = 0.4. (c) Image set generated by FPT forward model. Each image is the squared Fourier transform of one arc
of the scattering potential. (d) Resulting FPT reconstruction using the image set in (c) as algorithm input. (e) Image set created by
multi-slice propagation. Each plane of the index of refraction is treated as a thin amplitude and phase plane. (f) The resulting FPT
reconstruction using the image set in (e) as algorithm input. For this simple sample, FPT and multi-slice image sets and reconstruc-
tions match.
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Fig. S4. FPT and multi-slice simulation: sample does not obey the first Born condition. (a) Real part of sample scattering potential
shows 6 different spheres at different depths. (b) The ideal reconstruction expected using the same microscope as in Fig S3(b). (c)
Multi-slice image set. (d) FPT reconstruction using the multi-slice generated image set in (c), where each sphere is resolved.
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Fig. S5. FPT reconstruction of a pollen grain. This thick sample significantly absorbs and phase-shifts incident light. Thus, it does
not follow the first Born condition. (a) Raw refocused images, (b) the FPT reconstruction and (c) slices of the refocused light field
are included at three different axial slices. We note that the axial slice location of the manual refocused images only roughly approx-
imates the slice locations of the FPT and light field reconstructions.
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