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Abstract

Brains and sensory systems evolved to guide motion. Cen-
tral to this task is controlling the approach to stationary
obstacles and detecting moving organisms. Looming has
been proposed as the main monocular visual cue for detect-
ing the approach of other animals and avoiding collisions
with stationary obstacles. Elegant neural mechanisms for
looming detection have been found in the brain of insects
and vertebrates. However, looming has not been analyzed
in the context of collisions between two moving animals.
We propose an alternative strategy, generalized regressive
motion (GRM), which is consistent with recently observed
behavior in fruit flies. Geometric analysis proves that GRM
is a reliable cue to collision among conspecifics, whereas
agent-based modeling suggests that GRM is a better cue
than looming as a means to detect approach, prevent colli-
sions and maintain mobility.

INTRODUCTION

Animals move to forage, approach potential mates, chase
prey, escape from predators, and to maintain their position
within a group. They must do so in environments that are
often cluttered by rocks, plants and other moving animals.
Whether the goal is making or avoiding contact, it is valu-
able to detect the proximity of both stationary and moving
entities.

Looming, defined by Gibson as a visual pattern expanding
symmetrically on the retina (Schiff et al., 1962), is com-
monly believed to be a robust and reliable monocular vi-
sual cue to impending collision1. It is often understood as
a loosely-defined group of visual stimuli rather than a spe-
cific mechanism, with an underlying idea that an object ap-

1We will call ‘collision’ an event in which one moving agent
comes into physical contact with another, or with a stationary
obstacle. In a biological context, collisions can be harmful (as
when a prey is caught by a predator, or a pathogen passes from
one animal to another), or beneficial (as when one ant exchanges
chemical information with a nest mate, or a predator succeeds in
capturing a prey).

Figure 1: Progressive motion, regressive motion, and
GRM. Progressive motion is any counter-clockwise mo-
tion perceived in the left visual hemifield and any clock-
wise motion perceived in the right visual hemifield. Re-
gressive motion is any clockwise motion in the left visual
hemifield and counter-clockwise motion in the right visual
hemifield. GRM is motion towards the nasal boundary of
either eye. Its perception depends on the azimuthal posi-
tion of the nasal boundary of the visual field of each eye.
We call the angular distance of the nasal visual boundary
from the 0◦ (straight-ahead) azimuth the Contralateral Vi-
sual Angle.

proaching with a constant velocity produces expanding pat-
terns on the observer’s retina. When an animal is stationary,
looming is a sufficient cue to detect approaching objects.
When a moving animal is on a collision course with a sta-
tionary obstacle, time-to-collision can be estimated from
looming patterns even when distance is unknown (Lee and
Reddish, 1981; Wang and Frost, 1992). It is generally ac-
cepted that looming is a cue used by various animals to
avoid stationary obstacles, and elegant neural mechanisms
for its detection have been unveiled. Experiments have
revealed looming-sensitive neural pathways in many ani-
mals. The DCMD/LGMD neurons of the locust (Rind and
Simmons, 1992; Hatsopoulos et al., 1995; Gabbiani et al.,
2002) as well as the pigeon nucleus rotundus (Sun and
Frost, 1998) and the goldfish Mauthner cell (Preuss et al.,
2006) respond to divergence of image edges. Finally, the
fruitfly uses looming-sensitive neurons during navigation
(Fotowat and Fayyazuddin (2009); de Vries and Clandinin
(2012); see also Discussion).

Looming has been analyzed in the setting where either the
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animal or the obstacle is stationary. This is in contrast to
regressive motion, used by the fruitfly to avoid collisions
among multiple moving animals (Zabala et al., 2012). Neu-
ral mechanisms behind regressive motion-driven behavior
are unknown (Zabala et al., 2012), but correlational motion
detectors likely used by the fruitfly (Eichner et al., 2011;
Takemura et al., 2013) can form a solid basis for regressive
motion detection. The ecological usefulness of regressive
motion has not been explored by Zabala et al. (2012). We
build on the results of Zabala et al. by providing a the-
oretical and practical analysis of Generalized Regressive
Motion (GRM) – visual stimulus similar to regressive mo-
tion but simpler to detect and more versatile. Whereas re-
gressive motion occurs when there is clockwise motion in
the left visual hemifield or counter-clockwise motion in the
right visual hemifield, GRM occurs if there is clockwise
motion in the left eye or counter-clockwise motion in the
right eye, as shown in Fig. 1. Experiments by Zabala et al.
admit the hypothesis that the fruitfly uses GRM, not pure
regressive motion, for stopping. We show that GRM en-
joys the advantages of both looming motion and regressive
motion. Our contribution is threefold:

• Whereas regressive motion alone is not a good cue
to frontal collisions, we use geometric reasoning to
show that GRM is a sufficient cue to prevent colli-
sions whether both agents move, or one is a stationary
obstacle.

• We argue that collisions ought not to be studied as an
all-or nothing phenomenon. Rather the probability of
avoiding collisions (here called ‘safety’) is a more in-
formative parameter. We point out that avoiding un-
warranted stops is an equally important performance
criterion, which we call ‘mobility’.

• With the help of agent-based modeling, we show
that a population of Braitenberg-vehicle-like agents
(Braitenberg, 1986) using GRM as their sole collision-
avoidance mechanism can be both safe from collisions
and mobile when compared to looming-based agents.

GEOMETRY OF REGRESSIVE MOTION

Our geometric analysis of GRM is based on an abstract
model of an agent: It is a point in the Euclidean plane,
equipped with two “eyes” – centers of projection. Each
agent has a well-defined orientation, which allows us to de-
fine its Contralateral Visual Angle (CVA). The CVA is the
angle subtended by the nasal boundary of each eye, as in
Fig. 1 (right). For now, we assume the distance between
the eyes is zero and identify their position with the posi-
tion of the agent (see Fig. 2). This assumption is justified if
the modeled animal’s inter-eye distance is small compared
to its typical distance from other animals. We neverthe-
less drop this assumption in simulations (described below),
where we consider agents with two separate eyes and spa-
tially extended bodies.

Figure 2: A geometric-point agent using GRM. Left The
arrows indicate directions of angular velocity on the agent’s
eyes that cause it to perceive GRM. deye indicates the
agent’s inter-eye distance. Right If deye = 0 the two eyes
coincide, but still detect GRM independently. As a result,
any movement in a cone extending from the agent’s eyes
forward is GRM.

GRM detection can prevent all collisions among
moving conspecifics

Let a point (which could be stationary or in movement)
project to azimuthal position φ on the observer agent’s eye.
Let φ = 0 be the direction in front of the agent, positive
angles for the left side and negative angles for the right
side, and restrict π ∈ [−π, π). Denote the point’s angular
velocity as φ̇.

Definition 1. A point projecting at φ is in regressive motion
with respect to the observer if φ̇ ·φ ≤ 0, and in progressive
motion otherwise.

Before proving our main theorem, we state an easy prop-
sition whose proof we relegate to the Mathematical Ap-
pendix.

Proposition 2. Let the relative position and velocity of
the observed object be x and v respectively. Then φ̇ =

1
‖x‖2 〈v

⊥,x〉. In particular, φ̇ scales as one over distance
squared.

The following theorem ensures that before any potential
collision, one of the agents will perceive regressive motion.

Theorem 3. Let f1 and f2 be two agents moving on
straight, intersecting trajectories. If f1 reaches the trajec-
tory intersection after f2, f1 perceives regressive motion at
all times before f2 reaches the intersection and progres-
sive motion afterwards. f2 perceives progressive motion
before f1 reaches the intersection, and regressive motion
afterward.

Proof. Let two point-agents f1, f2 move on a flat uniform
surface with constant velocities on intersecting (that is,
non-parallel) trajectories. Align the reference frame’s y-
axis with the direction of f1’s movement, and place the ori-
gin at the point at which the agents’ trajectories cross. The



Figure 3: Reference frames for Theorems 3 and 5. Left
When two agents—schematically shown as flies—have
non-parallel velocities, we can describe every possible pair
of trajectories using four parameters (see text). Right
When an agent with positive CVA approaches a flat wall
sufficiently close, it can always observe GRM for some
points on the wall (see text).

situation is fully described by four parameters (see Fig. 3
Left):

v1, v2 – the speed of f1 and f2 respectively,

Ψ – the angle f2’s velocity vector makes with f1’s velocity
(also called the angle of approach), and

d – the y-coordinate of f1 at the moment when f2 reaches
the origin.

First, we compute the angular position φ21 of f2 on f1’s
projection center and the angular velocity φ̇21, at the mo-
ment when f1 is at distance d+ ε from 0.

For ε = 0, the positions of the two agents are respectively

x1(d) = (0, d),

x2(d) = (0, 0).

If ε 6= 0, the time that passed since the original con-
figuration is ∆t = ε/v1, and since the velocity of f2 is
v2 = v2(− sin Ψ, cos Ψ), we have

x1(d+ ε) = (0, d+ ε),

x2(d+ ε) = ε
v2

v1
(− sin Ψ, cos Ψ).

Define xR,vR to be the relative position and velocity of f2

in f1’s frame of reference. Then

xR(d+ ε) = x2(d+ ε)− x1(d+ ε)

= (−εv
2

v1
sin Ψ,

εv2

v1
cos Ψ− (d+ ε)),

vR(d+ ε) = (−v2 sin Ψ, v2 cos Ψ− v1).

From this we can directly compute φ21, and Proposition 2
enables us to compute the angular velocity of f2:

φ21 = arctan (xR2 /x
R
1 )− π/2,

φ̇21 =
1

D2
〈vR⊥,xR〉,

where D2 = (xR1 )2 + (xR2 )2 is the distance between the
two agents. Plugging in the values calculated above we get

φ21(d, ε) = arctan
εv

2

v1 cos Ψ− (d+ ε)

−εv2v1 sin Ψ
− π/2, (1)

φ̇21(d, ε) = − 1

D2
dv2 sin Ψ, (2)

with D2 = ( v
2ε
v1 )2 + (d + ε)2 − 2εv

2(d+ε)
v1 cos Ψ. Now,

assume that f2 arrives at the intersection first, that is d < 0.
From Equation 2 it follows that

φ̇21(d, ε) ≥ 0 ⇐⇒ sin Ψ ≥ 0.

But this implies that the denominator in the arctangent in
Equation 1 is nonnegative if and only if ε ≤ 0,

−εv2

v1
sin Ψ > 0 ⇐⇒ ε ≤ 0,

A positive denominator restrict the range of the arctangent
to [−π/2, π/2], and thus

ε ≤ 0 ⇐⇒ φ ∈ [−π, 0].

Thus,

φ̇21(d, ε) ≥ 0 =⇒ (φ(d, ε) ∈ [−π, 0] ⇐⇒ ε ≤ 0).

Analogously,

φ̇21(d, ε) ≤ 0 =⇒ (φ(d, ε) ∈ [0, π] ⇐⇒ ε ≤ 0).

This proves the first part of the theorem. The second part is
proven exactly in the same way, but switching the reference
frame to that of f2.

The theorem easily generalizes to GRM:

Definition 4. Let f2 project onto a projection cen-
ter f1, with azimuthal position φ21. f1 perceives
GRM if and only if

(
φ̇21 > 0 and φ21 ∈ [−π,CVA]

)
or(

φ̇21 < 0 and φ21 ∈ [−CVA, π]
)

, where CVA is a fixed an-
gle.



Theorem 5. Let f1 and f2 be two agents moving on
straight, intersecting trajectories. If f1 reaches the trajec-
tory intersection after f2, f1 perceives GRM at all times
before f2 reaches the intersection.

This follows from Theorem 3 because regressive motion
implies GRM (see definitions above).

GRM detection can prevent collisions with stationary
objects

An agent using solely non-generalized regressive motion
detection will always collide with stationary obstacles,
which project expanding (progressive) patterns. However,
GRM with CVA > 0 and appropriate motion threshold-
ing provides a mechanism for stationary collision avoid-
ance. Let TGRM denote the smallest magnitude of GRM
that causes the agent to stop. Intuitively, larger CVA’s and
smaller TGRM provide better obstacle detection.

Theorem 6. An agent on a collision course with a station-
ary object will perceive GRM before the collision, as long
as TGRM <∞ and CVA > 0.

Proof. We assume the agent is approaching an object such
that the centerline of the agent φ = 0 does not point directly
at a (non-smooth) corner of the object. We can then assume
there is a neighborhood around the φ = 0 aziumuth that can
be approximated as a wall segment. As in Fig. 3 (right),
place the origin at the position of the agent as shown. The
agent approaches the wall at an angle 0 < α < π/2 and
with positive speed v, its velocity v = (v sinα, v cosα).
Consider an arbitrary wall-point (x, y), marked red in the
figure. The relative velocity of the point w. r. t. the agent is
−v, and its angular velocity on the agent’s eye equals (by
Proposition 2)

φ̇(x, y, α, v) =
−v

x2 + y2
(x cosα− y sinα). (3)

We need to take into account very small θ and very large
T . the following proposition implies the theorem:

∀θ,T>0 ∃X>0 s.t.
{
‖φ̇(X, y, α, v)‖ > T and
y tan (α− θ) > X > y tanα

,

where the last condition restricts the point we’re search-
ing for to be between the leftmost edge of perceived GRM
and the center of the agent’s visual field. Now, fix X =
y tan (α−θk ), k > 1. k can always be chosen to make the
point (X, y) arbitrarily close to the centerline, and so con-
tained in the smooth wall-like neighborhood on the obsta-
cle. Clearly these X, y satisfy the second condition above.
We also have

φ̇(X, y, α, v) =
−v
(
y
[
tan α−θ

k cosα− sinα
])

y2(tan α−θ
k + 1)

.

Figure 4: GRM False Alarms. Arrow lengths indicate
speeds. In each of the situations pictured collision is not
imminent, but the darker agent perceives GRM. Left The
faster, bright agent takes over a slower one from behind.
Right The brighter agent crosses a trajectory junction in
advance of the darker agent’s arrival. Bottom The faster,
dark agent is moving away from the slower bright agent.

Since α, θ and k are constant, this expression scales as
1/y and thus reaches arbitrarily large magnitudes as y ap-
proaches 0 – that is, as we place the observer closer and
closer to the wall.

The intuition behind this theorem is that a GRM detector
detects any motion in a cone symmetrical about the cen-
ter of the visual field. If the agent frontally approaches an
object, the target is guaranteed to produce a strong enough
signal within that cone at some positive time before the col-
lision occurs.

False alarms, safety and mobility

Theorems 5 and 6 give basis to the claim that GRM can be
useful for collision avoidance. However, it can be argued
that they are of limited practical use. One problematic area
not explored by the theorems is that of false alarms. An
agent using GRM as a stopping cue can stop unnecessar-
ily in a variety of situations, some of which are shown in
Fig. 4.

If perception of GRM of any magnitude greater than zero
caused the agents to stop, they would be perfectly safe from
collisions, but unable to move. In simulations described
below we investigate the role of two parameters that enable
GRM-based agents to trade-off mobility and safety from
collisions: the CVA and tne threshold TGRM on the magni-
tude of GRM that stops the agent. Varying these parameters
in a population of agents changes the population’s safety



and mobility, where safety corresponds to the fraction of
prevented collisions, and mobility to the fraction of useful
stops. Formally, we can classify any encounter between
agents f1 and f2 as

True Positive (TP) : agent f1 stops due to perceived mo-
tion of agent f2, and f1 would collide with f2 had both
f1 and f2 continued to move with velocities they had
at the moment of f1’s stop, and f2 is outside of f1’s
collision radius.

True Negative (TN) : agent f1 moves without stopping and
doesn’t collide with any entity.

False Positive (FP) : agent f1 stops due to perceived mo-
tion of entity f2, and f1 would not collide with f2 had
both f1 and f2 continued to move at velocities they had
at the moment of f1’s stop. In addition, f2 is outside
of f1’s collision radius at the time of stopping.

False Negative (FN) : agent f1 collides with agent f2.

We can then define mobility and safety as

mobility =
TP

TP + FP
and

safety =
TP

TP + FN
,

Mobility is high if and only if the agent rarely stops with-
out a good reason. Safety is a complementary measure that
is high if and only if the agent avoided many out of all the
potential collisions. In our view, any collision avoidance
algorithm is useful inasmuch as it offers a range of good
mobility-safety tradeoffs: It can be used to make mobile ve-
hicles remain relatively safe (relative to other algorithms),
as well as safe vehicles that retain good mobility.

SIMULATIONS

A number of issues are not covered by our theory:

• real agents have extended bodies, unlike the geometric
points considered in Thm 5,

• real agents have visual systems with multiple centers
of projection and

• there is a tradeoff of safety and mobility to be ex-
plored.

Studying the tradeoff between mobility and safety is
best done experimentally in a simulated environment.
It is difficult to derive theoretical tradeoff curves given
the statistical variability of the trajectories even in sim-
ple environments. Computational simulations are also
a good tool for studying GRM agents with extended

bodies and two separate eyes. Thus, to further study
GRM we use agent-based modeling with populations of
fly-like agents trying to avoid collisions. The agents use
GRM- and looming-based algorithms for stopping. We
compare the performance of GRM-based and looming-
based collision avoidance using population safety and
mobility as performance metrics. The details of the
simulation setup are available in Methods below. Matlab
code implementing the simulations is available online at
http://vision.caltech.edu/∼kchalupk/cod
e.html.

Figure 5: Mobility and safety of GRM-based collision
avoidance. Each point corresponds to the mean mobility
and safety achieved by GRM-based agents with fixed TGRM
and CVA (and TLOOM set to a very large value, disabling
looming-based collision avoidance in practice; see Meth-
ods for more details). Each point corresponds to a different
(TGRM, CVA) value, used in 50 randomized repetitions of
50s-long simulations to estimate the means. A wide variety
of safety-mobility tradeoffs are available, including a rea-
sonable 50% mobility at 95% safety marked by the arrow.

GRM detection offers good mobility and safety to a
population of conspecifics

In each simulation, ten fly-like agents were placed in a
toroidal arena and followed straight trajectories with con-
stant speed. Each agent was equipped with a stopping
mechanism triggered by the perception of GRM with spe-
cific CVA and TGRM (consistent across all the agents in a
given simulation run). We performed 100 types of simu-
lations, varying the CVA and TGRM values systematically2.
After running multiple trials for each simulation type, we
calculated the safety and mobility of the agent population

2The agents were also equipped with a looming detector,
which in the simulations described in this section was set to be
extremely insensitve.



in each case. Fig. 5 shows that varying the GRM parame-
ters offers a wide variety of safety-mobility tradeoffs to the
population.

Looming detection offers poor mobility and safety to a
population of conspecifics

As a point of reference we measured the usefulness of
looming as a signal for collision avoidance. To this goal,
we equipped each agent with both a GRM and a looming
detector. We then performed a series of simulations vary-
ing CVA, TGRM and TLOOM, where the latter is a looming
threshold (Methods contains a detailed description of the
stopping mechanism). Fig. 6 (left) shows safety and mo-
bility in the simulations where only the looming signal was
used for stopping (that is, TGRM was very high). The figure
shows that to achieve 95% safety, the agents had to stop un-
necessarily 75% of the time. Fig. 6 (middle, right) shows
full simulation data: each marker corresponds to one (CVA,
TGRM, TLOOM) setting, and the three parameters vary in-
dependently. In Fig. 6 (middle) the value of TGRM varies
smoothly on the upper envelope of the scatter plot. It is
very clear that choosing low TGRM offers good safety but
bad mobility, whereas higher TGRM increases safety but de-
creases mobility. Fig. 6 (right) shows that the correspon-
dence between TLOOM and the safety-mobility tradeoff is
much less clear. Whereas low values of TLOOM decrease
mobility of the agents, increasing the value past a certain
point offers no additional safety-mobility advantages when
GRM is also used for collision avoidance.

METHODS: SIMULATION PARAMETERS

Each simulation puts ten fly-like agents, each defined by 14
visible points (see Fig. 7), in a toroidal arena — a square
of side length 50mm with opposing edges glued together.

The flies follow simple dynamics, described below. For
each combination of CVA ∈ {0, 10, ..., 90} degrees
and TGRM, TLOOM ∈ {0.1, 1, 2, 4, 6, 8, 10, 12, 14, 32}
rad/s, we ran 50 trials of 10000 time-steps (to a total of
1000 × 50 simulations, 50s long each, of flies walking
at realistic speeds). Movies S1-S4, available online at
http://vision.caltech.edu/∼kchalupk/cod
e.html, show four example simulation runs resulting
from different parameter settings (Movie Captions
Appendix describes symbols used in the movies.)

Numerical implementation: the motion and control of each
agent are computed at discrete time-intervals with
constant time increments of ∆t. For simplicity of no-
tation where we write t+ 1 in the following, we mean
t+ ∆t. The value of ∆t is given in Table 1 alongside
all other simulation parameters.

Agent trajectories: the i-th agent’s trajectory is determined

Figure 7: Outline of a simulated fly agent. Each agent in
our simulations is defined by 14 points, as shown in the
figure. The agent’s two eyes (only the right eye is shown)
compute at each time step the angular projections and ve-
locities of the 14 defining points of each other visible agent.

by walking speed vi, initial position ~x0
i and initial di-

rection ~vi with ‖~vi‖ = 1, i.e. ~xi(t) = ~x0
i + tvi~vi.

Each agent has a different constant velocity chosen
uniformly from the [1-3] cm/s interval.

Control: while it is walking, each agent keeps walking
at constant velocity until it is stopped by a GRM
or looming percept caused by another agent (as ex-
plained below).

Spontaneous start: when an agent is stationary it flips a
coin at each time step: if the coin turns out to be heads,
the agent starts moving in the current direction at its
preferred velocity. If the coin is tails it stays put. The
probability of obtaining heads in the interval of one
second is denoted p01; thus, the probability of obtain-
ing tails in one time-step is (1− p01)∆t.

Orientation: while an agent is walking, it keeps constant
velocity and orientation (i.e. ~vi(t+ 1) = ~vi(t)). Upon
stopping it samples a new orientation from a Gaussian
pdf with standard deviation equal to the current value
of a parameter σi and centered at the current orienta-
tion. In addition, after reorientation, σi increases by a
fixed amount δσ . σi decays exponentially, with decay
constant λσ , i.e. σi(t+k∆t) = σi(t)λ

k
σ . This mecha-

nism, modeling basic neuronal sensitization, is a sim-
ple way to allow the flies to keep roughly straight tra-
jectories when encountering transient obstacles (other
moving flies), and avoid getting stuck around large
static obstacles (groups of stopped flies).

GRM: each eye sees GRM whenever the angular motion
of any point projecting onto its retina is directed con-
tralaterally, i.e. counterclockwise for the right eye and
clockwise for the left eye. Each eye’s visual field goes
beyond the frontal direction to cover a given CVA. The
CVA is a free parameter which we study to discover
the best compromise between avoiding collisions and
false alarms.



Figure 6: Mobility and safety of GRM- and looming-based collision avoidance. Each point corresponds to a different
(TGRM, TLOOM, CVA) value, used in 50 randomized repetitions of 50s-long simulations to estimate the means. Its position
is at the mean safety and mobility of a population of agents over the 50 trials. Left Only points with TGRM = 32rad/s
(that is, GRM detection practically disabled) are shown. The arrow points to the highest-mobility point with more than
95% safety. Middle Points for all the possible (TGRM, TLOOM, CVA) settings. The angle of each bar is the CVA used in
corresponding simulations, while the bar’s color equals TGRM. Right As Middle, but the colors now correspond to TLOOM.
For example, the leftmost top point corresponds to CVA=0, TGRM =32, TLOOM =4. This point has high mobility and low
safety. This is because its low CVA and high TGRM can’t prevent many collisions; at the same time, relatively low TLOOM
doesn’t seem to help much with collision avoidance.

Table 1: Parameters defining the fly model.

Symbol Default value Meaning

∆t 0.005 s Time-step in numerical simulations
R 50 mm Edge length of the walking arena (glued into a torus)
N 10 Number of flies in the arena
l 2 mm Length of an agent
d 0.55 mm distance between the eyes’ centers

vmin 10 mm/s minimum agent speed
vmax 30 mm/s maximum agent speed
vi ∼ U(vmin, vmax) walking velocity of agent i
p01 ∼0.8 prob. stop-to-walk in a 1s time-interval
P01 0.008 prob. stop-to-walk in one time-interval (i.e. (1− p01)∆t = (1− P01))

TLOOM 0◦/s (†) stopping threshold on looming motion
TGRM 0◦/s (†) stopping threshold on regressive motion
CVA 30◦ (†) the CVA
θi 120◦ angle of ipsilateral visual field seen by each eye
δσ 30◦ increment of standard deviation of agent reorientation motions σ~v
λσ 0.992 decay constant for σ~v at each ∆t
n 14 number of points on each agent

(†) variable whose value is systematically explored in some experiments

GRM stops: agent boundaries are defined by 14 points vis-
ible to other flies, as shown in Fig. 7. Call the j-th
point on the i-th agent pij and its azimuthal position on
the observer’s eye φ(pij). Each agent measures the an-
gular velocity of all the points on the other flies. If any
GRM φ̇(pij) is detected, the agent compares the GRM

magnitude ‖φ̇(pij)‖ to a threshold TGRM and stops if
‖φ̇(pij)‖ > TGRM.

Looming motion: Let ‖φ̇L‖ denote the largest magnitude
of counter-clockwise motion that any point evokes in
the left visual hemifield, and ‖φ̇R‖ the largest mag-
nitude of clockwise motion evoked in the right visual



Figure 8: Simulated agents, a control diagram. Each fly-
like agent keeps following a straight trajectory (see text
for details) until either regressive motion or looming ex-
pansion on its retina exceeds a fixed threshold. The agent
then stops until a Bernoulli coin (tossed on each time step)
shows “heads”.

hemifield. Then the strength of looming perceived by
the agent equals ωLOOM := min (‖φ̇L‖, ‖φ̇R‖).

Looming stops: similarly to GRM stopping, the agent
stops if ωLOOM > TLOOM. This simple mechanism
activates only if the agent can perceive points diverg-
ing at velocities larger than TLOOM.

All simulation parameter values are specified in Table 1. To
summarize, agent i’s motion is governed by the following
equations (see also the diagram in Fig. 8).

In order to simplify the notation we omit index i unless nec-
essary, and write out the equations for a one-eyed agent;
since both looming and GRM are monocular cues in our
implementation, the extension to the two-eyed agent is triv-
ial.

Control: Let z ∈ {0, 1} be the variable denoting whether
an agent is stationary (z = 0) or in motion (z = 1).
Let u(t) be an i.i.d. random process with uniform
probability density on (0, 1). Let ‖φ̇GRM (t)‖ be the
largest observed magnitude of GRM at time t. Let
ωLOOM (t) := min (‖φ̇L(t)‖, ‖φ̇R(t)‖) denote the
looming strength observed at time t.

z(0) = 1 initially the agent is set in motion

z(t+ 1) =



0 if z(t) = 1 and
(‖φ̇GRM (t)‖ > TGRM or
ωLOOM (t) > TLOOM)

1 if z(t) = 0 and
‖φ̇GRM (t)‖ < TGRM and
ωLOOM (t) < TLOOM and
u(t) < P01

z(t) otherwise

Trajectory: Call ~v the direction vector, i.e. ‖~v‖ = 1. With
a slight abuse of notation use ~v also for the angle of ~v,
i.e. write ~v ∼ G(· ; µ, σ) to indicate that the angle of
~v is drawn from a given Gaussian density mod 2π.

x(0) ∼ U(A)3

v(0) ∼ U(vmin, vmax)

~v(0) ∼ U(0, 2π)

x(t+ 1) = x(t) + v(t)~v(t)∆t

v(t+ 1) = z(t)v

~v(t+ 1) ∼

 G(· ; ~v(t), σ~v(t))
if z(t)− z(t+ 1) = 1

~v(t)otherwise

Direction change standard deviation:

σ~v(0) = 0

σ~v(t+ 1) = λσσ~v(t) + δσ(1− z(t))z(t− 1)

DISCUSSION

Our results show that GRM constitutes a good cue for col-
lision avoidance. Extending the analysis of Zabala et al.
(2012), we showed both mathematically and in simulations
that increasing the CVA to a non-zero value improves colli-
sion avoidance. In particular, it allows the detection of both
stationary and moving objects on a collision course. In this
respect, GRM can be viewed as a computationally efficient
way to connect looming detection with regressive motion
detection. We introduced safety and mobility as collision
avoidance performance metrics and used looming as a ref-
erence point to show that GRM is a better cue for collision
avoidance among conspecifics.

Whereas perception of regressive motion appears to in-
fluence the behavior of the fruit fly, the neural circuitry
participating in this perception-action loop remains un-
known. Fotowat and Fayyazuddin (2009) and de Vries and
Clandinin (2012) showed that looming-sensitive neurons in
Drosophila participate in a neural pathway that mediates
escape behavior. However, escape is not the same as col-
lision avoidance. We showed that looming might not be a
practical collision-avoiding solution for groups of interact-
ing animals as it can overly impede the mobility of a group.
We argue that further research into the neural circuitry of
GRM-based action in animals is an important future direc-
tion.

One reason why regerssive motion has remained a rela-
tively obscure phenomenon might be the often overlooked
difference between static and dynamic environments when

3A is the surface of the walking arena. We re-draw the initial
positions so that the flies don’t overlap at t=0.



testing collision avoidance algorithms. For example, Blan-
chard et al. (2000) constructed a robot guided by responses
mimicking those of the locust looming-detection neurons.
However, the robot’s collision avoidance was only tested
in an environment consisting of stationary obstacles. We
have shown that in a more interactive environment, GRM
has significant advantages over looming.

From the point of view of control and robotics, we stud-
ied what Berg et al. (2011) call reciprocal collision avoid-
ance: avoiding crashes within a population of simple non-
communicating robots all of which implement the same
movement protocol. Berg et al. derive their elegant al-
gorithm from first principles. Ours is biologically inspired
and relies on a very simple visual cue that can be com-
puted from the optical flow using Reichardt-detector-like
circuits (Reichardt, 1961). While our simulations used
agents that can immediately measure the position and ve-
locity of any point on their retina, optic-flow-based motion
detection has been successfully implemented on minimal-
istic hardware (Barrows et al., 2002; Beyeler et al., 2009).
We see GRM’s largest potential in control of small swarm-
ing or flocking vehicles (Kushleyev et al., 2013; Virágh
et al., 2014). More sophisticated algorithms for robot navi-
gation are often based on Probabilistic Roadmaps (Kavraki
et al., 1996; Boor et al., 1999; Karaman and Frazzoli, 2011)
or Rapidly Exploring Random Trees (LaValle, 1998; Petti
and Fraichard, 2005; Kuwata et al., 2009; Karaman and
Frazzoli, 2011). Such approaches allow a robot to avoid
obstacles with lower failure rates than GRM, but require
large computational power. Importance of low-complexity
collision avoidance grows as fields such as drone flight con-
trol are rapidly developing (Pines and Bohorquez, 2006;
Lentink, 2014). Alternatively, GRM could serve as a basis
for a fallback collision prevention system for larger vehi-
cles operating in highly dynamic environments.
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MATHEMATICAL APPENDIX

Proposition 2 Let the relative position and velocity of
the observed object be x and v respectively. Then φ̇ =

1
‖x‖2 〈v

⊥,x〉. In particular, angular velocity scales as one
over distance squared.

Proof. We wish to derive the angular velocity of a point in
relative motion projecting onto an observer. Place the cen-
ter of projection at the origin, and a particle moving with
constant velocity v = (u, v) at position x0 = (x0, y0) at
time 0, as shown in Fig. 9.

Figure 9: Calculating angular velocity. A particle moving
with velocity v projects angular velocity φ̇ on the origin.

The position at time t equals x = x0 + tv, and the azimuth
of the particle φ is such that

tanφ =
y

x
=
y0 + vt

x0 + ut
.

Taking the time derivative on both sides gives

1

cos2 φ
φ̇ =

v(x0 + tu)− u(y0 + tv)

(x0 + ut)2
,

and thus

φ̇ =
cos2φ(v(x0 + tu)− u(y0 + tv))

(x0 + tu)2
(4)

=
(x0 + tu)2(v(x0 + tu)− u(y0 + tv))

D2(x0 + tu)2
, (5)

where D is the distance of the particle from the origin.
Equation 5 follows from the relation cosφ = x0+tu

D (see
Fig. 9). Simplifying the RHS yields

φ̇ =
v(x0 + tu)− u(y0 + tv)

D2
(6)

=
1

‖x‖2
〈v⊥,x〉. (7)

Since the position x moves on a line perpendicular to v⊥

we expect the dot product to be constant, and indeed it
equals vx0 − uy0. Hence angular velocity decays as one
over distance squared.

MOVIE CAPTIONS APPENDIX

Available online are supplementary Movies S1-S4. The
movies show full trials of our simulations for chosen pa-
rameter settings. In each movie, ten fly-like vehicles are
visible, colored arbitrarily to make tracking the vehicles
easy. Whenever two vehicles collide, their body size is
temporarily increased. Whenever a vehicle stops, it is sur-
rounded by a colored circle. A red circle means the stop is
a False Positive. A green circle indicates a True Positive. In
addition, a line segment is drawn from the stopping vehicle
to the one (or more) causes of its stop.

Movie S1: CVA=10◦, TGRM=6rad/s, TLOOM=32rad/s. In
this movie, GRM is the stopping mechanism, and the
CVA is small. An interesting situation arises at about
00:10, where three vehicles (bright green, blue, and
yellow) meet. Green stops due to blue’s motion, but
unnecessarily. Blue avoids a collision with yellow.
Yellow in turn crashes into green. That is because
green is already stationary, so the GRM magnitude
it evokes on yellow’s retina is relatively small, and
the small CVA prevents yellow from picking up any
strong signals from stationary obstacles.

Movie S2: CVA=70◦, TGRM=6rad/s, TLOOM=32rad/s.
This time, the CVA is large. This makes it easy for
the flies to detect stationary obstacles on time. There
are few collisions, but many unnecessary stops. The
collision at 00:22 (blue and bright-green) is a good
example of the type of collision that is hard to avoid
using GRM detection. The vehicles’ relative motion
is insignificant, making the evoked GRM signal
small.

Movie S3: CVA=10◦, TGRM=32rad/s, TLOOM=6rad/s. In
this case the CVA is small and looming is the signifi-
cant stopping mechanism. Collisions with stationary
obstacles are hard to detect, mainly because the CVA
is rather small (for example, three of them happen
roughly at the same time at 00:04).

Movie S4: CVA=70◦, TGRM=32rad/s, TLOOM=6rad/s.
Looming with large CVA. Encounters such as the
light-blue fly stopping at 00:15 emphasize that
simple looming mechanism (such as the one used
in our simulation) don’t know about figure-ground
segmentation. The two flies that caused the stop are
perceived as one expanding entity on light-blue’s eye.


