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A. CAPACITANCES

To extract the capacitances in our device, we begin by assuming the usual electrostatic model for a double quantum
dot (DQD) [1], which has a capacitor between each dot and its source and drain leads (Cs; and Cp;, for ¢ € {1,2}),
each dot and its gate (Cp;), and a capacitor between the dots (C,,). We define C; to be the total capacitance of dot
i, e.g. C1 = Cp1 + Cg1 + C,,+ capacitances to ground.

The electrostatic energy of the system Cj Vv /2 is given by:
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where we let Q; = —|e|N;. The addition energies of the system are given by:
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It follows that C,,/Cy = U/U; and C,,,/Cy = U/Us, so we may also write
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The addition energies can may be extracted simply from transport measurements and we use the values reported in
our previous work [2]. We obtain X = 1.006 in terms of the addition energies U; = 1.2 meV, U = 1.5 meV, and

U = 0.1 meV. We then obtain C; = 130 aF, Cy; = 107 aF, C,, = 9.0 aF.
The effective dot levels are given by:

p1(N1, No) = U(Ny, N2) — U(Ny — 1, Na) (7)
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The slopes of linear features seen in source-drain bias spectroscopy correspond to conditions on the effective dot levels.
The slopes may be related to the capacitances. The slopes m;; and m;; in Supp. Fig. 1(a) are:
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These can be used to solve for the remaining capacitances:
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The capacitances Cpa and Cgs are similarly related to the slopes m;o and mjs in Supp. Fig. 1(b). We find Cp; =
17.5 aF, Cg1 = 60.9 aF, Cpy = 11.9 aF, Cso = 53.9 aF.

At this point we can check for self-consistency using other measurements. Supplementary Figure 1(c) and Supp.
Fig. 1(d) show part of the charge stability diagram (note the axes are swapped between (c¢) and (d)). In Supp.
Fig. 1(c), the peak in G; corresponds to constant uq. The following condition holds:

UiCp1AVpy + UCpaAVpy =0 (13)

Therefore we would expect that the measured slope m = AVpy/AVps = —0.166 should equal —UCpo/U1Cp; =
—0.0567. The large discrepancy indicates that the typical electrostatic model of a DQD is insufficient to describe our
data.

To account for the discrepancy we introduce direct capacitances between reservoir S1 and dot 2 (Cg;.2), and vice
versa. We also introduce capacitances between gate P1 and dot 2 (Cp12), and vice versa, though these will be small.
The total capacitances C; and Cy will now include these extra capacitances. To Eqn. 1 we must add corresponding
terms:
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While the definition of Uy, Us, U are unchanged, we must reinterpret the slopes of the linear features observed in
measurements. For Supp. Fig. 1(a,b) the slopes mjj, m,; k € {1,2} are given by:
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where k = 1(2) if k = 2(1). Additional measurements are needed to solve for all capacitances. The slope of the feature
observed in Supp. Fig. 1(c,d) is:
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where k =1 for (¢) and k = 2 for (d). We can now solve for four of the capacitances. It may be shown that:
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Equations (18) and (19) may be solved for Cpy and Cpy, t, yielding Cpy = 17.4 aF, Cpy o = 1.37 aF, Cpy = 11.7 aF,
Cp271 =1.92 aF.
In Supp. Fig. 1(e,f), the slopes are given by:
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It may be shown that:
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Solving the system of equations (21) and (22) yields Cs1 = 60.3 aF, Cso = 53.0 aF, Cg12 = 7.19 aF, and Cga1 =
13.1 aF. We emphasize that capacitances like Cg2 1 are bigger than or comparable to Cy,, and cannot be neglected.

The capacitances are summarized in Supp. Table I. By accounting for all of these capacitances, one can take
measurements in such a way as to apply a source-drain bias without gating the dot (changing the effective dot levels),
and have independent effective gates for each dot, as done in the manuscript and described in the supplementary
information of previous work [2].

Value (aF)
4 134
Cs 107
Cn 8.97
Cpi 174
Cpa 11.7
Cpin 137
Cpaa  1.92
Cs1 60.3
Cls2 53.0
Csi,2 7.19
Cs2,1 13.1

TABLE I. Experimentally derived capacitances.
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Supplementary Figure 1. Determining capacitances. (a) Source-drain bias spectroscopy for dot 1. Vps = —232.4 mV is chosen
to be away from the triple points. Slopes m;1,m;1 are indicated. (b) Source-drain bias spectroscopy for dot 2. Vp1 = —193.8 mV

is chosen to be away from the triple points. Slopes m.2, mj2 are indicated. (c,d) The capacitance of gate P2 to dot 1 (c) and
gate P1 to dot 2 (d) may be obtained with these zero source-drain bias measurements. Slopes ni,n» are indicated. (e,f) The
capacitance of reservoir S2 to dot 1 (e) and S1 to dot 2 (f) may be obtained. Slopes p1, p2 are indicated. (e) Vpz = —232.4 mV.
(f) Ve = —193.8 mV.

B. LIMITS ON INTERDOT TUNNELING

The series conductance Ggeries at a triple point of the DQD places a limit on the interdot tunneling energy scale t.
The series conductance is measured by applying an ac+dc bias voltage to both leads of dot 1 and using one current
amplifier attached to both leads of dot 2 to measure current. In the case of zero dc bias [2, supp. info]:
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where T'; is the total tunnel rate between dot ¢ and its two leads S,i and D,i. In Supp. Fig. 2(a) we present
conductance in a region of gate voltage containing the triple points of the DQD. For simplicity, here we are just
varying the gate voltages Vp1 pa, rather than independently controlling ¢; ». We switch measurement configurations
in Supp. Fig. 2(b) and measure Gyeries at several dc biases, including zero bias. In contrast with transport through
the individual dots (Supp. Fig. 2(a)), conductance through the two dots is at our noise floor. Perhaps a very faint
signal can be observed for certain gate voltages at Vop = —200 pV, but even there, Gyeries < 2 X 1073 €2/h for all
measured dc biases. Given that I'y ~ 15 peV and I'y ~ 47 peV, we find that |¢| < 0.21 peV at zero dc bias. We do
not rule out a dependence of |¢| on the bias voltage, but at least we do not observe appreciable Gyeries at non-zero
bias either. To rule out the possibility that the triple points have drifted out of the measurement window owing to
charge instability in the device, we immediately repeat the measurement of (a) in Supp. Fig. 2(c), and see that the
features have barely moved.
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Supplementary Figure 3. Measurements with zero applied magnetic field. (a) Measured dI1/dVsp1 and (b) dl2/dVsp2 at zero
dc bias near triple points of the DQD. (c,e,g) Measured I1 and (d,fh) I5 for: (¢,d) Vop1 = 100 uV; (e,f) Vsp1 = 300 pV; (g,h)
Vsp1 = 500 pV. Note that in (c—h) the axis scaling differs from (a,b). No bias is applied across dot 2. In all cases, a drag
current can be observed through dot 2 despite no explicit bias being applied to dot 2.

C. DRAG AT ZERO FIELD

Figures 2—4 show measurements taken in a large Zeeman field and small out-of-plane field. This is a regime where
our (spinless) theory applies, and is where we took most drag measurements. For reference, Supplementary Figure 3
shows measurements taken in zero applied field. Qualitatively similar features are observed, including a finite drag
current /s many linewidths away from resonance. A notable difference compared to the finite Zeeman field case is
that the sign of I, changes as a function of —e,. This should not be surprising: even in the spinless theory we find

that depending on tunnel couplings the direction of drag current can reverse in this way. This is true for both our
model and the model in [3] (see their Fig. 3b).
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Supplementary Figure 4. Sketch of the electrostatic model.

D. THEORETICAL FORMALISM

1. Electrostatic model

We consider two capacitively coupled quantum dots, 1 and 2. With the geometry shown in Supp. Fig. 4, the
electrostatic equations for the charges (1 and Q2 are given by

Q1 =Y _ Cuildr = Vi) + C(d1 — 62), (24)

Q2 = Z Coi(pa — Vi) + Clg2 — ¢1), (25)

with ¢1 and ¢o the internal potentials and V; (i = 1,...,4) the applied voltages. The potential energies for both dots
with Q1 = eN7 and Q2 = eNy excess electrons take the form

eNy
Ui (N1, N2) = /0 $1(Q1,Q2)dQ1 , (26)

eNy
Uz(Ny, No) = /0 $2(Q1,Q2)dQ2 , (27)

where ¢1 and ¢y are determined from Eqs. (24) and (25). The electrochemical potential of dots 1 and 2 can thus be
written as

1 = e1 + Ui(1,0) — U3(0,0) (28)
fi2 = 5 + Uz (0, 1) — Uyg(0,0). (29)

We have lumped the gate dependence into the values of the dot levels 1 and es.

Let p; = Ep + €V be the electrochemical potential of lead i and K = ). C1; Zj Coyi +C Z” C;j. Since the Fermi



functions are evaluated at pg; — p1, ete. (see main text), the energies of interest become
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o — ja = 2 — Ep + % 'Q(CJFQZ’C“) +Z:CMZCQ]%4+OZC”V]'4_ : (30d)

with V;; = V; — Vj;. It is worth noting that these expressions depend on voltage differences only. Thus, our current
expression will be gauge invariant.
When one of the dots is occupied, the electrochemical potentials can be evaluated as follows,

pr=c¢e1 +ex+U(1,1) +Uz(1,1) = [e2 + U1 (0, 1) + U(0, 1)], (31)
o = €1 +e2+ Ul(l, ].) + Ug(l, ].) — [81 + Ul(].,O) + UQ(l,O)] . (32)
Hence, Eq. (30) becomes
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e C+ Ca;)
/~L1—M13:€1—EF+E (—Z:Q-i-zczzzcu ]3+CZC’LJV]3 ) (33b)
i i,j
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i i,j
e C + Chi)
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Substracting Eq. (30) from Eq. (33), we find that the interdot Coulomb interaction corresponds to

2¢2C

U =
K

(34)
In our numerical calculations, we use the experimental parameters reported above: C1; = Cg1, C12 = Cs2,1, Co1 =

05172, 022 = CSQ, C = Cm and 013 = 023 = 014 = 024 =0 together with ‘/1 = VSl; V2 = VSQ, ‘/3 = VDl and
Vi = Vpa.

2. Hamiltonian and tunnel rates

Our model Hamiltonian is
H=Ho+Hr, (35)
where

Ho=Hp +Hc . (36)



Hp is the Hamiltonian for the dot region,

Hp = Z Eld;rdz +Uning, (37)

i=1,2

Hce corresponds to the reservoir Hamiltonian,

He = Z Eakclikcaik ) (38)
a=S/D,i,k

and finally Hp describes tunneling processes between the dot region and the reservoirs,

Hr =Y (taikclikdi + h.c.) . (39)
i,k
We regard Hr as a perturbation and calculate the probabilities for transitions between initial [¢;) and final [¢)f)

states (energies E; and Ef, respectively) from an expansion of the T-matrix,

2
Py = =5 [(slHr + HaGoHe + - [0 6(Fs — Ey). (40)

where the resolvent operator is Go = (E; —Ho)~!. To lowest order in Hy (Fermi’s golden rule) one obtains sequential-
tunneling transition rates between the dot states |0) = |00), |1) = |10), |2) = |01) and |d) = |11):

g = %Faifm'(lh‘), (41)
g = %Fm’[l = fai(pa)] 5 (42)
o = il + U) (43)
T = 2yt [l faurlps + U] (44

with Tpi = 2mpai[t2;]? and vai = 2mpailtl;|?. As discussed in the main article, the transmission probabilities depend
on energy and t,; thus becomes a function of the charge state. In our numerical simulations of the drag current, we use
the experimental values 2I'gy = 2I'p; =1'1 = 15 peV and 2I'gs = 2I'ps = 'y = 47 peV and choose vg51 = vp1 = sy,
vs2 = 0.51's2 and yp2 = ['po.

To second order in Hp we obtain cotunneling transition rates involving many intermediate states which must be
summed over:

2

2
Yif = — Te W, §(E; — Ey), (45)

R

1
(g Gy Horlo)

where the trace is performed over the lead degrees of freedom and the thermal factor W, obeys
> Wi

In the following, we focus on the nondiagonal cotunneling rates since the terms g9, Y11, Y22 and 44 do not contribute
to the master equations (see below) or to the drag current:
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- o to—,t14 tl_‘tO'
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where a finite broadening 7 (a small imaginary part) has been added to the denominators in order to avoid the
divergence associated to the infinite lifetime of the intermediate states. Expansion in powers of 1/7 leads to a first
term which reproduces the sequential tunneling result. Therefore, to avoid double counting we subtract this term.
The next order is independent of 1 and corresponds to the nondivergent cotunneling expressions. We find

oﬁﬁi _ 6 T | \Il(l) i — Hai \I’(l) Mi — KB
Vi Ar2h Lui ﬂan( — i + g — Hai) m{ 3 + i o 3 + 577r

7 + U an ) + U 3
I L e S R )
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( L gt b uﬁ>+q,( ig" L ug)}j (48a)
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wh B i RO 2 21
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2m 2 27
Here, ng(z) = 1/(e® — 1) is the Bose distribution function, ¥ (¥™) is the digamma (trigamma) function and

B =1/kpT is the inverse temperature.
The stationary values of the set of probabilities p = (po, p1, p2,pa)? follow from the equations 0 = I'p written in
matrix form with

—(To1 +To2 + Y0a) I'1o Iy Ydo
r— Lo1 —(T10 +T1a+ m2) Vo1 Lo (49)
L2 Y12 — (T20 + T'2q + 721) Tao
Yod g oq —(Ta1 +Ta2 + va0) ,

where

Loy = me o Tw= Z %5, Toz = Z Les, Tz = Z s,
Tha = Z 5, Tai= Z Lgt, Toa= Z %, Taz = Z I, (50a)
712—270“%1, 721—27a 2, VOd—Zv(’ 2, wo—Zv“m,
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Supplementary Figure 5. Extended data and analysis from Fig. 2 (Vg1 = 0.5 mV, Vgo = 0; —e2 = 0.3 meV where cuts are
shown). (a) Drive current ;. (b) Drag current I>. This is a reproduction of Fig. 2(e) to aid in comparing with Supp. Fig. 5(a).
(c) Cuts from Supp. Fig. 5(a) and Supp. Fig. 5(b). I has been divided by 300 to fit on the same scale. (d) Numerically
differentiated dlz/d(—e1) (black, arbitrary units) is correlated, positively or negatively, with G1 (blue, right axis). G1 has been
taken from the cut in Fig. 2(c) and I is the same trace as above in Supp. Fig. 5(c). The correlated features appear generic in
region (iii) as defined in Fig. 2(a).

E. EXTENDED DATA AND ANALYSIS FROM FIG. 2

In Supp. Fig. 5(a) we show the drive current I; as a function of —&; and —e5 for the same parameters as used in
Fig. 2. For ease of comparison, Supp. Fig. 5(b) reproduces Fig. 2(e), the drag current I. Supplementary Figure 5(c)
compares I; and I for —es = 0.3 meV. The drag current is seen to be less than a percent of the drive current, which
is typical for region (iii), although the ratio can reach a few percent in region (ii).

In Supp. Fig. 5d we compare the vertical cuts in Fig. 2(c) and 2(e). Peaks and dips in G are correlated (or
anticorrelated) with peaks and dips in numerically calculated dls/d(—e1). There appears to be correlation near
—e; = U = 0.1 meV, and anticorrelation nearer to —e; = U + |e|Vs; = 0.6 meV. In the middle, G is flat and there
appears to be no correlation. As the peaks in Gy correspond to excited states in dot 1, these features may not be
explained satisfactorily by existing theories, and are well-resolved in the low temperature regime.
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