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A. CAPACITANCES

To extract the capacitances in our device, we begin by assuming the usual electrostatic model for a double quantum
dot (DQD) [1], which has a capacitor between each dot and its source and drain leads (CSi and CDi, for i ∈ {1, 2}),
each dot and its gate (CPi), and a capacitor between the dots (Cm). We define Ci to be the total capacitance of dot
i, e.g. C1 = CP1 + CS1 + Cm+ capacitances to ground.

The electrostatic energy of the system ~Q · ~V /2 is given by:

Ũ(N1, N2) =
1

2
U1N

2
1 +

1

2
U2N

2
2 + UN1N2 −

1

2|e|
∑

i∈{1,2}

Ui {CPiVPiNi + CSiVSiNi}

− 1

2|e|
U {CP1VP1N2 + CP2VP2N1 + CS1VS1N2 + CS2VS2N1}

(1)

where we let Qi = −|e|Ni. The addition energies of the system are given by:

U1 = e2 C2

C1C2 − C2
m
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e2

C1
X (2)

U2 = e2 C1

C1C2 − C2
m

=
e2

C2
X (3)

U = e2 Cm
C1C2 − C2

m

=
e2

Cm
(X − 1) (4)

where

X =
1(

1− C2
m

C1C2

) (5)

It follows that Cm/C2 = U/U1 and Cm/C1 = U/U2, so we may also write

X =
1(

1− U2

U1U2

) (6)

The addition energies can may be extracted simply from transport measurements and we use the values reported in
our previous work [2]. We obtain X = 1.006 in terms of the addition energies U1 = 1.2 meV, U2 = 1.5 meV, and
U = 0.1 meV. We then obtain C1 = 130 aF, C2 = 107 aF, Cm = 9.0 aF.

The effective dot levels are given by:

µ1(N1, N2) = Ũ(N1, N2)− Ũ(N1 − 1, N2) (7)

µ2(N1, N2) = Ũ(N1, N2)− Ũ(N1, N2 − 1) (8)
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The slopes of linear features seen in source-drain bias spectroscopy correspond to conditions on the effective dot levels.
The slopes may be related to the capacitances. The slopes mi1 and mj1 in Supp. Fig. 1(a) are:

mi1 = −CP1

CS1
(9)

mj1 =
CP1

2C1/X − CS1
(10)

These can be used to solve for the remaining capacitances:

CP1 =
2C1

X

mi1mj1

mi1 −mj1
(11)

CS1 = −2C1

X

mj1

mi1 −mj1
(12)

The capacitances CP2 and CS2 are similarly related to the slopes mi2 and mj2 in Supp. Fig. 1(b). We find CP1 =
17.5 aF, CS1 = 60.9 aF, CP2 = 11.9 aF, CS2 = 53.9 aF.

At this point we can check for self-consistency using other measurements. Supplementary Figure 1(c) and Supp.
Fig. 1(d) show part of the charge stability diagram (note the axes are swapped between (c) and (d)). In Supp.
Fig. 1(c), the peak in G1 corresponds to constant µ1. The following condition holds:

U1CP1∆VP1 + UCP2∆VP2 = 0 (13)

Therefore we would expect that the measured slope m = ∆VP1/∆VP2 = −0.166 should equal −UCP2/U1CP1 =
−0.0567. The large discrepancy indicates that the typical electrostatic model of a DQD is insufficient to describe our
data.

To account for the discrepancy we introduce direct capacitances between reservoir S1 and dot 2 (CS1,2), and vice
versa. We also introduce capacitances between gate P1 and dot 2 (CP1,2), and vice versa, though these will be small.
The total capacitances C1 and C2 will now include these extra capacitances. To Eqn. 1 we must add corresponding
terms:

− 1

2|e|
U1 {CP2,1N1VP2 + CS2,1N1VS2} −

1

2|e|
U2 {CP1,2N2VP1 + CS1,2N2VS1}

− 1

2|e|
U {CP1,2N1VP1 + CP2,1N2VP2 + CS1,2N1VS1 + CS2,1N2VS2}

(14)

While the definition of U1, U2, U are unchanged, we must reinterpret the slopes of the linear features observed in
measurements. For Supp. Fig. 1(a,b) the slopes mjk,mik; k ∈ {1, 2} are given by:

mjk =
∆VSk
∆VPk

=
ECkCP1 + UCPk,k̄

2e2 − (ECkCSk + UCSk,k̄)
(15)

mik =
∆VSk
∆VPk

= −
ECkCP1 + UCPk,k̄
ECkCSk + UCSk,k̄

(16)

where k̄ = 1(2) if k = 2(1). Additional measurements are needed to solve for all capacitances. The slope of the feature
observed in Supp. Fig. 1(c,d) is:

nk =
∆VPk
∆VPk̄

= −
ECkCPk̄,k + UCPk̄
ECkCPk + UCPk,k̄

(17)

where k = 1 for (c) and k = 2 for (d). We can now solve for four of the capacitances. It may be shown that:
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−nk
mjkmik

mik −mjk
=
X

2

CPk̄,k
Ck

+
X − 1

2

CPk̄
Cm

(18)

mjkmik

mik −mjk
=
X

2

CPk
Ck

+
X − 1

2

CPk,k̄
Cm

(19)

Equations (18) and (19) may be solved for CPk and CPk,k̄, yielding CP1 = 17.4 aF, CP1,2 = 1.37 aF, CP2 = 11.7 aF,
CP2,1 = 1.92 aF.

In Supp. Fig. 1(e,f), the slopes are given by:

pk =
∆VPk

∆VSDk̄
= −

ECkCSk̄,k + UCSk̄
ECkCPk + UCPk,k̄

(20)

It may be shown that:

−pk
mjkmik

mik −mjk
=
X

2

CSk̄,k
Ck

+
X − 1

2

CSk̄
Cm

(21)

− mjk

mik −mjk
=
X

2

CSk
Ck

+
X − 1

2

CSk,k̄
Cm

(22)

Solving the system of equations (21) and (22) yields CS1 = 60.3 aF, CS2 = 53.0 aF, CS1,2 = 7.19 aF, and CS2,1 =
13.1 aF. We emphasize that capacitances like CS2,1 are bigger than or comparable to Cm, and cannot be neglected.

The capacitances are summarized in Supp. Table I. By accounting for all of these capacitances, one can take
measurements in such a way as to apply a source-drain bias without gating the dot (changing the effective dot levels),
and have independent effective gates for each dot, as done in the manuscript and described in the supplementary
information of previous work [2].

Value (aF)

C1 134

C2 107

Cm 8.97

CP1 17.4

CP2 11.7

CP1,2 1.37

CP2,1 1.92

CS1 60.3

CS2 53.0

CS1,2 7.19

CS2,1 13.1

TABLE I. Experimentally derived capacitances.
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Supplementary Figure 1. Determining capacitances. (a) Source-drain bias spectroscopy for dot 1. VP2 = −232.4 mV is chosen
to be away from the triple points. Slopes mi1,mj1 are indicated. (b) Source-drain bias spectroscopy for dot 2. VP1 = −193.8 mV
is chosen to be away from the triple points. Slopes mi2,mj2 are indicated. (c,d) The capacitance of gate P2 to dot 1 (c) and
gate P1 to dot 2 (d) may be obtained with these zero source-drain bias measurements. Slopes n1, n2 are indicated. (e,f) The
capacitance of reservoir S2 to dot 1 (e) and S1 to dot 2 (f) may be obtained. Slopes p1, p2 are indicated. (e) VP2 = −232.4 mV.
(f) VP1 = −193.8 mV.

B. LIMITS ON INTERDOT TUNNELING

The series conductance Gseries at a triple point of the DQD places a limit on the interdot tunneling energy scale t.
The series conductance is measured by applying an ac+dc bias voltage to both leads of dot 1 and using one current
amplifier attached to both leads of dot 2 to measure current. In the case of zero dc bias [2, supp. info]:

Gseries =
64|t|2

3Γ1

(
Γ1+Γ2

2

) e2

h
(23)

where Γi is the total tunnel rate between dot i and its two leads S, i and D, i. In Supp. Fig. 2(a) we present
conductance in a region of gate voltage containing the triple points of the DQD. For simplicity, here we are just
varying the gate voltages VP1,P2, rather than independently controlling ε1,2. We switch measurement configurations
in Supp. Fig. 2(b) and measure Gseries at several dc biases, including zero bias. In contrast with transport through
the individual dots (Supp. Fig. 2(a)), conductance through the two dots is at our noise floor. Perhaps a very faint
signal can be observed for certain gate voltages at VSD = −200 µV, but even there, Gseries < 2 × 10−3 e2/h for all
measured dc biases. Given that Γ1 ∼ 15 µeV and Γ2 ∼ 47 µeV, we find that |t| < 0.21 µeV at zero dc bias. We do
not rule out a dependence of |t| on the bias voltage, but at least we do not observe appreciable Gseries at non-zero
bias either. To rule out the possibility that the triple points have drifted out of the measurement window owing to
charge instability in the device, we immediately repeat the measurement of (a) in Supp. Fig. 2(c), and see that the
features have barely moved.
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Supplementary Figure 3. Measurements with zero applied magnetic field. (a) Measured dI1/dVSD1 and (b) dI2/dVSD2 at zero
dc bias near triple points of the DQD. (c,e,g) Measured I1 and (d,f,h) I2 for: (c,d) VSD1 = 100 µV; (e,f) VSD1 = 300 µV; (g,h)
VSD1 = 500 µV. Note that in (c–h) the axis scaling differs from (a,b). No bias is applied across dot 2. In all cases, a drag
current can be observed through dot 2 despite no explicit bias being applied to dot 2.

C. DRAG AT ZERO FIELD

Figures 2–4 show measurements taken in a large Zeeman field and small out-of-plane field. This is a regime where
our (spinless) theory applies, and is where we took most drag measurements. For reference, Supplementary Figure 3
shows measurements taken in zero applied field. Qualitatively similar features are observed, including a finite drag
current I2 many linewidths away from resonance. A notable difference compared to the finite Zeeman field case is
that the sign of I2 changes as a function of −ε2. This should not be surprising: even in the spinless theory we find
that depending on tunnel couplings the direction of drag current can reverse in this way. This is true for both our
model and the model in [3] (see their Fig. 3b).
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Supplementary Figure 4. Sketch of the electrostatic model.

D. THEORETICAL FORMALISM

1. Electrostatic model

We consider two capacitively coupled quantum dots, 1 and 2. With the geometry shown in Supp. Fig. 4, the
electrostatic equations for the charges Q1 and Q2 are given by

Q1 =
∑
i

C1i(φ1 − Vi) + C(φ1 − φ2) , (24)

Q2 =
∑
i

C2i(φ2 − Vi) + C(φ2 − φ1) , (25)

with φ1 and φ2 the internal potentials and Vi (i = 1, . . . , 4) the applied voltages. The potential energies for both dots
with Q1 = eN1 and Q2 = eN2 excess electrons take the form

U1(N1, N2) =

∫ eN1

0

φ1(Q1, Q2)dQ1 , (26)

U2(N1, N2) =

∫ eN2

0

φ2(Q1, Q2)dQ2 , (27)

where φ1 and φ2 are determined from Eqs. (24) and (25). The electrochemical potential of dots 1 and 2 can thus be
written as

µ1 = ε1 + U1(1, 0)− U1(0, 0) , (28)

µ2 = ε2 + U2(0, 1)− Ud(0, 0) . (29)

We have lumped the gate dependence into the values of the dot levels ε1 and ε2.

Let µli = EF + eVi be the electrochemical potential of lead i and K =
∑
i C1i

∑
j C2j +C

∑
i,j Cij . Since the Fermi
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functions are evaluated at µS1 − µ1, etc. (see main text), the energies of interest become

µ1 − µl1 = ε1 − EF +
e

K

e(C +
∑
i C2i)

2
+
∑
i

C2i

∑
j

C1jVj1 + C
∑
i,j

CijVj1

 , (30a)

µ1 − µl3 = ε1 − EF +
e

K

e(C +
∑
i C2i)

2
+
∑
i

C2i

∑
j

C1jVj3 + C
∑
i,j

CijVj3

 , (30b)

µ2 − µl2 = ε2 − EF +
e

K

e(C +
∑
i C1i)

2
+
∑
i

C1i

∑
j

C2jVj2 + C
∑
i,j

CijVj2

 , (30c)

µ2 − µl4 = ε2 − EF +
e

K

e(C +
∑
i C1i)

2
+
∑
i

C1i

∑
j

C2jVj4 + C
∑
i,j

CijVj4

 , (30d)

with Vij = Vi − Vj . It is worth noting that these expressions depend on voltage differences only. Thus, our current
expression will be gauge invariant.

When one of the dots is occupied, the electrochemical potentials can be evaluated as follows,

µ1 = ε1 + ε2 + U1(1, 1) + U2(1, 1)− [ε2 + U1(0, 1) + U2(0, 1)] , (31)

µ2 = ε1 + ε2 + U1(1, 1) + U2(1, 1)− [ε1 + U1(1, 0) + U2(1, 0)] . (32)

Hence, Eq. (30) becomes

µ1 − µl1 = ε1 − EF +
e

K

5e(C +
∑
i C2i)

2
+
∑
i

C2i

∑
j

C1jVj1 + C
∑
i,j

CijVj1

 , (33a)

µ1 − µl3 = ε1 − EF +
e

K

5e(C +
∑
i C2i)

2
+
∑
i

C2i

∑
j

C1jVj3 + C
∑
i,j

CijVj3

 , (33b)

µ2 − µl2 = ε2 − EF +
e

K

5e(C +
∑
i C1i)

2
+
∑
i

C1i

∑
j

C2jVj2 + C
∑
i,j

CijVj2

 , (33c)

µ2 − µl4 = ε2 − EF +
e

K

5e(C +
∑
i C1i)

2
+
∑
i

C1i

∑
j

C2jVj4 + C
∑
i,j

CijVj4

 . (33d)

Substracting Eq. (30) from Eq. (33), we find that the interdot Coulomb interaction corresponds to

U =
2e2C

K
. (34)

In our numerical calculations, we use the experimental parameters reported above: C11 = CS1, C12 = CS2,1, C21 =
CS1,2, C22 = CS2, C = Cm and C13 = C23 = C14 = C24 = 0 together with V1 = VS1, V2 = VS2, V3 = VD1 and
V4 = VD2.

2. Hamiltonian and tunnel rates

Our model Hamiltonian is

H = H0 +HT , (35)

where

H0 = HD +HC . (36)
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HD is the Hamiltonian for the dot region,

HD =
∑
i=1,2

εid
†
idi + Un1n2 , (37)

HC corresponds to the reservoir Hamiltonian,

HC =
∑

α=S/D,i,k

εαkc
†
αikcαik , (38)

and finally HT describes tunneling processes between the dot region and the reservoirs,

HT =
∑
α,i,k

(
tαikc

†
αikdi + h.c.

)
. (39)

We regard HT as a perturbation and calculate the probabilities for transitions between initial |ψi〉 and final |ψf 〉
states (energies Ei and Ef , respectively) from an expansion of the T -matrix,

Pif =
2π

h̄
|〈ψf |HT +HTG0HT + · · · |ψi〉|2 δ(Ei − Ef ) , (40)

where the resolvent operator is G0 = (Ei−H0)−1. To lowest order in HT (Fermi’s golden rule) one obtains sequential-
tunneling transition rates between the dot states |0〉 = |00〉, |1〉 = |10〉, |2〉 = |01〉 and |d〉 = |11〉:

Γαi0i =
1

h̄
Γαifαi(µi) , (41)

Γαi0i =
1

h̄
Γαi[1− fαi(µi)] , (42)

Γαīid =
1

h̄
γαīfαī(µī + U) , (43)

Γαīdi =
1

h̄
γαī [1− fαī(µī + U)] , (44)

with Γαi = 2πραi|t0αi|2 and γαi = 2πραi|t1αi|2. As discussed in the main article, the transmission probabilities depend
on energy and tαi thus becomes a function of the charge state. In our numerical simulations of the drag current, we use
the experimental values 2ΓS1 = 2ΓD1 = Γ1 = 15 µeV and 2ΓS2 = 2ΓD2 = Γ2 = 47 µeV and choose γS1 = γD1 = ΓS1,
γS2 = 0.5ΓS2 and γD2 = ΓD2.

To second order in HT we obtain cotunneling transition rates involving many intermediate states which must be
summed over:

γif =
2π

h̄
TrWi

∣∣∣∣〈ψf |HT 1

Ei −H0
HT |ψi〉

∣∣∣∣2 δ(Ei − Ef ) , (45)

where the trace is performed over the lead degrees of freedom and the thermal factor Wi obeys∑
i

Wi

∣∣∣〈ψi|c†αkcαk|ψi〉∣∣∣ = fα(εαk) . (46)

In the following, we focus on the nondiagonal cotunneling rates since the terms γ00, γ11, γ22 and γdd do not contribute
to the master equations (see below) or to the drag current:

γαīβi
īi

=
2π

h̄

∫
dε

∣∣∣∣∣ t0
αī
t0βi

ε− µī + iη
−

t1
αī
t1βi

ε− µī − U + iη

∣∣∣∣∣
2

ραīρβifαī(ε) [1− fβi(ε+ µi − µī)] , (47a)

γαīβi0d =
2π

h̄

∫
dε

∣∣∣∣∣ t0
αī
t1βi

ε− µī + iη
−

t1
αī
t0βi

ε− µī − U + iη

∣∣∣∣∣
2

ραīρβifαī(ε)fβi(µi + µī + U − ε) , (47b)

γαīβid0 =
2π

h̄

∫
dε

∣∣∣∣∣ t0
αī
t1βi

ε− µī + iη
−

t1
αī
t0βi

ε− µī − U + iη

∣∣∣∣∣
2

ραīρβi [1− fαī(ε)] [1− fβi(µi + µī + U − ε)] , (47c)
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where a finite broadening η (a small imaginary part) has been added to the denominators in order to avoid the
divergence associated to the infinite lifetime of the intermediate states. Expansion in powers of 1/η leads to a first
term which reproduces the sequential tunneling result. Therefore, to avoid double counting we subtract this term.
The next order is independent of η and corresponds to the nondivergent cotunneling expressions. We find

γαīβi
īi

=
β

4π2h̄
ΓαīΓβinB(µī − µi + µβi − µαī) Im

{
Ψ(1)

(
1

2
+ iβ

µī − µαī
2π

)
−Ψ(1)

(
1

2
+ iβ

µi − µβi
2π

)}
+

β

4π2h̄
γαīγβinB(µī − µi + µβi − µαī) Im

{
Ψ(1)

(
1

2
+ iβ

µī + U − µαī
2π

)
−Ψ(1)

(
1

2
+ iβ

µi + U − µβi
2π

)}
−
√

ΓαīΓβiγαīγβi

πh̄
nB(µī − µi + µβi − µαī)

1

U
Re

{
Ψ

(
1

2
+ iβ

µī − µαī
2π

)
−Ψ

(
1

2
− iβ µī + U − µαī

2π

)
−Ψ

(
1

2
+ iβ

µi − µβi
2π

)
+ Ψ

(
1

2
− iβ µi + U − µβi

2π

)}
, (48a)

γαīβi0d =
β

4π2h̄
ΓαīγβinB(µi + µī + U − µαī − µβi) Im

{
Ψ(1)

(
1

2
+ iβ

µī − µαī
2π

)
+ Ψ(1)

(
1

2
+ iβ

µi + U − µβi
2π

)}
+

β

4π2h̄
γαīΓβinB(µi + µī + U − µαī − µβi) Im

{
Ψ(1)

(
1

2
+ iβ

µī + U − µαī
2π

)
+ Ψ(1)

(
1

2
+ iβ

µi − µβi
2π

)}
−
√

ΓαīΓβiγαīγβi

πh̄
nB(µi + µī + U − µαī − µβi)

1

U
Re

{
Ψ

(
1

2
+ iβ

µī − µαī
2π

)
−Ψ

(
1

2
− iβ µī + U − µαī

2π

)
+Ψ

(
1

2
+ iβ

µi − µβi
2π

)
−Ψ

(
1

2
− iβ µi + U − µβi

2π

)}
, (48b)

γαīβid0 =
β

4π2h̄
Γαīγβi [1 + nB(µi + µī + U − µαī − µβi)] Im

{
Ψ(1)

(
1

2
+ iβ

µī − µαī
2π

)
+ Ψ(1)

(
1

2
+ iβ

µi + U − µβi
2π

)}
+

β

4π2h̄
γαīΓβi [1 + nB(µi + µī + U − µαī − µβi)] Im

{
Ψ(1)

(
1

2
+ iβ

µī + U − µαī
2π

)
+ Ψ(1)

(
1

2
+ iβ

µi − µβi
2π

)}
−
√

ΓαīΓβiγαīγβi

πh̄
[1 + nB(µi + µī + U − µαī − µβi)]

1

U
Re

{
Ψ

(
1

2
+ iβ

µī − µαī
2π

)
−Ψ

(
1

2
− iβ µī + U − µαī

2π

)
+Ψ

(
1

2
+ iβ

µi − µβi
2π

)
−Ψ

(
1

2
− iβ µi + U − µβi

2π

)}
. (48c)

Here, nB(x) = 1/(ex − 1) is the Bose distribution function, Ψ (Ψ(1)) is the digamma (trigamma) function and
β = 1/kBT is the inverse temperature.

The stationary values of the set of probabilities p = (p0, p1, p2, pd)
T follow from the equations 0 = Γp written in

matrix form with

Γ =


− (Γ01 + Γ02 + γ0d) Γ10 Γ20 γd0

Γ01 − (Γ10 + Γ1d + γ12) γ21 Γd1

Γ02 γ12 − (Γ20 + Γ2d + γ21) Γd2

γ0d Γ1d Γ2d − (Γd1 + Γd2 + γd0) ,

 (49)

where

Γ01 =
∑
α

Γα1
01 , Γ10 =

∑
α

Γα1
10 , Γ02 =

∑
α

Γα2
02 , Γ20 =

∑
α

Γα2
20 ,

Γ1d =
∑
α

Γα2
1d , Γd1 =

∑
α

Γα2
d1 , Γ2d =

∑
α

Γα1
2d , Γd2 =

∑
α

Γα1
d2 ,

γ12 =
∑
α,β

γα2β1
12 , γ21 =

∑
α,β

γα1β2
21 , γ0d =

∑
α,β

γα1β2
0d , γd0 =

∑
α,β

γα1β2
d0 ,

(50a)
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Supplementary Figure 5. Extended data and analysis from Fig. 2 (VS1 = 0.5 mV, VS2 = 0; −ε2 = 0.3 meV where cuts are
shown). (a) Drive current I1. (b) Drag current I2. This is a reproduction of Fig. 2(e) to aid in comparing with Supp. Fig. 5(a).
(c) Cuts from Supp. Fig. 5(a) and Supp. Fig. 5(b). I1 has been divided by 300 to fit on the same scale. (d) Numerically
differentiated dI2/d(−ε1) (black, arbitrary units) is correlated, positively or negatively, with G1 (blue, right axis). G1 has been
taken from the cut in Fig. 2(c) and I2 is the same trace as above in Supp. Fig. 5(c). The correlated features appear generic in
region (iii) as defined in Fig. 2(a).

E. EXTENDED DATA AND ANALYSIS FROM FIG. 2

In Supp. Fig. 5(a) we show the drive current I1 as a function of −ε1 and −ε2 for the same parameters as used in
Fig. 2. For ease of comparison, Supp. Fig. 5(b) reproduces Fig. 2(e), the drag current I2. Supplementary Figure 5(c)
compares I1 and I2 for −ε2 = 0.3 meV. The drag current is seen to be less than a percent of the drive current, which
is typical for region (iii), although the ratio can reach a few percent in region (ii).

In Supp. Fig. 5d we compare the vertical cuts in Fig. 2(c) and 2(e). Peaks and dips in G1 are correlated (or
anticorrelated) with peaks and dips in numerically calculated dI2/d(−ε1). There appears to be correlation near
−ε1 = U = 0.1 meV, and anticorrelation nearer to −ε1 = U + |e|VS1 = 0.6 meV. In the middle, G1 is flat and there
appears to be no correlation. As the peaks in G1 correspond to excited states in dot 1, these features may not be
explained satisfactorily by existing theories, and are well-resolved in the low temperature regime.
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