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ON SOME VARIANTS OF THE KAKEYA PROBLEM

Lawrence Kolasa and Thomas Wolff

We study the question of lower bounds for the Hausdorff
dimension of a set in Rn containing spheres of every radius.
If n ≥ 3 then such a set must have dimension n. If n = 2
then it must have dimension at least 11/6. We also study the
analogous maximal function problem and related problem of
Besicovitch sets with an axis of symmetry.

Besicovitch and Rado [1] and Kinney [5] proved the following result:
There is a closed set E ⊂ R2 with measure zero which contains a circle
of every radius.

The construction of Besicovitch and Rado works in Rd: If d ≥ 3 there
is a closed set E ⊂ Rd with measure zero which contains a sphere of every
radius. We will give an exposition of this construction in Section 1 below.

One can ask whether a set containing a sphere of every radius must have
Hausdorff dimension d. As it turns out, this question is easily answered in
higher dimensions.

Theorem 1. A Borel set in Rd, d ≥ 3 which contains a sphere of every
radius has Hausdorff dimension d.

In R2 this may still be true but appears harder. One purpose of this paper
is to prove the following partial result.

Theorem 2. A Borel set in R2 which contains a circle of every radius has
Hausdorff dimension at least 11

6 .

Following a known pattern (see [2] for example) we will derive Theorems
1 and 2 from Lp → Lq estimates for a related maximal function. Fix δ > 0.
For x ∈ Rd, r ∈ [1

2 , 2], define

C(x, r) = {z ∈ Rd : |z − x| = r}(1)

Cδ(x, r) = {z ∈ Rd : r − δ < |z − x| < r + δ}.(2)

If f : Rd → R then define Mδf : [1/2, 2]→ R via

Mδf(r) = sup
x

1
|Cδ(x, r)|

∫
Cδ(x,r)

|f |,

where |E| means Lebesgue measure of E. In higher dimensions we have the
following estimate:
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Theorem 1′. ‖Mδf‖L2([1/2,2]) ≤ Cd(log 1
δ )1/2‖f‖2, d ≥ 3. In fact, if d ≥ 3

there are Lp → Lq estimates

‖Mδf‖Lq([1/2,2]) ≤ C
(

log
1
δ

)1/p

‖f‖p

if p ≥ 2 and q ≤ p and

‖Mδf‖Lq([1/2,2]) ≤ Cδ−α‖f‖p
for other p, q, where α = max

(
1
p − 1

p′ ,
1
p − 1

q

)
.

Theorem 1′ follows easily from (for example) the method of A. Cordoba
[3] and we expect that it may have been observed before, although we don’t
know a reference and will therefore give a proof, in Section 2.

Theorem 1′ is easily seen to fail in in R2, as we will show in Section 3.
The correct question appears to be whether there is an estimate

∀ ε > 0∃Cε : ‖Mδf‖L3([1/2,2]) ≤ Cεδ−ε||f ||3, d = 2.(3)

By interpolation with the trivial estimate ||Mδf ||∞ ≤ Cδ−1||f ||1, an equiv-
alent question is whether there is an estimate

∀ε > 0∃Cε : ||Mδf ||Lq([1/2,2]) ≤ Cεδ−
1
2

( 3
p
−1)−ε||f ||p, p ≤ 3, q ≤ 2p′, d = 2.

(4)

When p = 2 (hence q = 4) this estimate is due to Pecher [9] (Theorem 1,
the case n = 2 and q = ∞), in an equivalent form referring to solutions of
the wave equation, but non-L2 estimates appear to require different ideas.

We will prove (4) when p ≤ 8
3 , using a geometric approach related to that

of Marstrand [7]. Actually, we will prove (as does Pecher when p = 2) the
following slightly stronger “endpoint” result.

Theorem 2′. If d = 2, p < 8/3, q ≤ 2p′ then

‖Mδf‖q ≤ Cδ−
1
2

( 3
p
−1)‖f‖p.

Whether (4) holds when 8/3 < p ≤ 3, and whether a set in R2 containing
a circle of every radius has Hausdorff dimension 2, at present are open
problems. These problems can be regarded as special cases of the local
smoothing problem for the wave equation [10], [8] - a slightly weaker form
of (3) (namely: The same estimate with the L3 norm replaced by the L4

norm on both sides of the inequality) would follow readily from the “sharp
local smoothing” conjecture made in [10], [8].

Another closely related problem, which was the original motivation for
this paper, is the three dimensional Kakeya problem specialized to the cylin-
drically symmetric case. More precisely define a rotation invariant function
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to be a function f : R3 → R such that

x = (x1, x2, x3) ∈ R3, θ ∈ R
⇒ f(x1 cos θ + x2 sin θ,−x2 cos θ + x1 sin θ, x3) = f(x)

and a rotation invariant set to be a set whose characteristic function is
rotation invariant. A Besicovitch set is a Borel set in R3 containing a line
segment in every direction. We will prove:

Theorem 3. Any rotation invariant Besicovitch set has Hausdorff dimen-
sion at least 17

6 .

For general sets, the best bound presently known is 5
2 , proved in [13]

which contains references to relevant previous work.
Bourgain [2] realized that the maximal function most closely related to

the Kakeya problem is the following f∗δ . If f : R3 → R, δ > 0, P2 is two
dimensional projective space then one defines f∗δ : P2 → R by

f∗δ (e) = sup
T δe

1
|T δe |

∫
T δe

|f |

where T δe runs over all cylinders with length 1, cross section radius δ and
axis in the e direction. We will prove the following.

Theorem 3′. If f : R3 → R is rotation invariant then

‖f∗δ ‖Lq(P2) ≤ Cδ−( 3
p
−1)‖f‖p, p <

17
6
, q ≤ 2p′.

To see why Theorems 2′ and 3′ are related, note first that although The-
orem 3′ is formulated in R3, it is really a two dimensional result because of
the rotation invariance. We will show in Section 5 that it basically reduces
to a result like Theorem 2′ with hyperbolas instead of circles. Namely, if
δ > 0 is fixed and if x, y, z are real numbers with x > 0 and 1

2 ≤ z ≤ 2 then
we define

H(x, y, z) =
{

(s, t) ∈ R2 : s > 0, s2 − (t− y)2

z
= x

}
(5)

Hδ(x, y, z) =
{

(s, t) ∈ R2 :
1
2
≤ s ≤ 2, dist((s, t), H(x, y, z)) < δ

}
,(6)

and for f : R2 → R we define

M̃δf(z) = sup
x>0,y∈R

1
δ

∫
Hδ(x,y,z)

|f |.(7)

Lemma 5.1 below is the result analogous to Theorem 2′ for M̃δ. In fact,
we will obtain both Theorem 2′ and Lemma 5.1 as special cases of a more



114 LAWRENCE KOLASA AND THOMAS WOLFF

general result (Theorem 4.1) for families of curves satisfying the “cinematic
curvature” condition from [10].

Theorem 3′ bears the same relation to Theorem 3 as Theorem 2′ does to
Theorem 2. In fact, the implication (Theorem 3′ ⇒ Theorem 3) follows by
specializing the argument in [2], Lemma 2.15 to the cylindrically symmet-
ric case, while the following lemma shows that Theorems 1′ and 2′ imply
Theorems 1 and 2.

Lemma 0.1. An estimate in Rd of the form

||Mδf ||q ≤ Cδ−α||f ||p
implies that a Borel set E ⊂ Rd containing a positive (d − 1 dimensional)
measure subset of a sphere of radius r for a positive measure set of r has
Hausdorff dimension at least d− pα.

The proof of this is identical to the proof of Lemma 2.15 in [2], so we
omit it.

We use the notation x . y to mean that x ≤ Cy for a suitable fixed
constant C, and similarly with x & y and x ≈ y. The rest of the paper
is organized as follows: In Section 1 we carry out the Besicovitch-Rado
construction in general dimensions and in Section 2 we prove Theorem 1′. In
Section 3 we extend lemmas from [7] to the setting of curves with cinematic
curvature, and in Section 4 we prove Theorem 2′ and the above mentioned
generalization. The argument in Section 4 is the main point of the paper.
In Section 5 we prove Theorem 3′.

Acknowledgments. We are indebted to P. Mattila who pointed out the
similarity between our arguments and Marstrand’s. The fact that the p = 2
case of Theorem 2′ is in the wave equation literature was pointed out by C.
Sogge and by C. Kenig and L. Vega.

Added 5/15/97. This paper was first written in the fall of 1994 and un-
derwent several revisions as the authors became aware of relevant previous
references, etc. Since that time several further related results have been
proved by the authors and by W. Schlag. In particular, the conjecture (3)
has been proved by the second author in “A Kakeya-type problem for cir-
cles” (to appear in Amer. J. Math), using extensions of the techniques of
the present paper.

1. The Besicovitch-Rado construction.

In this section we generalize the Besicovitch-Rado-Kinney result to Rd.

Proposition 1.1. For any d ≥ 2 there is a closed subset E ⊂ Rd, with
Lebesgue measure zero which contains a sphere of every radius.
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We will follow the idea of Besicovitch and Rado, i.e., will set up a recursive
Perron tree type construction where the sets to be translated are annuli
rather than triangles. The Besicovitch-Rado construction can in fact be
generalized to higher dimensions with essentially no changes. However, we
will give a slightly different construction instead. This leads to a better
estimate (at least in low dimensions) in Proposition 2.2 below.

We need a certain geometric fact, Lemma 1.1 below. In Rd consider two
spheres S1 and S0 of radii P1 and P0, where P1 > P0. Suppose these spheres
have centers C1 and C0 respectively such that |C1 − C0| < P1 − P0, and let
α = P1 − P0 − |C1 − C0|. Consider a ray, R, which emanates from C1, and
let θ be the angle between R and the ray through the two centers C1 and C0

which also originates at C1.

Lemma 1.1. The length of the segment of R between S0 and S1 is

≈ α+
1
2
θ2|C1 − C0|

(
1 +
|C1 − C0|

P0

)
,

when θ |C1−C0|
P0

� 1 and θ � 1.

Proof. Let x denote the portion of R between C1 and S0. What we wish to
calculate is P1−|x|. By the law of cosines P 2

0 = |C1−C0|2 + |x|2−2|x| |C1−
C0| cos θ and therefore

|x| = |C1 − C0| cos θ + P0

√
1− |C1 − C0|2

P0
2 sin2 θ.

Given that θ |C1−C0|
P0

� 1 and θ � 1 are small,

P1 − |x| = P1 − P0

√
1− |C1 − C0|2

P0
2 sin2 θ − |C1 − C0|

+ |C1 − C0|(1− cos θ)

≥ P1 − P0 − |C1 − C0|+ 1
2
θ2|C1 − C0|

(( |C1 − C0|
P0

)
sin2 θ

θ2

+2
1− cos θ

θ2

)
≈ α+

1
2
θ2|C1 − C0|

(( |C1 − C0|
P0

)
+ 1
)
.

The inequality on the second line holds since
√

1− x ≤ 1 − 1
2x for small

positive x. The reverse inequality also holds provided the constant 1
2 is

replaced by a slightly larger one and θ |C1−C0|
P0

is small. This finishes the
proof of the lemma. �
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The typical step in the recursive process is as follows. Let A be an annulus
in Rd with center x0, A = {x ∈ Rd : P0 ≤ |x− x0| ≤ P1}, and call P1 − P0

the width of A. We assume that 1/2 ≤ P0 < P1 ≤ 2P0 ≤ 2 throughout; this
serves to make all constants independent of P0 and P1. For fixed n and fixed
e ∈ Sd−1 we describe φne (A). First divide A into n concentric annuli (each
of width (P1 − P0)/n), and translate them in the e-direction relative to the
center, x0, of A as so: Numbering the annuli form 1 to n in order of largest
to smallest, the k-th annulus is translated a distance (k − 1)(P1 − P0)/n.
In this way the n new annuli intersect tangentially1 along a ray in the
e-direction; we call φne (A) a figure and x0 the center of this figure.

Clearly the measure of a figure is smaller than that of the original annulus.
Let N δ(E) = {x : dist(x,E) < δ} — the δ-neighborhood of E — and let
Γeθ(x0) denote the cone based at x0 of width θ in the direction of e — i.e.,

Γeθ(x0) = {x0 + th : t ≥ 0, h ∈ Sd−1, dist(h, e) ≤ θ},
where distance is measured along Sd−1. Note that if x0 is the center of
φne (A) and if c0 is the center of its smallest annulus, then

φne (A) ∩ Γeθ(x0) ⊂ Γeθ(x0) ∩
{x ∈ Rd : |x− x0| ≤ P1} ∩ {x ∈ Rd : |x− c0| ≥ P0}.

Lemma 1.2. Let A, n, e be as above. Then for (absolutely) large n,∣∣∣N2(P1−P0)/n

(
φne (A) ∩ Γe

2/
√
n
(x0)

)∣∣∣ . (P1 − P0)n−
d+1

2 .

Proof. We calculate volume using polar coordinates. Consider any ray in
Γe

2/
√
n
(x0); we claim its intersection with φne (A) is contained in a segment

of length ≈ (P1 − P0)/n. Indeed by Lemma 1.1 with α = (P1 − P0)/n and
|C1 − C0| = (P1 − P0)n−1

n , taking θ = 2/
√
n we see that such a segment

has length ≈ α = (P1 − P0)/n. Then φne (A) ∩ Γe
2/
√
n
(x0) is contained in a

rectangle which has dimensions ≈ (P1 − P0)·n−1×n−1/2 × · · · × n−1/2︸ ︷︷ ︸
d− 1 times

, and

hence so is N2(P1−P0)/n(φne (A) ∩ Γe
2/
√
n
(x0)).

Our construction involves a repeated application of φen where we vary the
direction, e, of translation. Let us therefore cover Sd−1 with a maximal

1
C
√
n

-separated subset D = {e1, e2, . . . , eM}, where M ≈ n
d−1

2 . Here C is a
sufficiently large constant. If A =

⋃
Aj is the union of non-concentric annuli

Aj , let φne (A) =
⋃
φen(Aj). �

Lemma 1.3. Let A = {x ∈ Rd : P0 ≤ |x− x0| ≤ P1}, and consider points
ek, ek+1, . . . , ek+j ∈ D. Then for (absolutely) large n,

1Besicovitch and Rado use a slightly different translation rule and obtain transverse
intersections.
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φnek+j
◦ · · · ◦ φnek+1

◦ φnek(A) ∩
Γek

2/
√
n
(x0) ⊂ N2(P1−P0)/n

(
φnek(A) ∩ Γek

2/
√
n
(x0)

)
.

Proof. By construction, a point of φnek+j
◦ · · · ◦φnek+1

◦φnek(A) has been trans-
lated a distance no more than (P1 − P0)( 1

n + 1
n2 + · · ·+ 1

nM
) ≤ 2(P1 − P0)/n

from one of its preimages in φnek(A). �

The following lemma is the main step in the proof of Proposition 1.1.

Lemma 1.4. Let R0, R1 be numbers such that 1/2 ≤ R0 < R1 ≤ 2R0 ≤ 2,
n a positive integer, and let M ≈ n d−1

2 be the cardinality of D, the maximal
1

C
√
n

-separated subset of Sd−1. Then any annulus {x ∈ Rd : R0 ≤ |x−x0| ≤
R1} may be divided into nM closed subannuli, each of width (R1 −R0)n−M ,
which when properly translated about yield a compact set En such that |En| .
(R1 −R0)/n. Moreover En ⊂ {x ∈ Rd : R0 − (R1 −R0) ≤ |x− x0| ≤ R1}.
Proof. Without loss of generality we may assume that x0 = 0. Define
A0 = {x ∈ Rd : R0 ≤ |x| ≤ R1}, and for k = 1, 2, . . . ,M let Ak =
φnek(Ak−1); take En = AM . Clearly En is a compact subset which is
the union of nM annuli of width (R1 −R0)n−M . Also, since in general
for an annulus A = {x ∈ Rd : P0 ≤ |x− x0| ≤ P1}, φne (A) ⊂ {x ∈ Rd :
P0 − n−1

n (P1 − P0) ≤ |x − x0| ≤ P1}, we see that En ⊂ {x ∈ Rd :
R0 − (R1 −R0) ≤ |x− x0| ≤ R1}.

To obtain the desired upper bound for |En| we devise a cover of En by
sets whose measure we may readily estimate.

To facilitate the construction of this cover we must delineate the nk−1

figures of Ak. To each annulus of En we associate uniquely a multi-index I,
the address of the annulus, as follows. For a given annulus of En its center
can be written

(P1 − P0)
M∑
j=1

ij
ej
nj

ej ∈ D,

where the coefficients ij are integers in [0, n− 1] and hence uniquely given;
the address for this annulus is then I = (i1, i2, . . . , iM ). Denote the cen-
ter of this annulus as x(I). Let Sk denote the set of indices of the form
(i1, . . . , ik−1, 0, . . . , 0).2 It is easy to see that x(I), I ∈ Sk, is the center
of a figure of Ak; denote this figure as Ak(x(I)). With this notation we re-
mark that if z ∈ En is contained in an annulus with address (i1, i2, . . . , iM ),
then z ∈ AM (x(i1, . . . , iM−1, 0)), and for any k = 1, . . .M and any I ∈ Sk,
z ∈ φeMn ◦ · · · ◦ φek+1

n (Ak(x(I))).

2Here S1 = {(0, . . . , 0)}.
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For each k = 1, 2, . . . ,M and for each I ∈ Sk we take as an element of
our proposed cover of En

N2(R1−R0)/nk

(
Ak(x(I)) ∩ Γek

2/
√
n
(x(I))

)
.(8)

By Lemma 1.2 with P1 − P0 = (R1 −R0)/nk−1,∣∣∣N2(R1−R0)/nk

(
Ak(x(I)) ∩ Γek

2/
√
n
(x(I))

)∣∣∣ . 1
nk−1

· (R1 −R0)

n
d+1

2

,

and so∣∣∣∣∣∣
⋃
I∈Sk

N2(R1−R0)/nk

(
Ak(x(I)) ∩ Γek

2/
√
n
(x(I))

)∣∣∣∣∣∣ . (R1 −R0)

n
d+1

2

.(9)

The claim is that the collection of all sets defined in (8) covers En. Let
z ∈ En be given and choose an index I = (i1, . . . , iM−1, 0) ∈ SM such that
z ∈ AM (x(I))—i.e., find one of the nM−1 figures of En that z lies in. If C
is large enough then

Rd = Γe1
1/
√
n
(0) ∪ Γe2

1/
√
n
(x(i1, 0 . . . , 0)) ∪ Γe3

1/
√
n
(x(i1, i2, 0 . . . , 0)) ∪ · · ·

∪ ΓeM
1/
√
n
(x(i1, . . . , iM−1, 0)).

This is easy to see if one remembers that x(i1, . . . , ik, 0, . . . 0) and x(i1, . . . ,
ik+1, 0, . . . , 0) are very close together when k ≥ 1.

So choose k such that z ∈ Γek
2/
√
n
(x(i1, . . . , ik−1, 0, . . . , 0)). The claim is

that

z∈N 2(R1−R0)

nk

(Ak(x(i1, . . . , ik−1, 0, . . . , 0))∩Γek
2/
√
n
(x(i1, . . . , ik−1, 0, . . . , 0))).

This is established by Lemma 1.3 with P1 − P0 = (R1 −R0)/nk−1 once we
recall, given the above remarks, that for this choice of k, z ∈ φeMn ◦ · · · ◦
φ
ek+1
n (Ak(x ik)).
Finally by (9)

|En| ≤
M∑
k=1

∑
I∈Sk

∣∣∣N2(R1−R0)/nk(Ak(x(I)) ∩ Γek
2/
√
n
(x(I)))

∣∣∣
. (R1 −R0)(n−

d+1
2 + n−

d+1
2 + · · ·+ n−

d+1
2︸ ︷︷ ︸

M times

) ≈ (R1 −R0)n−1,

which establishes the lemma. �

The rest of the proof of Proposition 1.1 follows a standard pattern, and
furthermore is identical to the corresponding argument in [1], so we will
omit it.
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2. The higher dimensional case.

The purpose of this section is to prove Theorem 1′. Before doing so we show
that the result is sharp except for the logarithmic factor (for this factor, see
Proposition 2.2).

Proposition 2.1. ‖Mδ‖Lp→Lq & max{δ−( 1
p
− 1
p′ ), δ

−( 1
p
− 1
q

)}.
Proof. Let Eδ be a C−1δ-neighborhood of the set {x ∈ Rd : xd = 0, |x| =
1/2}, and f = χEδ . Then ‖f‖p = |Eδ|1/p ≈ δ2/p. If C is large then Eδ is con-
tained in Cδ(yr, r) for any r ∈ [1/2, 2], where yr = (0, . . . , 0,

√
r2 − 1/4) ∈

Rd, and therefore Mδf(r) ≥ |Eδ |
|Cδ(yr,r)| ≈ δ = δ

−( 1
p
− 1
p′ )‖f‖p for every r.

On the other hand let f = χCδ(0,1). Then ‖f‖p = δ1/p, while for r ∈
[1− δ, 1 + δ] Mδf(r) ≈ 1. Thus ‖Mδf‖q & δ1/q = δ1/q−1/p‖f‖p. �

The proof of Theorem 1′ necessitates a lemma, whose proof we omit.

Lemma 2.1. If d ≥ 3, 1/2 ≤ r, s ≤ 2, then for any a, b ∈ Rd we have

|Cδ(a, r) ∩ Cδ(b, s)| ≤ C δ2

|r − s|+ δ
.

Proof of Theorem 1′. The Lp → L∞ case is trivial. By interpolation and
by Hölder’s inequality it suffices to prove the theorem in the Lp → Lp

′
case,

1 < p ≤ 2.
First we “discretize”: If |s−r|<δ thenMδf(s) .M3δf(r) since Cδ(x, s) ⊂

C3δ(x, r). Consequently it suffices to show that∑
j

δ|Mδf(rj)|p′
 1

p′

. δ1− 2
p ‖f‖p, 1 < p < 2

∑
j

δ|Mδf(rj)|2
 1

2

.
(

log
(

1
δ

)) 1
2

‖f‖2,

where say rj = 1/2 + jδ, 0 ≤ j ≤ 3/2δ.
Next we use duality: For suitable nonnegative numbers aj with

∑
δapj = 1

and suitable points xj ∈ Rd we have (with 1 < p ≤ 2)∑
j

δ|Mδf(rj)|p′
1/p′

=
∑
j

δajMδf(rj)

=
∫
f ·
∑
j

bjχj ,
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where bj = δaj
|Cδ(xj ,rj)| satisfies

∑
δbpj ∼

∑
δapj = 1, and χj = χCδ(xj ,rj). It

therefore suffices by Hölder’s inequality to show that∥∥∥∥∥∥
∑
j

bjχj

∥∥∥∥∥∥
p′

. δ1−2/p

∑
j

δbpj

1/p

, 1 < p < 2

∥∥∥∥∥∥
∑
j

bjχj

∥∥∥∥∥∥
2

. (log(1/δ))1/2

∑
j

δb2j

1/2

.

Let χjk = χCδ(xj ,rj)∩Cδ(xk,rk). For 1 < p ≤ 2∥∥∥∥∥∥
∑
j

bjχj

∥∥∥∥∥∥
2

p′

=

∫
∣∣∣∣∣∣
∑
jk

bkbjχjk(y)

∣∣∣∣∣∣
p′/2

dy


2/p′

≤
∑
jk

bkbj

(∫
|χjk(y)|p′/2 dy

)2/p′

.
∑
jk

bkbj

(
δ

1 + |j − k|
)2/p′

by Lemma 2.1

≤ δ2(1−2/p)

(∑
k

δbpk

)1/p
∥∥∥∥∥∥
∑
j

δ1/pbj(1 + |j − k|)−2/p′

∥∥∥∥∥∥
lp
′

.

On the one hand, by the Hardy-Littlewood-Sobolev inequality for the integ-
ers3, when 1 < p < 2,∥∥∥∥∥∥

∑
j

δ1/pbj(1 + |j − k|)−2/p′

∥∥∥∥∥∥
lp
′

.

∑
j

δbpj

1/p

.

One the other hand, by Schur’s test∥∥∥∥∥∥
∑
j

δ1/2bj(1 + |j − k|)−1

∥∥∥∥∥∥
l2

. (log(1/δ))1/2

∑
j

δ|bj |2
1/2

,

and the theorem is proved. �
Proposition 2.2. A necessary condition for an estimate of the form

‖Mδf‖Lq([1/2,2]) ≤ C(log(1/δ))α‖f‖Lp(Rd)

to hold is that α ≥ 2
(d−1)p .

3The referee points out that this was the original version proved by Hardy and
Littlewood.
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Proof. Let En be the set described in Lemma 1.4 (with R0=1/2 and R1=2).
Take δ = n−M (M ≈ n d−1

2 ) and let f = χEn . Then |En| . 1
n , but Mδf(r) &

1 for r ∈ [1/2, 2]. Thus

1 . (log(nM ))αn−
1
p = n

α(d−1)
2
− 1
p (log(n))α,

which is only possible when α ≥ 2
(d−1)p . �

Remark. When d = 3, this shows that the powers of log 1
δ in Theorem 1′

are the optimal ones. Taking d = 2, p = 3 it also gives a lower bound 2
3

for the number of logarithms which would be needed in (3). Note that this
shows that Theorem 1′ cannot hold as stated when d = 2.

Further remarks.
(1) Theorem 1′ (and 2′) have equivalent formulations in terms of the maximal
function u∗(t) = supx |u(x, t)|, where u is a solution of the wave equation.
The argument relating the two maximal functions is a standard one and we
will only sketch it. Namely, let Cf (x, t) be the average of f over the sphere
centered at x with radius t. If (in d space dimensions) utt −∆xu = 0 and
u(·, 0) = f , ut(·, 0) = g, and if f̂(ξ) and ĝ(ξ) vanish when |ξ| ≤ 1 then one
can obtain u(·, t) in the form

(10) At
(
C

(−∆)
d−1

4 f
(·, t)

)
+ Bt

(
C

(−∆)
d−3

4 g
(·, t)

)
+ Ct

(
d

dt
C

(−∆)
d−3

4 f
(·, t)

)
+Dt

(
d

dt
C

(−∆)
d−5

4 g
(·, t)

)
where At,Bt, Ct,Dt are operators which are bounded on L∞, uniformly in
t ∈ [1

2 , 2]. This may be seen by taking Fourier transforms and using the
asymptotics for the Fourier transform of surface measure and the fact that
a multiplier m supported outside the unit disc with Dαm(ξ) = O(|ξ|−(|α|+1))
at∞ will be L∞ bounded. Furthermore, by differentiation under the integral
sign ∣∣∣∣ ddtC(−∆)

d−3
4 f

(x, t)
∣∣∣∣ . d∑

i=1

C|Ri(−∆)
d−1

4 f |(x, t)

where the Ri are the Riesz transforms, and similarly with the fourth term
in (10). It follows (with R0

def= identity operator) that

u∗(t) . sup
x

d∑
i=0

C|Ri(−∆)
d−1

4 f |(x, t) + C|Ri(−∆)
d−3

4 g|(x, t),

so that any estimate for Mδ gives a corresponding estimate for u∗. For
example the first statement in Theorem 1′ corresponds in this way to the
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estimate

‖u∗‖L2([ 1
2
,2]) . ‖f‖α + ‖g‖α−1, α >

d− 1
2

, d ≥ 3.(11)

Here ‖ ‖α is the inhomogeneous L2 Sobolev space norm with α derivatives.
One would expect (11) to be a well-known estimate, although we only know
a reference in the three dimensional case (namely [9]).
(2) One can also extend the domain of Mδf from [1/2, 2] to (0,∞). This of
course requires modifying the definition of Mδ. We let

C ′δ(x, r) = {z ∈ Rd : r(1− δ) ≤ |z − x| ≤ r(1 + δ)}.
Then if f : Rd → R we define Mδ

′f : (0, ∞)→ R via

Mδ
′f(r) = sup

x

1
|C ′δ(x, r)|

∫
C′δ(x,r)

|f |.

Theorem 1′′. Assume d ≥ 3. Then(∫ ∞
0
|Mδ

′f(r)|2rd dr
r

)1/2

≤ C log
(

1
δ

) 3
2

‖f‖L2(Rd).

If 1 < p < 2 then(∫ ∞
0
|Mδ

′f(r)|p′r d
p−1

dr

r

)1/p′

≤ Cpδ
−( 1

p
− 1
p′ )‖f‖Lp(Rd).

This is proved in a standard way using Theorem 1′ and a small amount
of Littlewood-Paley theory.

3. Proof of Theorem 2′, part 1.

Before giving the proof of Theorem 2′ we want to make some remarks con-
cerning the difference between the two- and higher-dimensional cases. Note
to begin with that Lemma 2.1 fails in the two dimensional case: The corre-
sponding estimate is

|Cδ(x, r) ∩ Cδ(y, s)| . δ
3
2

(|r − s|+ δ)
1
2

.(12)

This is sharp when the circles {z : |z − x| = r} and {z : |z − y| = s} are
tangent. The bound (12) leads via the argument of Section 2 to the estimate

‖Mδf‖2 . δ−
1
4 ‖f‖2.(13)

This is the optimal L2 → L2 estimate (by the example in the next paragraph)
but implies only the bound dimE ≥ 3

2 for the Hausdorff dimension of a set
containing a circle of every radius.
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To see why (3) is the natural conjecture to make, let Eδ be a δ × δ
1
2

rectangle and let f be the characteristic function of Eδ. For any r ∈ [1
2 , 2]

there is an annulus Cδ(x, r) which contains a fixed fraction of Eδ (namely:
Choose x so that the circle {z : |z − x| = r} is tangent to a long side of Eδ)
and therefore Mδf(r) & δ 1

2 . It follows that a bound

∀ε∃Cε : ‖Mδf‖p ≤ Cεδ−ε‖f‖p

can only hold if δ
1
2 ≤ δ

3
2p , i.e., p ≥ 3. Similar considerations show that the

bound (4) would be best possible for each p and q, and the example f =
characteristic function of Cδ(0, 1) shows that the range q ≤ 2p′ in (4) would
also be best possible.

As we pointed out in the introduction, the p = 2, q = 4 case of Theorem
2′ is due to Pecher [9]. When p > 2 it is natural to use a geometric argument
in order to deal with the problems arising from tangent circles. Our way
of doing this will be based on a geometric fact used also by Marstrand [7],
together with a well-known argument from elementary combinatorics. In
order to avoid certain irrelevant technicalities, let us say that two circles are
internally tangent if they are tangent and one is contained in the bounded
component of the complement of the other. Then we have the following
geometrical fact, which we call (M), and which we believe was first used in
a similar context in [7]: Given three circles C1, C2, C3, there are at most
two circles which are internally tangent to C1, C2 and C3 at three different
points. It is easy to see that this leads to control over the number of possible
tangencies among N circles, N large:

Proposition 3.1. Let C1, . . . , CN are circles. Let k be a number and as-
sume: For each of at least N

2 values of j, we are given k values of i such
that Ci is internally tangent to Cj with (for fixed j) no more than k

3 of these
tangencies occurring at any one point. Then k . N 2

3 .

Proof. This basically follows by combining fact (M) with [4], Theorem 3 on
p. 111: An N × N (0, 1) matrix with no 3 × 3 submatrix of 1’s contains
. N

5
3 1’s altogether. However, we have stated the proposition in a way

which makes the result from [4] not directly applicable, so we give a proof
(assuming (M)). Let Q be the set of all quadruples (j, i1, i2, i3) such that
Cj is internally tangent to Ci1 , Ci2 and Ci3 at three different points. Then
card(Q) ≤ 2N3, since for any given i1, i2, i3, (M) implies there are at most
two choices for j. On the other hand, card(Q) ≥ N

2 · k · 2k
3 · k3 , since if we

take j to be one of the N
2 values in the statement, then there are at least k

possibilities for i1, and then k− k
3 possibilities for i2 and k− 2k

3 possibilities
for i3. Hence 2N3 ≥ Nk3

9 and the proposition follows. �
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The proof of Theorem 2′ will be basically a quantitative version of the
proof of Proposition 3.1. We note that the example of circles with integer
radius (≤ n 1

3 ) and center at an integer lattice point (lying in D(0, n
1
3 )) shows

that the optimal exponent to replace 2
3 in the proposition must be at least

1
3 , since tangencies may be identified with pythagorean triples.

Added 5/15/97. More sophisticated methods for dealing with combina-
torial problems like the one in Proposition 3.1 have been developed in the
discrete geometry literature and can be applied in connection with (3). See
the remark at the end of the introduction.

In fact, as mentioned in the introduction we will work in the general sit-
uation of a family of curves satisfying the “cinematic curvature hypothesis”
from [10], instead of with circles.

Let Φ : U → R, U a neighborhood of (a, b) in R2 × R2 be a function
satisfying the following conditions:

∇xΦ|(x,y)=(a,b)
6= 0.(14)

(15) If e is a unit vector with e⊥∇xΦ(a, b),

then dy

(
∇xΦ · e
∇2
xΦ(e,e)
|∇xΦ|

)
|(x,y)=(a,b)

is invertible.

We use the notation dyf for the differential of f with respect to y and
also use ∇yΦ interchangeably with dyΦ if Φ maps into R, and ∇2

yΦ for the
Hessian of Φ in the y variable, etc.

We define

C(y, r) = {x ∈ R2 : Φ(x, y) = r}.
Condition (15) has a number of equivalent formulations, cf. [10], [11].

We recall: If y and z are close to b and C(y, r) and C(z, s) intersect near a
then (since Φ is smooth) |r−s| . |y−z|. If we assume (14) then (locally) the
C(y, r) are smooth curves, and (15) is equivalent to the following condition:
If |y − b|, |r − Φ(a, b)|, |z − b|, |s− Φ(a, b)| and |x− a| are small and C(y, r)
and C(z, s) intersect at x then either the unit tangent vectors to C(y, r) and
C(z, s) at x, or else their curvatures at x, must differ by & |y − z|+ |r − s|.

In what follows, Q(β) will always mean the set {(z, s, y, r) ∈ R2×R×R2×
R : max(|z− b|, |s−Φ(a, b)|, |y− b|, |r−Φ(a, b)|) < β}. We fix small positive
numbers α2 � α1 � α0 and β0, and define a function ∆ : Q(β0)→ R via

∆(z, s, y, r) = inf
x∈C(y,r)∩D(a,α1)

x′∈C(z,s)∩D(a,α1)

|x− x′|+
∣∣∣∣∇xΦ(x, y)
|∇xΦ(x, y)

− ∇xΦ(x′, z)
|∇xΦ(x′, z)|

∣∣∣∣ .
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Thus ∆(z, s, y, r) measures the minimum distance between the curves ob-
tained by lifting C(z, s) and C(y, r) to the unit tangent bundle. We further
define (for small δ)

Cδ(y, r) = {x ∈ D(0, α2) : |Φ(x, y)− r| < δ}.
The constants in Lemma 3.1 below are of course independent of δ, ε, t and
λ.

Lemma 3.1 below is the main result of this section. In (19), Nδ(S∗) is
the δ-entropy of S∗, i.e., the maximum possible cardinality for a δ-separated
subset of S. Part (i) and estimate (19) are what are needed in the subse-
quent sections; the remaining statements follow from the same proof and
are included for the sake of possible future applications.

Lemma 3.1. There are β1 > 0 and A1 < ∞ such that if δ > 0 is small
enough then:
(i) If (z, s, y, r) ∈ Q(β1) then

|Cδ(z, s) ∩ Cδ(y, r)| . δ2√
(|y − z|+ |r − s|+ δ)(∆(z, s, y, r) + δ)

(16)

diam(Cδ(z, s) ∩ Cδ(y, r)) .
√

∆(z, s, y, r) + δ

|y − z|+ |r − s|+ δ
.(17)

(ii) Let ε, t, λ ∈ (0, 1) be such that ε ≥ δ and λ
√

t
ε ≥ A1. For fixed (zi, ri) ∈

R2 × R, i = 1, 2, 3 with max(|zi − b|, |ri − Φ(a, b)|) < β1, define

S = {(y, r) ∈ R2 × R : (zi, ri, y, r) ∈ Q(β1), ∆(zi, ri, y, r) < ε ∀i,(18)

|y − zi|+ |r − ri| > t ∀i, Cδ(zi, ri) ∩ Cδ(y, r) 6= ∅ ∀i,
dist(Cδ(zi, ri) ∩ Cδ(y, r), Cδ(zj , rj) ∩ Cδ(y, r)) > λ ∀(i, j) : i 6= j}.

Then S is the union of two sets, each of volume . ε3

λ3 and diameter . ε
λ2 .

In particular, if S∗ = {r ∈ R : (y, r) ∈ S for some y ∈ R2}, then

Nδ(S∗) .
ε

δλ2 .(19)

Remarks.
(1) The main point is part (ii); part (i) is implicit in [10] (as are several

of the sublemmas below) and in any case is quite simple.
(2) The case of circles corresponds of course to Φ(x, y) = |x − y|, a 6= b.

The function ∆(z, s, y, r) then satisfies ∆(z, s, y, r) & ||z − y| − |r − s||. In
this case Lemma 3.1 is essentially in [7] (cf. Lemma 5.2 there), but some
of the conclusions of Lemma 3.1 are not stated there. It may therefore be
worth recording the following “explicit” form of Lemma 3.1 (ii) for circles
even though we will not use it below. It is not quite a formal consequence
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of Lemma 3.1 but can be proved by a much abbreviated version of the proof
of Lemma 3.1 - as has already mentioned, it is also implicit in [7].

Fix three circles C(xi, ri)
def= {z ∈ R2 : |z − xi| = ri}, where ri ∈ [1

2 , 2],
and let Cδ(x, r) = {z ∈ R2 : r − δ < |z − x| < r + δ}. Fix ε, t, λ ∈
(0, 1) such that ε ≥ δ and λ

√
t
ε ≥ A1. Define two annuli Cδ(x, r) and

Cδ(y, s) to be interior (ε, t)-tangent if their intersection is nonempty and
also | |x − y| − |r − s| | < ε and |x − y| + |r − s| > t. Let Ωεtλ be the set
of all (x, r) ∈ R2 × [1

2 , 2] such that Cδ(x, r) is interior (ε, t)-tangent to all
three annuli Cδ(xi, ri) and futhermore the distance between any two of the
sets Cδ(xi, ri) ∩ Cδ(x, r) and Cδ(xj , rj) ∩ Cδ(x, r) (1 ≤ i, j ≤ 3, i 6= j) is at
least λ. Then Ωεtλ is contained in the union of two ellipsoids in R3 each of
volume . ε3

λ3 and diameter . ε
λ2 .

(3) In the proof of Lemma 3.1 we often assume that a = b = 0 and
Φ(a, b) = 0.

We start the proof by making some further observations about the con-
ditions (14), (15). First, it is clear that

Cδ(z, s) ∩ Cδ(y, r) = ∅ if |r − s| > C|y − z|+ 2δ(20)

for a suitable constant C. (14), (15) are invariant under changes of co-
ordinates in the x variable, so for many purposes we may assume that
Φ(x, 0) = x(2). Here we use the notation x(2) to mean the second coor-
dinate of the point x ∈ R2. If Φ(x, 0) = x(2), then (15) is equivalent with

C−1|y| ≤
∣∣∣∣ ∂Φ
∂x(1)

∣∣∣∣+

∣∣∣∣∣ ∂2Φ
∂x2

(1)

∣∣∣∣∣ ≤ C|y|(21)

for suitable C, locally near (0, 0) ∈ R2 × R2. Next we have the following
(perhaps well-known) fact, which will be used in the last part of the proof
of Lemma 3.1.

Lemma 3.2. Assume that Φ satisfies (14), (15). Suppose that x1, x2, x3, y ∈
R2 are sufficiently close to the origin and satisfy Φ(x1, y) = Φ(x2, y) =
Φ(x3, y). Then∣∣∣∣∣∣det

 −∇yΦ(x1, y) 1
−∇yΦ(x2, y) 1
−∇yΦ(x3, y) 1

∣∣∣∣∣∣ ≈ |x1 − x2| |x2 − x3| |x3 − x1|.

Proof. We may assume that y = 0 and Φ(x, 0) = x(2), and furthermore
that x1 = (0, 0), x2 = (σ, 0), x3 = (τ, 0), with σ < 0 < τ . Define v(t) =
∇yΦ((t, 0), 0). Thus v(t) is an R2-valued function on an interval. Condition
(15) implies that

v̇(0) ∧ v̈(0) 6= 0,
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where we have denoted dv
dt by v̇ etc. Consequently, by Taylor’s theorem,

v(τ)− v(0) = τ v̇(0) +
τ2

2
v̈(0) +O(τ3)

v(σ)− v(0) = σv̇(0) +
σ2

2
v̈(0) +O(|σ|3),

and therefore∣∣∣∣∣∣det

 −∇yΦ(x1, 0) 1
−∇yΦ(x2, 0) 1
−∇yΦ(x3, 0) 1

∣∣∣∣∣∣ = |(v(τ)− v(0)) ∧ (v(σ)− v(0))|

=
1
2
τ |σ|(τ − σ)|v̇(0) ∧ v̈(0)|+O(|τσ|(τ2 + σ2)).

The lemma follows, since σ < 0 < τ so that τ2 + σ2 is small compared with
τ − σ. �

Next we prove an elementary lemma about functions of one variable. The
implicit constants depend on C0 only.

Lemma 3.3. Let I ⊂ R be an interval, Ĩ the double of I, I0 the double of
Ĩ, and let φ be a smooth real-valued function on I0. Assume that

C−1
0 ρ ≤ |φ̇(t)|+ |φ̈(t)| ≤ C0ρ(22)

for all t ∈ I0. Let ∆ = mint∈Ĩ(|φ(t)|+ |φ̇(t)|). Then provided |I| and η0 are
small enough we have:

(i) If ∆ ≤ η0ρ, then φ̇(τ) = 0 for a unique τ ∈ I0. Furthermore |φ(τ)| .
∆.

(ii) If τ ∈ I0 and φ̇(τ) = 0, then

|φ̇(t)| ≈ ρ|t− τ |(23)

and

|φ(t)− φ(τ)| ≈ ρ|t− τ |2(24)

for all t ∈ I0.
(iii) n(φ, c) ≤ 2 for all c ∈ R.
(iv) Let E = {(t, y) ∈ R2 : t ∈ I : |φ(t)| < δ, and |y| < δ}. Then

|E| . δ2√
(ρ+δ)(∆+δ)

and diam(E) .
√

∆+δ
ρ+δ . If ∆ . η0ρ, then E is

contained in a disc of radius .
√

∆+δ
ρ+δ centered at (τ, φ(τ)).
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In (iii) n(φ, c) is the multiplicity of c as a value of φ, defined in the usual
way, i.e.,

n(φ, c) =
∑

t∈I0:φ(t)=c

min({k ≥ 1 : φ(k)(t) 6= 0}),

where the minimum of the empty set is +∞. We will also denote n(φ, 0) by
n(φ).

Proof. (i) If η0 + C0|I0| ≤ 1
2C
−1
0 then the assumption (22) implies that

|φ̇(s)| ≤ 1
2C
−1
0 ρ for all s ∈ I0, and therefore that |φ̈(s)| ≥ 1

2C
−1
0 ρ for all

s ∈ I0. In particular φ̈ does not change sign. If t ∈ I with |φ̇(t)| ≤ ∆ then
(assuming as we may that φ̈ > 0) we have φ̇(s)−φ̇(t)

s−t ≥ 1
2C
−1
0 ρ for all s ∈ I0.

If |I0|8C0
≥ η0 then it follows that φ̇ changes sign, i.e., we have proved the

existence part of (i). We will prove the rest of (i) after proving (ii).
(ii) If τ is as in (ii) then by the same argument as above |φ̇(t)| = |φ̇(t)−

φ̇(τ)| ≈ |t− τ |ρ, and therefore also |φ(t)− φ(τ)| ≈ |t− τ |2ρ.
The uniqueness part of (i) clearly follows from (ii). Furthermore, if t ∈

I and |φ(t)| + |φ̇(t)| = ∆, then by (ii), |τ − t| . ∆
ρ and therefore also

|φ(τ)− φ(t)| . ∆2

ρ , so φ(τ) ≤ ∆ + C∆2

ρ . ∆.
(iii) Either φ̇ vanishes somewhere or it doesn’t. If φ̇ never vanishes then

n(φ, c) ≤ 1 for all c. If φ̇ vanishes at τ then by the above considerations φ
is either convex or concave and furthermore φ̈(τ) 6= 0. This implies (iii).

(iv) Let E∗ def= {t ∈ I : |φ(t)| < δ}, i.e., E∗ is the projection of E on the t
axis.

We can assume that ∆ ≤ C0ρ + δ, since otherwise E is clearly empty.
Given this, we may also assume that ρ ≥ 2η−1

0 δ, since if ∆ . ρ+ δ . δ then
all the statements in (iv) just follow since E∗ ⊂ I.

Suppose first that ∆ ≤ η0ρ. Let τ be as in (i). If t ∈ E∗ then by (24),

|t− τ | ≈
√
|φ(t)− φ(τ)|

ρ
.
√

∆ + δ

ρ
≈
√

∆ + δ

ρ+ δ
.(25)

This implies the last statement of (iv) and therefore also the diameter bound.
If ∆ ≤ 2δ then the measure bound follows from the diameter bound and
we’re done. It remains to prove the measure bound when ∆ ≥ 2δ. We may
assume that τ ∈ Ĩ, since otherwise E is empty by (25) if η0 has been chosen
small enough. But if τ ∈ Ĩ then |φ(τ)| ≥ ∆, by definition of ∆. Since

∆ ≥ 2δ, it then follows by (24) that |t− τ | ≈
√

∆
ρ , t ∈ E∗. Hence (by (23))

|φ̇(t)| ≈ √ρ∆, and then the measure bound follows using (iii).
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Now suppose that ∆ ≥ η0ρ. Then the diameter bound in (iv) follows since
E∗ ⊂ I, and the measure bound follows (using (iii)) since |φ̇(t)| ≥ ∆− δ ≥
η0ρ− δ & ρ.

Proof of part (i) of Lemma 3.1. This follows from (iv) of Lemma 3.3 by
choosing appropriate local coordinates. Namely, make a local change of
variable on D(0, α0) so that Φ(x, y) = x(2) + r. Then D(0, α1) ∩ C(y, r)
goes over to an interval I1 on the x(1) axis, D(0, α1) ∩ C(z, s) goes over to
the graph of a function x(2) = φ(x(1)) over a (possibly slightly different)
interval I2, and the part of the graph corresponding to D(0, α2) will lie over
an interval I whose double will be contained in I1∩ I2 if α2 has been chosen
small enough. By (20), φ will satisfy (22) with ρ = |y − z|. Furthermore
∆(z, s, y, r) is clearly comparable to mins∈I1

t∈I2
(|φ(t)|+ |φ̇(t)|+ |t−s|), and this

in turn is easily seen to be comparable to mint∈I1∩I2(|φ(t)|+ |φ̇(t)|). So (i)
of Lemma 3.1 follows by applying (iv) of Lemma 3.3 with Ĩ = I1 ∩ I2.

For future reference, we note that the above argument also shows the
following: Assume that (z, s, y, r) ∈ Q(β0) and that ∆(z, s, y, r) < A−1

0 |y −
z|, for suitable fixed constants β0 and A0. Then there is a unique point
ξ(z, s, y)∈C(z, s)∩D(0, α0) such that∇xΦ(ξ(z, s, y), y)∧∇xΦ(ξ(z, s, y), z)=
0. Furthermore we have the estimates

|Φ(ξ(z, s, y), y)− r| . ∆(26)

Cδ(y, r) ∩ Cδ(z, s) ⊂ D
(
ξ(z, s, y), C

√
∆(z, s, y, r) + δ

|y − z|+ δ

)
.(27)

Namely, the tangency point ξ(z, s, y) corresponds to the point (τ, φ(τ)) of
Lemma 3.3 under the change of variable, and the estimates follow from (i)
and (iv) of Lemma 3.3.

It remains to prove (ii) of Lemma 3.1. This will be done in two steps:
(1) There are at most two curves C(z, s) which are tangent to the C(zi, ri)

at three different points.
(2) If (y, r) belongs to the set S, then (y, r) must be close to one of the

points (z, s) in (1).
Step (1) is accomplished in the next two lemmas.

Lemma 3.4. Assume that a1, a2, a3, b1, b2, b3 are smooth functions on an
interval I0 ⊂ R, with n(ai − bj) ≤ 2 for all i and j and n(ai − aj) ≤ 2 and
n(bi − bj) ≤ 2 for all i and j with i 6= j. Assume furthermore that ai − bj
has a double zero for all i and j. Then there are i 6= j, k 6= l, and τ ∈ I0

such that ai = aj = bk = bl to second order at τ .
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Remark added 5/15/97. This type of statement is well known in discrete
geometry. Step (V) below is essentially the fact that a word on three let-
ters with no abab subword has length ≤ 5, which is a trivial case of the
Davenport-Schinzel theorem.

Proof. We will argue by contradiction, so will always assume the conclusion
fails.

(I) ai − bj cannot change sign, and vanishes at just one point.
This is because n(ai − bj) ≤ 2, so that the double zero of ai − bj is its

only zero.

(II) We can assume that ai − aj and bi − bj (i 6= j) have no double zero.
For suppose that ai = aj to second order at τ ∈ I0. Then ai − aj cannot

change sign, and we may suppose that ai > aj on I0\{τ}. Since we are
assuming the conclusion fails there is at most one k such that bk(τ) =
ai(τ) = aj(τ). Fix l 6= k. We can assume by symmetry that bl(τ) > ai(τ).
Then bl ≥ ai everywhere, hence bl > aj everywhere, a contradiction.

(III) We can assume that there do not exist τ , i 6= j and k with ai(τ) =
aj(τ) = bk(τ) (and similarly with the roles of the a’s and b’s reversed).

This is because τ would have to be a double zero for ai − bk and aj − bk
but (by (II)) a simple zero for ai − aj .

Because of (I), there is a definite ordering independent of t ∈ I0 of the
form

ε1 ≥ ε2 ≥ ε3 ≥ ε4 ≥ ε5 ≥ ε6
where each symbol εi is either an a or a b.

For example, one possible ordering would be a ≥ a ≥ b ≥ b ≥ b ≥ a, signi-
fying that after renumbering, a1(t) and a2(t) are always ≥ b1(t), b2(t), b3(t),
which in turn are ≥ a3(t).

(IV) Only the following orderings (if any) can occur:

(i) a ≥ a ≥ a ≥ b ≥ b ≥ b (ii) b ≥ b ≥ b ≥ a ≥ a ≥ a
(iii) a ≥ a ≥ b ≥ b ≥ b ≥ a (iv) b ≥ b ≥ a ≥ a ≥ a ≥ b
(v) a ≥ b ≥ b ≥ b ≥ a ≥ a (vi) b ≥ a ≥ a ≥ a ≥ b ≥ b.

If the ordering is not one of these six, then there would be i 6= j and k 6= l
such that ai ≥ bk ≥ aj ≥ bl, or else bl ≥ aj ≥ bk ≥ ai. But ai(τ) = bl(τ) for
some τ and then also aj(τ) = ai(τ) contradicting (III).

It suffices by symmetry to consider orderings (i) and (iii). In either case,
we define a bj interval to be an interval where bj = max(b1, b2, b3) and which
is maximal with respect to this property. It is clear that I0 is the union of
the bj intervals (j ∈ {1, 2, 3}) and (using (II)) that any two have at most an
endpoint in common. A common endpoint of a bj and bk interval is clearly
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a point where bj − bk changes sign. Accordingly there is a diagram of bj
intervals of the form

(j1 j2 . . . jn)(28)

where each ji is either a 1, 2 or 3 and ji 6= ji+1, signifying that the leftmost
interval is a bj1 interval, the next a bj2 interval, etc., with the rightmost
being a bjn interval.

(V) The number n in (28) is ≤ 5. If n ≥ 4 then the pattern (28) is one of
the following: (12321), (12131), (1213), (1232) (1231) or may be reduced
to one of these by renumbering.

The proof may be given diagramatically as follows.

1 3 1 stuck
1 2

1 stuck
3

2 1 stuck

Namely, we can always renumber so that the first two intervals are a b1
interval followed by a b2 interval. The third is then either a b1 or a b3.
If the third is a b1 then there can never be another b2, since b1 − b2 has
already changed sign twice. Thus the fourth must be a b3, the fifth a b1,
and now b1 − b3 has also changed sign twice so there is no possibility for a
sixth interval. Similarly, if the third interval is a b3 then the fourth is a b1
or b2. In the first case, b1 − b2 and b1 − b3 have both changed sign twice so
there is no possible fifth interval. In the second case, b2 − b3 has changed
sign twice, so the fifth interval can only be a b1, and then b1− b2 and b1− b3
have also changed sign twice.

(VI) Ordering (i) cannot occur.
Define ai intervals similarly to bj intervals: An ai interval is an interval

where ai = min(a1, a2, a3) and which is maximal with respect to this prop-
erty. Of course (V) applies to the ai intervals as well. Observe that in (V)
the patterns with length 5 start and end with the same digit. Accordingly,
there are at most nine intervals of the form

ai interval ∩ bj interval

and containing more than one point, and if there are nine such intervals,
then the first and last correspond to the same pair (i, j). So at most eight
pairs (i, j) actually occur. On the other hand, a point where ai = bj must
(by (III)) belong to the interior of an ai interval and a bj interval. Since
there are nine choices for (i, j) we have a contradiction.

(VII) Ordering (iii) cannot occur. (This will of course complete the proof of
the lemma.)



132 LAWRENCE KOLASA AND THOMAS WOLFF

We number so that a1&a2 ≥ b1&b2&b3 ≥ a3. Then we define an ai
interval (i = 1 or 2) to be a maximal interval where ai = min(a1, a2). It is
easy to see that the pattern of ai intervals is (121), (12) or (1) or can be
reduced to one of these by interchanging 1 and 2.

There are six pairs (i, j) with i ∈ {1, 2} and j ∈ {1, 2, 3}. If there are less
than four bj intervals, or if there are four and the first and last have the
same value of j, then we see as in (VI) that for one of these six pairs there is
no interval of the form (ai interval ∩ bj interval) and containing more than
one point, which is a contradiction. Thus the pattern of bj intervals may be
taken to be either (21312), (12131), (1213) or (2131)4 . In any of these cases
1 appears in two positions not the first and last. (Namely, the 2nd and 4th
positions in the first case, the 1st and 3rd in the second case, etc.) Now there
must be a point τ where b1(τ) = a3(τ), hence b1(τ) < min(b2(τ), b3(τ)). In
moving from τ to a b1 interval, b1 must cross both b2 and b3.

Now consider two cases: Either τ separates two b1 intervals or not. If so,
then b1 crosses both b2 and b3 twice between the two b1 intervals. Since one
of the b1 intervals is neither the first nor the last interval, b1 must also cross
either b2 or b3 at its opposite endpoint and we have a contradiction. If τ
does not separate two b1 intervals then b1 nevertheless crosses either b2 or
b3 twice in moving between the two b1 intervals, and crosses both b2 and b3
between τ and its closest b1 interval. This is again a contradiction.

Lemma 3.5. Suppose Φ satisfies (14) and (15), and α0, β0 are small
enough. Assume that (zi, ri) ∈ R2 × R (i = 1, 2, 3) are distinct and satisfy
|zi|+ |ri| < β0. Then there are at most two values of (z, s) with |z|+ |s| < β0

and such that C(z, s) is tangent to the three curves C(zi, ri) at three different
points of D(0, α0).

Proof. This follows from Lemma 3.4 and (iii) of Lemma 3.3 using appropriate
changes of coordinates. Namely, suppose that C(yj , sj), j = 1, 2, 3 are each
tangent to each of the curves C(zi, ri) at three different points as indicated.
Since we are working locally we can assume that all the curves in question
are graphs. Letting C(zi, ri) be the graph of ai and C(yj , sj) the graph of
bj , we have n(ai− bj) ≤ 2, n(ai−aj) ≤ 2, n(bi− bj) ≤ 2, by Lemma 3.3 (iii),
and furthermore the tangency assumption implies that ai − bj has a double
zero. We conclude by Lemma 3.4 that for some i1, i2 and j the tangency
point between C(zi1 , ri1) and C(yj , sj) must coincide with the tangency
point between C(zi2 , ri2) and C(yj , sj), clearly a contradiction. �

We now carry out step (2) of the proof of Lemma 3.1(ii). We note to begin
with that the points ξ(zi, ri, y, r) as well as the definition of ∆(zi, ri, y, r)
depend only on the curve family C(y, r) = {x : Φ(x, y) = r} and not on the

4It was convenient to renumber some of the cases in (V): (21312) and (2131) are of
course equivalent to (12321) and (1232) respectively.
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particular choice of defining function Φ. We recall (26): Provided we have
appropriate derivative bounds for Φ, there is an estimate

|r − Φ(ξi(y), y)| . ε(29)

when (y, r) ∈ S. Here ξi(y) def= ξ(zi, ri, y). We will also repeatedly use (27)
which guarantees that the set Cδ(y0, r0) lies within distance << λ from the
point ξj(y0).

We let Cj = C(zj , rj), and given a curve C(y0, r0) we can find numbers µ
and ν with λ ≤ ν ≤ µ, and may order the Cj ’s so that |ξ2(y0)− ξ3(y0)| = ν
and |ξ1(y0) − ξ2(y0)| ≈ µ, |ξ1(y0) − ξ3(y0)| ≈ µ. Let C∗ be a suitable large
constant which should be chosen before the constant A1 in Lemma 3.1; we
note that (30) below is therefore satisfied if |aj − ξj(y0)| is bounded by a
fixed multiple of ε

tλ
. We will say that Φ is (y0, r0)-adapted if there are

points aj ∈ Cj such that

|aj − ξj(y0)| ≤ C−1
∗ λ(30)

and

Φ(a1, y) = 0(31)

∇yΦ(a2, y) = (e · (a2 − a1))β(32)

for all y; here e is the tangent vector to C1 at a1, and β is a vector indepen-
dent of y with length ≈ 1.

Lemma 3.6. If (y0, r0) ∈ S then a (y0, r0)-adapted defining function will
exist (satisfying uniform derivative bounds). Furthermore, it can be taken to
be (y1, r1)-adapted for all (y1, r1) such that |ξj(y1)− ξj(y0)| ≤ (2C∗)−1λ for
all j.

Proof. It is easy to see that |e · (a2− a1)| ≈ |a2− a1|, and we will prove this
below (see (36)). We take it as known for now.

Starting from any defining function Φ, we can achieve (31) by replacing Φ
by Φ(·, y)−Φ(a1, y). Assuming this done, we can then achieve (32) by choos-
ing appropriate curvilinear coordinates in the y-plane (the “straightening out
theorem” in the terminology of [6], applied to the function Φ(a2, ·)), since
the hypothesis (15) guarantees that |∇yΦ(a2, y)| ≈ |a2−a1| ≈ |e · (a2−a1)|.
The last statement follows from the definition of adapted provided we use
points with |aj − ξj(y0)| ≤ (2C∗)−1λ in the preceding construction. �

We fix (y0, r0) ∈ S and choose a (y0, r0)-adapted defining function Φ, and
we let

T (y) =

 ∇yΦ(ξ1(y), y) −1
∇yΦ(ξ2(y), y) −1
∇yΦ(ξ3(y), y) −1

 .
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We record the formula for T (y)−1 for use below. If v = (v1, v2) ∈ R2, then
let v∗ = (−v2, v1). Then, provided detT (y) 6= 0, T (y)−1 is equal to

(detT (y))−1

 (∇yΦ(ξ2(y), y)−∇yΦ(ξ3(y), y))∗ ∇yΦ(ξ2(y), y) ∧∇yΦ(ξ3(y), y)
(∇yΦ(ξ3(y), y)−∇yΦ(ξ1(y), y))∗ ∇yΦ(ξ3(y), y) ∧∇yΦ(ξ1(y), y)
(∇yΦ(ξ1(y), y)−∇yΦ(ξ2(y), y))∗ ∇yΦ(ξ1(y), y) ∧∇yΦ(ξ2(y), y)

t

(33)

where T t means transpose of T . We also define sj = Φ(ξj(y0), y0), and note
that |sj − r0| . ε by (29).

Lemma 3.7. |detT (y0)| ≈ µ2ν and ‖T (y0)−1‖ . (µν)−1.

Proof. If y = y0 then the entries of the cofactor matrix in (33) are clearly
. µ and it therefore suffices to show that |detT (y0)| ≈ µ2ν. However, we
have

|Φ(ξi(y0), y0)− Φ(ξj(y0), y0)| . ε
so by (14) there are points x1, x2, x3 ∈ R2 with |xi − ξi(y0)| . ε and
Φ(x1, y0) = Φ(x2, y0) = Φ(x3, y0). Note that then also

|xi − xj | ≈ |ξi(y0)− ξj(y0)|(34)

since ε is small compared with λ. Define

M =

 ∇yΦ(x1, y0) −1
∇yΦ(x2, y0) −1
∇yΦ(x3, y0) −1

 .

Then Lemma 3.2 implies that

|detM | ≈ |x1 − x2| |x2 − x3| |x3 − x1|
≈ µ2ν

where the last line follows from (34). On the other hand, |det(T (y0)) −
det(M)| . ε(µ+ε) since |∇yΦ(ξi(y0), y0)−∇yΦ(xi, y0)| . ε and the cofactors
of T (y0) are . µ. We know that ε� λ2, so ε(µ+ ε) is small compared with
µ2ν. This completes the proof. �
Lemma 3.8. If y is such that |T (y0)(y − y0, r − r0)| < ε for some r then

T (y)T (y0)−1 = I + E(y)

where I is the identity matrix and E(y) is a matrix with norm ≤ 1
100 .

Proof. We can assume that a1 is the origin (thus by (30), all the points
ξj(y0) are at distance . µ from the origin) and furthermore that the unit
tangent vector to C1 at the origin is parallel to the x(1) axis.

Let ej(x) be the unit tangent vector to Cj at the point x ∈ Cj . We claim
first that if x ∈ Cj for some j and |x| ≤ µ, then

|x(2)| . µ2(35)
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|ej(x)(2)| . µ.(36)

We will repeatedly use the following simple fact: If C is a smooth curve
and there is one point x ∈ C with |x| . µ such that |x(2)| . µ2 and the
x(2) component of the unit tangent vector to C at x is . µ, then the same
properties hold at every point of C which is at distance . µ from the origin.

In particular, (35) and (36) are obvious if j = 1, since C1 passes through
the origin and has a horizontal tangent vector there. If j = 2 or 3, then
set x = ξj(y0) ∈ Cj ∩ C(y0, sj). We have |sj − s1| . ε, so by (14) we can
find a point x̃ ∈ C(y0, s1) which is at distance . ε from ξj(r0). Let ẽ be
the unit tangent vector to C(y0, s1) at x̃. Clearly then |x̃| . µ. C(y0, s1) is
tangent to C1 at ξ1(y0), which is within µ of the origin, and it follows that
|x̃(2)| . µ2 and |ẽ(2)| . µ. Hence |x(2)| . µ2 + ε . µ2. On the other hand
ej(x) coincides with the unit tangent vector to C(y0, sj) at x and therefore
|ej(x)− ẽ| . ε, so |ej(x)(2)| . µ. This proves (35) and (36). We note that if
x, x ∈ Cj and |x|+ |x| . µ, then (36) implies

|x(2) − x(2)| . µ|x− x|.(37)

Next, we claim that if |x| . µ and |x(2)| . µ2 then
d

dx(1)
∇yΦ(x, y) = β +O(µ).(38)

We start by proving (38) when x = 0. We expand ∇yΦ(·, y) in a Taylor
series with remainder:

∇yΦ(x, y) = ∇yΦ(0, y) + x(1)∂∇yΦ
∂x(1)

(0, y) +O (x(2) + (x(1))2
)

(39)

= x(1)∂∇yΦ
∂x(1)

(0, y) +O (x(2) + (x(1))2
)

using (31). Now we set x = a2 and use (32):

a2
(1)β = ∇yΦ(a2, y) = a2

(1)∂∇yΦ
∂x(1)

(0, y) + a2
(2)∂∇yΦ

∂x(2)
(0, y) +O(|a2|2)

= a2
(1) ∂Φ
∂x(1)

(0, y) +O(µ2)

by (35). This proves (38) when x = 0. It follows that (38) holds for any x
with |x| ≤ µ.

An immediate consequence of (38) is that if |x| + |x| . µ and |x(2)| +
|x(2)| . µ2 then

∇yΦ(x, y)−∇yΦ(x, y) = (x− x)1β +O(µ2).(40)

We now prove two more bounds of the same type. First we claim that if
x, x ∈ Cj and |x|+ |x| . µ, then

∇yΦ(x, y)−∇yΦ(x, y) = (x− x)(1)β +O(µ|x− x|).(41)
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This follows from the preceding estimates and the mean value theorem: Let
γ be the line segment connecting x and x, then∣∣(∇yΦ(x, y)− x(1)β

)− (∇yΦ(x, y)− x(1)β
)∣∣

.
∣∣x(1)−x(1)

∣∣max
u∈γ

∣∣∣∣ d

dx(1)
∇yΦ(u, y)−β

∣∣∣∣+∣∣x(2)−x(2)
∣∣max
u∈γ

∣∣∣∣ d

dx(2)
∇yΦ(u, y)

∣∣∣∣
. |x− x| · µ+ µ|x− x| · 1

by (38) and (37). This proves (41).
Next, we claim that if |x| . µ and |x(2)| . µ, then

|∇2
yΦ(x, y)| . µ2.(42)

Namely, let e be the unit vector in the direction from 0 to a2. Fix i and j and
let f(x) = ∇2

yΦ(x, y). By (31) and (32), f is a smooth function vanishing at
0 and a2 and therefore |e · ∇f(0)| . µ. The x(2) component of e is . µ by
(35) so we may conclude that

∣∣∣ ∂f

∂x(1) (0)
∣∣∣ . µ, and therefore

∣∣∣ ∂f

∂x(1)

∣∣∣ . µ at

all points within µ of the origin. Estimate (42) now follows from the mean
value theorem and: |f(x)| = |f(x)− f(0)| . µ|x(1) − ai(1)|+ |x(2)| . µ2.

Now suppose that (y, r) ∈ R2 ×R is such that |T (y0)(y − y0, r− r0)| < ε.
Then we claim that

|y − y0| . ε

µν
(43)

|β · (y − y0)| . ε

ν
(44)

|ξj(y)− ξj(y0)| . ε

tν
.(45)

Namely, (43) follows immediately from Lemma 3.7. Furthermore, by
(40) we have ∇yΦ(ξ2(y0), y0) − ∇yΦ(ξ1(y0), y0) = (ξ2(y0) − ξ1(y0))(1)β +
O(µ2), with |(ξ2(y0) − ξ1(y0))(1)| ≈ µ. The quantity (∇yΦ(ξ2(y0), y0) −
∇yΦ(ξ1(y0), y0)) · (y−y0) is the difference between the second and first com-
ponents of T (y0)(y − y0, r − r0) and is therefore ≤ 2ε, so |β · (y − y0)| .
ε
µ + µ|y − y0| . ε

ν (by (43)), which is (44).
In order to prove (45) we consider the variation y(s) = y0 + s(y− y0), 0 ≤

s ≤ 1. We will denote the s-derivative of the function f by ḟ . Recall that
ej(x), x ∈ Cj , is the unit tangent vector field to Cj . Assume temporarily
that |ξj(y(s))− ξj(y(0))| ≤ µ for all s. Consider the equation

ej(ξj(s)) · ∇xΦ(ξj(y(s)), y(s))

which defines ξj(s) implicitly. Differentiate it with respect to s and take the
component of the resulting equation in the direction ej(ξj(s)). This gives

ξ̇j =
(ej · ∇x)∇yΦ(ξj(y(s)), y(s)) · (y − y0)

(ej · ∇x)2Φ(ξj(y(s)), y(s))
.
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The expression in the denominator is & |y(s)− zj | by the curvature hypoth-
esis (15). Since |y(s)− y0| ≤ ε

µν � t, we conclude that |(e ·∇x)2Φ(ξ, y)| & t.
On the other hand, the x(2)-component of ej is . µ and therefore

(ej · ∇x)∇yΦ(ξj(y(s)), y(s)) · (y − y0)

= e(1) d

dx(1)
∇yΦ(ξj(y(s)), y(s)) · (y − y0) +O(µ|y − y0|)

= e(1)β · (y − y0) +O(µ|y − y0|) by (38)

. ε

ν
by (43) and (44).

We conclude that |ξ̇j | . ε
tν . Thus we have shown that under the a priori

assumption on v that |ξj(s)− ξj(0)| ≤ µ for all s we actually have |ξj(s)−
ξj(0)| ≤ C ε

tν for all s. Since ε
tν is small compared with µ it follows that the

a priori assumption can be dropped, i.e., (45) holds.
Next we claim that if |T (y0)(y − y0, r − r0)| < ε then

|∇yΦ(ξj(y), y)−∇yΦ(ξj(y0), y0)| . ε

tν
(46)

|(∇yΦ(ξj(y), y)−∇yΦ(ξj(y0), y0)) ∧ β| . µ ε
tν
.(47)

For the proof we write

∇yΦ(ξj(y), y)−∇yΦ(ξj(y0), y0)

= (∇yΦ(ξj(y), y)−∇yΦ(ξj(y0), y)) + (∇yΦ(ξj(y0), y)−∇yΦ(ξj(y0), y0))
def= I + II

and make the following estimates:

| II | . µ2 · ε
µν

= µ
ε

ν
≤ µ ε

tν

by (42) and (43). Also

| I | . ε

tν

by (45), and finally

| I∧β| . µ ε
tν

by (45) and (41). This proves (46) and (47).
By (40), which is applicable by (45) and (35), we have

∇yΦ(ξj(y0), y0)−∇yΦ(ξk(y0), y0) = (ξj(y0)− ξk(y0))(1)β +O(µ2),
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with |ξj(y0)− ξk(y0)| . µ. It follows using (46) and (47) that

|(∇yΦ(ξi(y), y)−∇yΦ(ξi(y0), y0)) ∧ (∇yΦ(ξj(y0), y0)−∇yΦ(ξk(y0), y0))|
(48)

. µ2 ε

tν

for all i, j and k.
We now prove Lemma 3.8. Namely, if v = (v1, v2) ∈ R2 then, using (33),

each component of (T (y)− T (y0))T (y0)−1 is of the form

(detT (y0))−1(∇yΦ(ξi(y), y)−∇yΦ(ξi(y0), y0))

∧ (∇yΦ(ξj(y0), y0)−∇yΦ(ξk(y0), y0))

for some i, j, k. We have |detT (y0)| ≈ µ2ν by Lemma 3.7 and we therefore
conclude by (48) that ‖(T (y) − T (0))T (0)−1‖ . ε

tν2 , which is small. The
lemma follows. �

We now define

G(y, r) =

 Φ(ξ1(y), y)− r
Φ(ξ2(y), y)− r
Φ(ξ3(y), y)− r

 .

We let C0 be a suitable constant and E(y, r) = (y, r)+DG(y, r)−1D(0, C0ε),
i.e., E(y, r) is the ellipsoid centered at (y, r) which the derivative of G at
(y, r) maps onto the disc D(C0, ε).

Lemma 3.9. (i) E(y0, r0) has volume ≈ ε3

µ2ν
and diameter . ε

µν

(ii) G defines a diffeomorphism from a subset of E(y0, r0) onto D(0, ε).
(iii) If (y, r) ∈ E(y0, r0) then E(y0, r0) and E(y, r) are comparable ellip-

soids, i.e., each is contained in the dilation of the other around its
center by a factor C1.

Proof. Observe that DG(y, r) = T (y), since ∇xΦ(ξi(y), y) is parallel to
∇xΦ(ξi(y), zi) and therefore perpendicular to any column of dξi(y).

Part (i) is immediate from Lemma 3.7. For (iii), we use that matrices
A and B such that ‖A−1B − I‖ ≤ 1

2 map any fixed disc centered at the
origin to comparable ellipsoids. If we set A = T (y)−1, B = T (y0)−1 then
‖A−1B − I‖ ≤ 1

2 by Lemma 3.8 and (iii) follows.
To prove (ii), we use the following version of the inverse function theorem:

If Ω ⊂ R3 is open, f : Ω → R3, f(a) = b and |Df(x) − I| ≤ 1
100 when

x ∈ D(0, C2ε), then f maps some subset of D(a,C2ε) diffeomorphically
onto D(b, ε). This follows from the usual proof of the IFT: We can assume
a = b = 0. Then with the stated hypotheses, if y ∈ D(0, ε) then the map
x → x− f(x) + y will be a contraction mapping from D(0, C2ε) into itself,
etc.
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We apply this version of the IFT to the map G ◦ DG(y0, r0)−1, which
satisfies the hypothesis in view of Lemma 3.8 (ε in Lemma 3.8 can clearly
be replaced by C2ε). The result follows. �

We may now finish the proof of Lemma 3.1 as follows. Suppose that
(y0, r0) ∈ S is given and choose an adapted defining function. Then by (ii)
of Lemma 3.9 one of the two points (η, ρ) must belong to E(y0, r0). Also
|ξj(y0) − ξj(η)| is small compared with λ by (45). It follows therefore that
there is a defining function Φ which is (y0, r0)- adapted for all (y0, r0) with
a given (η, ρ). Using this Φ, it follows by (iii) of Lemma 3.9 that each point
(y0, r0) must belong to a fixed dilation of E(η, ρ), and the proof is complete.
The final statement (19) follows since the projection of each ellipsoid E(η, ρ)
on any given axis will be an interval of length . ε

λ2 .

4. Proof of Theorem 2′, part 2.

We will prove the following general version of Theorem 2′.

Theorem 4.1. Let Φ : U → R be a function satisfying hypotheses (14),
(15), with Φ(a, b) = r0, and let ε0 be a small constant. If δ > 0 is small and
f : R2 → R, supp f ⊂ D(a, ε0) then define Mδf : (r0 − ε0, r0 + ε0)→ R via

Mδf(r) = sup
y∈D(b,ε0)

δ−1

∫
Cδ(y,r)

|f |.

Then

‖Mδf‖q . δ−
1
2

( 3
p
−1)‖f‖p, p <

8
3
, q = 2p′.(49)

The p = 1, q =∞ case of Theorem 4.1 is trivial, and it therefore suffices
to prove the following restricted weak type bound:∣∣∣∣{r ∈ [1

2
, 2
]

: MδχE(r) > λ

}∣∣∣∣ ≤ C ( |E|
δ

1
6λ

8
3

) 6
5

.(50)

Here the set E is contained in D(0, ε0) ⊂ R2. As usual it is convenient
to discretize; since we can estimate the measure of a set in terms of its
δ-entropy it suffices to prove the following.

Assume there are M 3δ-separated values rj ∈ [r0 − εo, r0 + ε0] and points
xj ∈ D(0, ε0) such that |E ∩ Cδ(xj , rj)| ≥ λ|Cδ(xj , rj)|. Then

Mδ ≤ C
( |E|
δ

1
6λ

8
3

) 6
5

.(51)

We can assume that M is large; for M smaller than any fixed constant
(51) holds because M 6= 0 implies |E| & λδ. We may also assume that
λ ≤ 1.



140 LAWRENCE KOLASA AND THOMAS WOLFF

To prove (51) we let µ (“multiplicity”) be the smallest number with the
following property: There are at least M

2 values of j such that

|E ∩ Cδ(xj , rj) ∩ {x : card({i : x ∈ Cδ(xi, ri)}) ≤ µ}| ≥ λ

2
|Cδ(xj , rj)|.(52)

The main estimate is

µ .M 1
6λ−

5
3 .(53)

Before proving (53) we introduce some more notation, as follows. For any
t ∈ [δ, 1] and ε ∈ [δ, 1], let

a(t, ε) = C−1
1

(
δ

ε

)α(Mδ

t
+

t

Mδ

)−α
.

Here α is a sufficiently small positive constant, and C1 is a positive constant
(easily shown to exist) which is large enough that∑

k≥0

l≥0

a(2kδ, 2lδ) < 1(54)

for all M and δ. Also let

λ(t, ε) = a(t, ε)
λ

2
µ(t, ε) = a(t, ε)µ

M(t, ε) = a(t, ε)
M

2
.

Let ∆(z, s, y, r) be the function of Lemma 3.1, and for i, j ∈ {1, . . . ,M}
define a number ∆ij as follows:

∆ij = max(δ,∆(xi, ri, xj , rj)).(55)

For each j ∈ {1, . . . ,M}, t ∈ [δ, 1], ε ∈ [δ, 1], let

St,ε(xj , rj)
def={i : Cδ(xj , rj) ∩ Cδ(xi, ri) 6= ∅, t ≤ |ri − rj |+ |xi − xj | ≤ 2t

and ε ≤ ∆ij ≤ 2ε}
At,ε(xj , rj)

def={x ∈ Cδ(xj , rj) : card({i ∈ St,ε(xj , rj) : x ∈ Cδ(xi, ri)})
≥ µ(t, ε)}.

Lemma 4.1. There are numbers t ∈ [δ, 1] and ε ∈ [δ, 1] with the following
property:

There are ≥M(t, ε) values of j such that |Atε(xj , rj)| ≥ λ(t, ε)|Cδ(xj , rj)|.
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Proof. This is a routine pigeonhole argument. By the minimality of µ there
are at least M

2 values of j such that |Ẽj | ≥ λ
2 |Cδ(xj , rj)| where

Ẽj = E ∩ Cδ(xj , rj) ∩ {x : card({i : x ∈ Cδ(xi, ri)}) ≥ µ}.
For any such j and any x ∈ Ẽj , (54) implies there are t = 2kδ and ε = 2lδ
such that x ∈ Atε(xj , rj). Consequently, using (54) again, for any such j

there are t = 2kδ and ε = 2lδ such that

|Atε(xj , rj)| ≥ λ(t, ε)|Cδ(xj , rj)|.(56)

By (54) once more, there must be a choice of t and ε such that (56) holds
for at least M(t, ε) values of j. This finishes the proof. �

We also want to note the following simple fact which will be used in a
crucial way below.

Lemma 4.2. Let φ be a smooth function on a disc D(0, r) ⊂ R2, with
∇φ 6= 0 and φ(0) = 0. Let Γδ = {x ∈ D(0, r2) : |φ(x)| < δ}. Suppose F ⊂ Γδ.
Then there are three subsets F1, F2, F3 ⊂ F such that (i) |Fi| ≥ C−1|F |,
i = 1, 2, 3 and (ii) dist (Fi, Fj) ≥ (Cδ)−1|F | if i 6= j.

The constant C of course depends only on bounds for derivatives of φ, a
lower bound for |∇φ|, and r.

Proof of (53). We may assume by a partition of unity and change of variable
that φ(x) = x(2) and r = 1.

We partition (−1
2 ,

1
2) into five subintervals I1, · · · , I5 (numbered from left

to right) in such a way that |{x ∈ F : x(1) ∈ Ik}| is independent of k,
and is therefore equal to |F |

5 . Set Fj = {x ∈ F : x(1) ∈ I2j−1}. It is
clear that property (i) then holds. To prove (ii), note that for k = 2 or 4,

|Ik| ≥ |{x∈F :x(1)∈Ij}|
2δ = |F |

10δ . Consequently dist(Fi, Fj) ≥ |F |
10δ , as claimed.

We split the proof of (53) into two cases.

(i) λ ≥ C2

√
ε
t

(ii) λ ≤ C2

√
ε
t

where C2 is a sufficiently large constant.

In case (i), which is the main case, we let S be the set ofM “tubes” in (51),
and let S be the set of at least M tubes in Lemma 4.1. Let Q be the set of
all quadruples (j, j1, j2, j3) with C(xj , rj) ∈ S, C(xji , rji) ∈ S for i = 1, 2, 3
and such that ji ∈ St,ε(xj , rj) for each i ∈ {1, 2, 3} and furthermore the
distance between any two of the three sets Cδ(xj , rj)∩Cδ(xji , rji) is at least
C−1

3 λ. Here C3 is a suitable constant which should be chosen before C2.
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We will make two different estimates on the cardinality of Q. On the
one hand, if C2 is large enough then by (19)5, for any fixed j1, j2, j3 there
are . ε

δλ
−2 values of j such that (j, j1, j2, j3) ∈ Q. Also it follows from

the definition of Q that there are . M min(M, tδ )2 possible choices for
(j1, j2, j3): There are at most M choices for j1, and once j1 is fixed there
are . min(M, tδ ) possibilities for each of j2 and j3, since |rj1 − rji | ≤
|rj1 − rj |+ |rj − rji | ≤ 4t for i = 2 or 3. We conclude that

cardQ . ε

δ
λ
−2
M min

(
M,

t

δ

)2

.(57)

On the other hand, if we fix j with C(xj , rj) ∈ S then (provided C3

has been chosen large enough) Lemma 4.2 implies there are three subsets
F1, F2, F3 of the set At,ε(xj , rj) such that dist(Fl, Fm) ≥ 2C−1

3 λ, l 6= m, and
|Fl| & δλ for each l. For fixed l, we let Sl be those indices i ∈ St,ε(xj , rj)
such that Fl ∩ Cδ(xi, ri) 6= ∅. The sets Cδ(xi, ri), i ∈ Sl must cover Fl at
least µ times. So ∑

i∈Sl
|Fl ∩ Cδ(xi, ri)| & µλδ.

Also, for each fixed i we have |Fl ∩ Cδ(xi, ri)| . δ2√
tε by (16). Consequently

cardSl & δ−1µλ
√
tε.(58)

Estimate (17) implies that if i ∈ St,ε(xj , rj) then the diameter of

Cδ(xi, ri) ∩ Cδ(xj , rj) is .
√
ε
t , which is small compared with λ if C2 has

been chosen large enough. So if l 6= m, i ∈ Sl, k ∈ Sm, then the distance
between Cδ(xi, ri) ∩ Cδ(xj , rj) and Cδ(xk, rk) ∩ Cδ(xj , rj) is ≥ C−1

3 λ. We
conclude that if il ∈ Sl for l = 1, 2, 3 then (j, i1, i2, i3) ∈ Q. So

cardQ &M
(
δ−1µλ

√
tε
)3
.

If we compare this equation with (57) we obtain

µ3 . δ2

t
3
2 ε

1
2

λ
−5 min

(
M,

t

δ

)2 M

M
,

or equivalently

µ3 . a(t, ε)−9 δ2

t
3
2 ε

1
2

λ−5 min
(
M,

t

δ

)2

.

5The hypotheses on ε, t and λ in Lemma 3.1(ii) are satisfied provided C2 is large enough.
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This can be rewritten as

µ3 .M 1
2λ−5 ·

{
a(t, ε)−9( δε)

1
2 ( t
δM )

1
2 if M ≥ t

δ

a(t, ε)−9( δε)
1
2 (Mδ

t )
3
2 if M ≤ t

δ .

The expression inside the brace is bounded by a constant by the definition
of a(t, ε), provided the constant α is less than 1

18 . So we have proved (53)
in case (i).

In case (ii), we fix j with C(xj , rj) ∈ S and make the trivial estimate card
Stε(xj , rj) . min(M, tδ ). It follows that

µλδ .
∑

i∈Stε(xj ,rj)

|Cδ(xj , rj) ∩ Cδ(xi, ri)|

. min
(
M,

t

δ

)
δ2

√
tε
,

where we used (16). Thus µ . λ
−1
√

t
ε min(Mδ

t , 1). Using the hypothesis
(ii) we therefore have

µ . λ−
5
3

(
t

ε

) 1
6

min
(
Mδ

t
, 1
)

i.e.,

µ . a(t, ε)−
8
3λ−

5
3

(
t

ε

) 1
6

min
(
Mδ

t
, 1
)

= λ−
5
3M

1
6 ·
{
a(t, ε)−

8
3 ( δε)

1
6 ( t
δM )

1
6 if M ≥ t

δ

a(t, ε)−
8
3 ( δε)

1
6 (Mδ

t )
5
6 if M ≤ t

δ

.

The expression in the brace is bounded by a constant provided α has been
chosen less than 1

16 , so we have proved (53). �

Completion of proof of Theorem 4.1. With notation as above we have

|E| ≥ |{x ∈ E : card({i : x ∈ Cδ(xi, ri) ≤ µ})}|
≥ µ−1

∑
j

|{x ∈ E ∩ Cδ(xj , rj) : card({i : x ∈ Cδ(xi, ri)}) ≤ µ}|

& µ−1Mλδ

& λ 8
3M

5
6 δ

by (53). Consequently (Mδ)
5
6 . |E|

δ
1
6λ

8
3

and Theorem 4.1 is proved. �
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Proof of Theorem 2′. It suffices to prove Theorem 2′ for functions f with
support in the unit disc. Therefore, we need only observe (as is done for
example in [10]) that the function

Φ(x, y) = |x− y|
satisfies the conditions (14), (15) at all points where x 6= y, and then use a
partition of unity to reduce to Theorem 4.1. �

Remark. One can consider various other cases besides Theorem 2′ and
Lemma 5.1 below. For example, one can consider circles with one of the
coordinates of the center taken as the parameter r, instead of the radius.
One gets the following result: If a set in R2 contains circles with centers at
all points of a smooth curve, then the Hausdorff dimension of E is at least
11
6 , and the estimate (49) holds for the restriction of the circular maximal

function to the curve. The proof is done most easily by using the remark at
the beginning of Section 5 below. We note that E can have measure zero;
cf. [12] (this reference was pointed out by W. Schlag).

5. Proof of Theorem 3′.

It is convenient to restate Theorem 4.1 using a different way of presenting
the curve family (cf. also [10] in this connection). Suppose then that U ⊂
R2 × R3, Ψ : U → R. We will denote variables in R2 × R3 by (x, λ), x ∈
R2, λ ∈ R3. Define C(λ) = {x ∈ R2 : Ψ(x, λ) = 0} and let Cδ(λ) be its δ-
neighborhood. Fix a point (a, λ0) ∈ U , and let r0 be the third coordinate of
λ0. Assume the following: Ψ(a, λ0) = 0, ∇xΨ(a, λ0) 6= 0, ∇λΨ(a, λ0) 6= 0,
and the cinematic curvature condition, i.e., that if x is close to a and λ, µ are
close to λ0, and C(λ) and C(µ) intersect at x, then either the unit tangent
vectors to C(λ) and C(µ) at x, or else the curvatures of C(λ) and C(µ) at
x, differ by & |λ − µ|. If f is supported in a small neighborhood of a, δ is
small, z ∈ (r0 − ε0, r0 + ε0) then define a maximal function Mδf(z) via

Mδf(z) = sup
λ
δ−1

∫
Cδ(λ)

|f |,

where the sup is taken over all parameter values λ with |λ − λ0| < ε0 and
λ(3) = z. Then the estimate (49) is valid.

The proof is as follows: The maximal function is unaffected by the change
of variables λ→ (λ(1), λ(2) + λ(3), λ(3)) or λ→ (λ(1) + λ(3), λ(2), λ(3)), so we
may assume that ∂Ψ

∂λ(3)
(a, λ0) 6= 0. But then by the implicit function theorem

the equation Ψ(x, λ) = 0 can be solved for λ3 and we are reduced to the
situation of Theorem 4.1.
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We will now estimate the maximal function defined by (7) by applying
this form of Theorem 4.1 with

Ψ((s, t), (x, y, z)) = s2 − (t− y)2

z
− x.(59)

Lemma 5.1. If p < 8
3 and q = 2p′, and if f : R2 → R satisfies supp f ⊂

{(s, t) : 1
2 ≤ s ≤ 2}, then

‖M̃ δf‖Lq({z: 1
2
<z<2}) . δ

− 1
2

( 3
p
−1)‖f‖p.

Proof. One can easily check the cinematic curvature condition for the fam-
ily of curves H(x, y, z) in the region 1

2 ≤ s ≤ 2, by representing the curves
as graphs over the t axis and using the formulas from first year calculus. We
omit this calculation. Using Theorem 4.1 and the above remarks it follows
that Lemma 5.1 is valid locally, i.e., is valid with the additional assumption
that suppf ⊂ {(s, t) : −1 ≤ t ≤ 1}. The definition of M̃δ is translation
invariant in t, so the lemma is valid with bounds uniform in N provided
that suppf ⊂ QN for some N , where QN = [1

2 , 2]× [N − 1, N + 1]. On the
other hand, when z ∈ [1

2 , 2] it is easy to check that Hδ(x, y, z) intersects only
a bounded number of QN ’s. Hence M̃ δf . supN M̃ δ(χQN f) and then the
lemma follows in a standard way, namely:

‖M̃ δf‖q ≤
∥∥∥∥∥∥
(∑

N

M̃ δ(χQN f)q
) 1

q

∥∥∥∥∥∥
q

=

(∑
N

‖M̃ δ(χQN f)‖qq
) 1

q

. δ−
1
2

( 3
p
−1)
(∑

‖χQN f‖qp
) 1
q

. δ−
1
2

( 3
p
−1)‖f‖p,

since the QN have finite overlap and q ≥ p.
We will relate the Kakeya maximal function of a rotation invariant func-

tion to the maximal function M̃ δ. In order to do so we first recall the stan-
dard definitions of the x-ray transform RF and maximal x-ray transform
R∗F , for functions F : R3 → R. Namely

RF (`) =
∫
`
Fdσ.

Here ` denotes a line in R3 and dσ is arc length. Also, R∗F : P2 → R,

R∗F (e) = sup
`:e`=e

RF (`),
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where e` is the direction of the line `.
Similarly, if f is a function on R2 then we define Hf : {(x, y, z) ∈ R3 :

x > 0, 1
2 ≤ z ≤ 2} → R via

Hf(x, y, z) =
∫
H(x,y,z)

f(s, t)dt

and H∗f : {z ∈ R : 1
2 ≤ z ≤ 2} → R via

H∗f(z) = sup
x>0
y∈R
Hf(x, y, z).

We will use complex notation for the first two variables in R3 when con-
venient, i.e., will denote the point (x1, x2, x3) by (x1 + ix2, x3). If ` is a line
in R3 which is not parallel to the x3 axis then ` can be parametrized by its
direction (eiθ,

√
z) ∈ P2, z ≥ 0, and its closest point to the e3 axis, which

will be of the form (iαeiθ, y), α ∈ R, y ∈ R. In this notation we have:

Lemma 5.2. If F is a rotation invariant function in R3, F (x) =
f(
√
x2

1 + x2
2, x3), then for any line ` which is not parallel to the x3 axis

and which satisfies z 6= 0,

RF (`) =

√
1 + z

z
Hf(α2, y, z).

Proof. We have

RF (`) =
∫
F ((iαeiθ, y) + τ(eiθ,

√
z))
√

1 + zdτ,

and since F is rotation invariant this implies

RF (`) =
∫ 2π

0

∫
F (eiφ(iαeiθ + τeiθ), y + τ

√
z)
√

1 + zdτ
dφ

2π

=
∫ 2π

0
F ((τ + iα)ei(θ+φ), y + τ

√
z)
√

1 + zdτ
dφ

2π

=
∫ 2π

0
F

((
t− y√
z

+ iα

)
ei(θ+φ), t

)√
1 + z

z
dt
dφ

2π

=
∫
f

(∣∣∣∣ t− y√z + iα

∣∣∣∣ , t) dt
√

1 + z

z

=
∫
H(α2,y,z)

f(s, t)dt

√
1 + z

z

as claimed.
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We define Ωρ ⊂ P2 via Ωρ = {e :
√
z ∈ [ ρ√

2
,
√

2ρ]}, and Ω̃ = {e ∈ P2 :√
z ∈ [δ, 1

δ ]}. We also define a variant of F ∗δ , as follows:

F δ(e)
def= δ−2 sup

t

∫
t
|F |,

where t runs over δ-neighborhoods of lines ` with e` = e. Thus F δ(e) &
F ∗δ (e), and F δ(e) ≈ F ∗δ (e) if z ≤ 1 and f is supported in {(s, t) : s ≤ 2}. �
Remark. At this point we are in a position to prove the Hausdorff dimen-
sion statement, Theorem 3. We only sketch the argument since of course
Theorem 3 is also a corollary of Theorem 3′. Suppose F and f are as in
Lemma 5.2, F ≥ 0. By applying Lemma 5.2 to the convolution of F with
the characteristic function of a disc of radius δ, we obtain

F ∗δ (e) . M̃δf(z) ∀e ∈ Ω1.

Consequently by Lemma 5.1,

‖F ∗δ ‖Lq(Ω1) . δ−
1
2

( 3
p
−1)‖F‖p , p <

8
3
, q = 2p′(60)

for rotation invariant functions supported in {x ∈ R3 :
√
x2

1 + x2
2 ∈ [1

2 , 2]}.
It is clear that the interval [1

2 , 2] here could be replaced by any other closed
bounded interval not containing the origin. If E is a rotation invariant
set which contains a line segment in every direction, then its intersection
with

√
x2

1 + x2
2 ∈ [a, 1

a ] contains a segment in a positive measure set of Ω1-
directions for suitable a > 0. We may then obtain the dimension statement
by applying (60) to the characteristic function of the latter set.

The purpose of the contortions below is to pass from estimates like (60)
to the scale invariant Lp → Lq estimates of Theorem 3′. As motivation, we
note that (by the preceding remark) Theorem 3′ and (60) have essentially the
same geometric content, and on the other hand the values of p in Theorem 3′
are larger than those in (60). It is therefore natural to interpolate between
an estimate like (60) and an L∞ → L∞ estimate. This is in fact what we
will do; cf. (77) below.

Lemma 5.3. Assume that p < 17
6 and that p is sufficiently close to 17

6 .
6

Let q = 2p′. Then there is ε = εp > 0 such that if F and f are as in Lemma
5.2 and supp f ⊂ {(s, t) : 1

2 ≤ s ≤ 2} then

‖F δ‖Lq(Ω̃) . δ
−( 3

p
−1)+ε‖F‖p.

Proof. We always assume F ≥ 0. It suffices to prove

‖F δ‖Lq(Ωρ) . δ−( 3
p
−1)+ε‖F‖p(61)

6“sufficiently close to 17
6

” can be taken to mean that p > 5
3
.
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with ε > 0 independent of ρ, since then we obtain the estimate of the lemma
with a slightly smaller value of ε by summing over dyadic ρ from δ to 1

δ . To
prove (61) we consider two cases, (i) ρ ≤ 1 and (ii) ρ ≥ 1.

In case (i) we fix ρ and define a map T : R3 → R3 via T (x1, x2, x3) =
(x1, x2, ρx3) Then the action of T on P2 is given by

(eiθ,
√
z) = e⇒ eT

def= (eiθ, ρ
√
z)

i.e.,

(1 + z)−
1
2R∗(F ◦ T )(e) = (1 + ρ2z)−

1
2R∗F (eT ).(62)

Note that e ∈ Ω1 ↔ eT ∈ Ωρ. Also let Φδσ be the characteristic function
of the set {x ∈ R3 :

√
x2

1 + x2
2 < δ, |x3| < σ}, normalized to have L1 norm

1, and similarly let φδσ be the L1 normalized characteristic function of the
set {(s, t) ∈ R2 : |s| < 2δ, |t| < σ}. If G = F ◦ T and g is defined via
G(x) = g(

√
x2

1 + x2
2, x3), and if e ∈ Ω1, then standard arguments together

with (62) and Lemma 5.2 justify the following string of inequalities:

F ∗δ (eT ) . R∗(F ∗ Φδδ)(eT )

≈ R∗((F ∗ Φδδ) ◦ T )(e)

= R∗
(
G ∗ Φδ δ

ρ

)
(e)

. H∗
(
g ∗ φδ δ

ρ

)
(z).

Taking into account that the map e → eT distorts areas by a factor of
roughly ρ we therefore have

‖F ∗δ ‖Lq(Ωρ) . ρ
1
q

∥∥∥H∗ (g ∗ φδ δ
ρ

)∥∥∥
Lq({z: 1

2
<z<2})

,(63)

and it remains to estimate the latter expression. �

Claim. Let σ ≤ 1, δ ≤ C0σ, and assume also that δ < 1
10 . Fix x > 0, y ∈

R, z ∈ [1
2 , 2], let H = H(x, y, z) and let µH be the measure defined via∫

fdµH =
∫
H(x,y,z) f(s, t)dt. Let Hα = Hα(x, y, z), S(y, β) = {(s, t) ∈ R2 :

1
2 ≤ s ≤ 2, |t − y| ≤ C1β} for an appropriate constant C1. Then when
1
2 ≤ s ≤ t,

φδ σ ∗ µH(s, t) .
∑
α

α−1χHα∩S(y,α
σ

)(s, t) +R.(64)

In the sum, α runs over all numbers of the form 2j max(σ2, δ), j ∈ Z+ ∪
{0}, α ≤ σ, and R satisfies

R = 0, if σ2 ≤ δ
suppR ⊂ {(s, t) : |t− y| ≤ Cσ, |s−√x| ≤ Cσ2} and
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|R(s, t)| . (δσ)−1 min

(√
δ,

δ√
|s−√x|

)
, if σ2 > δ.(65)

Proof of the claim. This is a standard type of estimation using (implicitly)
the curvature of the curves H(x, y, z).

Fix a point (s0, t0) with 1
2 ≤ s0 ≤ 2; we will prove the claim at the point

(s0, t0). Let B be the rectangle centered at (s0, t0) with sides parallel to the
axes, of lengths 4δ in t he s direction and 2σ in the t direction. We always
assume that B ∩H 6= ∅ which is evidently satisfied if φδσ ∗ µH(s0, t0) 6= 0.
We will also use the notation (s(t), t) to denote points of H; thus

s(t) =
√
x+

(t− y)2

z
.(66)

We split the proof of the claim into three cases.

(i) |t0 − y| ≥ 2σ.
Then |t− t0| ≤ σ implies (cf. (66)) that∣∣∣∣∂s(t)∂t

∣∣∣∣ ≈ |t0 − y|.(67)

Formula (67) immediately implies that µH(B ∩H) . min
(

δ
|t0−y| , σ

)
, i.e.,

|φδσ ∗ µH | . (δσ)−1 min
(

δ

|t0 − y| , σ
)
≈ (δ + σ|t0 − y|)−1.(68)

Next, since B∩H is nonempty we can fix t with |t− t0| ≤ σ and |s(t)−s0| ≤
2δ. Then |s0 − s(t0)| ≤ |s0 − s(t)|+ |s(t)− s(t0)| . δ + σ|t0 − y|, where we
used (67). Thus (s0, t0) ∈ Hα ∩ S(y, ασ ), with α ≈ δ + σ|t0 − y|. This and
(68) imply the claim (with R = 0) in case (i).

(ii) |t0 − y| ≤ 2σ, and σ2 ≤ δ.
In this case we just use that µH(B ∩H) ≤ σ, i.e.,

|φδσ ∗ µH(s0, t0)| . δ−1 ≈ (δ + σ2)−1.(69)

Also (by (66)) ∣∣∣∣∂s(t)∂t

∣∣∣∣ . σ(70)

when |t− t0| ≤ σ. Fix t with |t− t0| ≤ σ and |s(t)− s0| ≤ 2δ. Then

|s0 − s(t0)| ≤ |s0 − s(t)|+ |s(t)− s(t0)| . δ + σ2.(71)

We used (70). It follows that (s0, t0) ∈ Hα ∩S(y, ασ ), α ≈ δ+σ2. The claim
(with R = 0) follows from this and (69).

(iii) |t0 − y| ≤ 2σ, and σ2 ≥ δ.
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In this case we set R(s0, t0) = φδσ ∗µH . It suffices to show that (65) then
holds. From (66) we easily obtain the following two estimates:∣∣∣∣∂s(t)∂t

∣∣∣∣ ≈√s(t)−√x∣∣∣∣∂2s(t)
∂t2

∣∣∣∣ ≈ 1

when |t − t0| is small. The first estimate implies that if |s0 −
√
x| is large

compared with δ, then µH(B∩H) . δ√
|s0−√x|

. The second estimate implies

that in all cases µH(B ∩H) .
√
δ. Combining these, we get µH(B ∩H) .

min
(√

δ, δ√
|s0−√x|

)
in all cases, which gives the estimate for |R(s, t)| in

(65). On the other hand, we’re assuming |t0−y| ≤ 2σ, and the proof of (71)
did not use that σ2 ≤ δ, so (71) is valid in the present case also. Using (70)
once more it follows that |s(t0)−√x| . σ2, so |s0−

√
x| . σ2 and the claim

is completely proved. �

Applying the claim with σ = δ
ρ , we estimate the right hand side of (63)

as follows. For each z ∈ [1
2 , 2],

H∗
(
g ∗ φδ δ

ρ

)
(z) .

∑
α

sup
y
M̃α

(
χS(y,αρδ )g

)
(z) + E(z).(72)

Here α runs over all numbers of the form 2j max
(
δ, δ

2

ρ2

)
with j ≥ 0 and

α ≤ δ
ρ , and E(z) ≤ ‖gR‖1 where R is a function (depending on z) which

satisfies the estimates (65) for a certain s0 and t0, with σ = δ
ρ . We first

discuss the last term in (72). Estimates (65) imply that if δ > ρ2 then

‖R‖p′p′ .
(ρ
δ

)p′ ∫
|t−y|≤ δ

ρ

∫
|s−√x|≤ δ2

ρ2

|s−√x|− p
′

2 dsdt

≈
(ρ
δ

)2p′−3

i.e., ‖R‖p′ . (ρδ )
3
p
−1, and of course R = 0 if δ ≤ ρ2. Using this together with

Hölder’s inequality and the change of variables formula ‖g‖p = ρ
− 1
p ‖f‖p, we

obtain

ρ
1
q ‖E‖q ≤ ρ

1
q ‖E‖∞ .

{
(ρδ )

3
p
−1
ρ

1
q
− 1
p ‖f‖p if ρ ≤ δ 1

2

0 if ρ ≥ δ 1
2

. δ
− 3

4
( 3
p
−1)‖f‖p.



ON SOME VARIANTS OF THE KAKEYA PROBLEM 151

The exponent −3
4(3
p − 1) here is of course of the form −(3

p − 1) + ε, so,
substituting (72) into (63), we see that it suffices to prove

ρ
1
q

∑
α

∥∥∥∥sup
y
M̃α

(
gχS(y,αρδ )

)∥∥∥∥
q

. δ−( 3
p
−1)+ε‖f‖p.(73)

In order to prove (73) we fix α and let {Ij} be a covering of R by intervals
of length 3C αρ

δ , with finite overlap. Here C is the constant in the definition
of S(y, β). Then we let Sj = [1

2 , 2]× Ij ⊂ R2. We have

ρ
1
q

∥∥∥∥sup
y
M̃α

(
gχS(y,αρδ )

)∥∥∥∥
q

. ρ
1
q

∥∥∥∥∥sup
j
M̃α(gχSj )

∥∥∥∥∥
q

(74)

. ρ
1
q

∥∥∥∥∥∥∥
∑

j

M̃α(gχSj )
q

 1
q

∥∥∥∥∥∥∥
q

= ρ
1
q

∑
j

‖M̃α(gχSj )‖qq

 1
q

with all Lq norms being taken over 1
2 < z < 2, and we now proceed to bound

the terms in the sum over j. We have an L∞ → L∞ estimate

‖M̃αh‖∞ . αρ

δ
‖h‖∞ if supp h ⊂ Sj ,(75)

since each set Hα(x, y, z) intersects Sj in measure . α · αρδ . Now fix p0 with

2p− 3 < p0 <
8
3
.(76)

This is possible since p < 17
6 . Let q0 = 2p′0. Interpolating the bound (75)

with the bound

‖M̃αh‖q0 . α−
1
2

(
3
p0
−1
)
‖h‖p0

of Lemma 5.1, we obtain

‖M̃αh‖q . α−
1
2

(
3
p0
−1
)
p0
p

(αρ
δ

)1− p0
p ‖h‖p if supp h ⊂ Sj .(77)

In (77), the number q is equal to q0
p
p0

and therefore larger than q. It
follows that (77) remains valid with q replaced by q. Applying (77) with
this modification to the terms in the sum (74), we obtain

(74) . ρ
1
qα
− 1

2

(
3
p0
−1
)
p0
p

(αρ
δ

)1− p0
p

∑
j

‖gχSj‖qp

 1
q
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. ρ
1
qα
− 1

2

(
3
p0
−1
)
p0
p

(αρ
δ

)1− p0
p ‖g‖p.

The last line follows since q > p and the sets Sj have finite overlap. Using

‖g‖p = ρ
− 1
p ‖f‖p and juggling some indices, we obtain

(74) . ρ
3
2
− 3+2p0

2p α
1− 3+p0

2p δ
p0
p
−1
.

The power of α is negative by (76), and α & δ so by summing over α we

bound the left side of (73) by ρ
3
2
− 3+2p0

2p δ
p0−3

2p . The power of ρ here is positive
if p is close to 17

6 , so we obtain

left hand side of (73) . δ
p0−3

2p ‖f‖p.
Now we are done (with case (i) of (61)), since 3−p0

2p < 3
p − 1 by (76).

Case (ii) is simply a scaling argument. We consider the same map
T (x1, x2, x3) = (x1, x2, ρx3), where now ρ ≥ 1. If e ∈ Ω1 and t is a δ-
neighborhood of a line in the eT direction, then it is not difficult to see that
T−1t is essentially a δ-neighborhood of a line in the e direction. Conse-
quently, since volumes are distorted by ρ,

F δ(eT ) . ρ(F ◦ T )δ(e).

For large ρ the map e→ eT contracts areas by a factor of roughly ρ2, so∥∥F δ∥∥Lq(Ωρ)
= ρ

1− 2
q

∥∥∥(F ◦ T )δ
∥∥∥
Lq(Ω1)

. ρ1− 2
q δ
−( 3

p
−1)+ε‖F ◦ T‖p

= ρ
1− 2

q
− 1
p δ
−( 3

p
−1)+ε‖F‖p

= δ
−( 3

p
−1)+ε‖F‖p

where we used the ρ = 1 case and the relation between p and q. This finishes
the proof of (61), hence of Lemma 5.3.

Proof of Theorem 3′. We may assume that p is sufficiently close to 17
6 . We

claim first that if suppf ⊂ {(s, t) : r2 ≤ s ≤ 2r} then∥∥F δ∥∥Lq(Ω̃)
. r−εδ−( 3

p
−1)+ε‖F‖p(78)

with ε as in Lemma 5.3.
The case r = 1 is the content of Lemma 5.3. The general case will follows

by scaling. If we set G(x) = F (rx) then we have

F δ(e) = rG δ
r
(e),

so by applying Lemma 5.3 to G we get∥∥F δ∥∥Lq(Ω̃)
= r

∥∥Gδ∥∥Lq(Ω̃)
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. r
(
δ

r

)−( 3
p
−1)+ε

‖G‖p

= r

(
δ

r

)−( 3
p
−1)+ε

r
3
p ‖F‖p,

which is (78).
An easy fact about F ∗δ is that F ∗δ (e) . F ∗δ (ẽ) if |e− ẽ| ≤ δ. Consequently

‖F ∗δ ‖q and ‖F ∗δ ‖Lq(Ω̃) are comparable, so (78) implies that

‖F ∗δ ‖q . r−εδ−( 3
p
−1)+ε‖F‖p, supp f ⊂

{
(s, t) :

r

2
≤ s ≤ 2r

}
.

It follows on summing a geometric series that

‖F ∗δ ‖q . δ−( 3
p
−1)‖F‖p(79)

provided suppf ⊂ {(s, t) : s ≥ δ}.
We still have to prove estimate (79) when suppf ⊂ {(s, t) : s ≤ δ}. In

order to do so we first consider a function ψ : R→ R, and define

Aψ(t) = sup
I

1
|I|
∫
I
|ψ|,

where I runs over all intervals of length t. We can dominate Aψ(t) by the
average over (0, t) of the nonincreasing rearrangement of |ψ| so by Hardy’s
inequality ∫ ∞

0
t
q
p
−1Aψ(t)qdt . ‖ψ‖qp, 1 < p ≤ q <∞.

Define a function ψ of one variable via ψ(x) = δ−2
∫
F (x1, x2, x)dx1dx2.

Because of the support restriction on F , it is easy to see that

F ∗δ (e) . δ

θ
Aψ

(
δ

θ

)
,

where θ is the angle between e and the x3 axis. Consequently,

‖F ∗δ ‖qq .
∫ π

2

0

(
δ

θ
Aψ

(
δ

θ

))q
θdθ

.
∫ ∞

0
(tAψ(t))qδ2t−3dt

. δ2‖ψ‖qp
since q − 3 = q

p − 1.
On the other hand, it follows using Hölder’s inequality that ‖ψ‖p .

δ
− 2
p ‖F‖p. We conclude that ‖F ∗δ ‖q . δ

2
q
− 2
p ‖F‖p = δ

−( 3
p
−1)‖F‖p and the

proof of Theorem 3′ is complete. �
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