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Abstract

The “visual motion estimation” problem concerns the re-
construction of the motion of an object viewed under pro-
jection. This paper addresses the feasibility of such a
problem when the object is represented as a “rigid” set
of point-features in the Euclidean 3D space. We repre-
sent rigid motion as a point on the so-called “essential
manifold” and show that it is globally observable from
perspective projections under some general position con-
ditions. Such conditions hold when the path of the viewer
and the visible objects cannot be embedded in a quadric
surface of IR3.

1. Introduction

Animals require the ability to estimate the relative mo-
tion between themselves and the environment when fac-
ing everyday tasks such as walking, avoiding obstacles,
grasping objects. Only recently, however, have dynamic
estimation and control techniques given encouraging re-
sults for designing automatic systems which mimic such
abilities [8, 19, 15]. If we restrict our attention to motions
inside a “static scene”, the rigid motion constraint and the
perspective projection map define a nonlinear dynamical
model. Motion estimation may be formalized in terms of
parameter identification and/or state estimation of such a
model. Traditionally, the estimation task has been per-
formed using Extended Kalman Filters (EKF) [6, 17, 18].
A crucial issue in dynamic estimation/identification is the
observability of the model, or the identifiability of its pa-
rameters. We will see that the model which “defines”
the visual motion problem for feature points in the Eu-
clidean 3D space is neither linearly observable nor locally
weakly observable. It is possible, as we will see, to re-
duce the set of locally indistinguishable states by imposing
metric constraints on the state space; however, the model
suffers some structural limitations which make the local-
linearization based methods poorly conditioned and not
robust enough to be used in real world applications. Rigid
motion is indeed globally observable fromperspective pro-
jections, once the problem is formulated in the appropriate

topological space. In this paper we analyze a novel formu-
lation for motion estimation [29] in terms of identification
of a nonlinear implicitmodel with the parameters living on
a manifold, called the “essential manifold”. Using some
results from the computational vision literature [10, 23],
we show that this model is globally observable without
any Lie differentiation under general position conditions.
Such (sufficient) conditions are met when the object and
the path of the center of projection cannot be embedded
in a quadric surface [10, 23], and may be verified us-
ing a simple rank test. The use of dynamic observers
to estimate scene structure and/or motion dates back to
the eighties [4, 11, 14, 22]. Many current schemes (for
instance [1, 22, 27]) are based upon minor variations of
the same model, and none of them addresses the issue of
its observability. Our work is somehow complementary
to [7, 12], in which the feasibility of structure estimation
for known motion is assessed. We study instead the prob-
lem of motion estimation for unknown structure. Once
motion is known, structure is linearly observable from the
rigid motion model.

2. Visual motion estimation: statement and
formalization of the problem

Let us now consider a simple paradigm, in which
IR3 is a salient point in the scene;

are its coordinates with respect to an orthonormal reference
frame centered in the pupil of the viewer, with the
axis pointing forward and arranged as to form a
right-handed frame. Let 3 represent the
canonical (exponential) coordinates of the rigid motion
of the viewer [25]. As the viewer moves, each point
describes a vector field on IR3; in the viewer-centered
representation we have

If we consider motion between two time instants and
, and the velocity is held constant between the two

samples, we have
where are related to via [25]

(1)



1 (2)

In the followingwe assume a constant sampling rate 1.
Wemeasure the perspective projection up to some noise.
The map is the trivial association of each 0
with its projective coordinates as an element of IRP2: if

are the euclidean coordinates of , then
we denote with 1 1 its
projective coordinates. In summary, when we represent
the scene structure using points in the Euclidean 3D space,
the visual motion problem is defined by the constraints of
rigid motion and perspective projection. In the viewer-
centered instantaneous representation we have

0 0
0

1 : 3

where stands for an error in measuring the coordinates
of the projection of the point . Solving the visual motion
problem consists of estimating and for all the
visible points , i.e. reconstructing both the input and the
initial state of the above system from its noisy output. Al-
ternatively, motionmay be viewed as a vector of unknown
parameters in the model (3), which have to be identified.

3. Visual motion estimation as a filtering problem

Motion estimation may be viewed as an inversion prob-
lem for the model (3) when the initial state (structure)
is unknown. It is well known that under certain con-
ditions on the relative degree, it is possible to invert a
nonlinear system [16]. In order to do that, we com-
pute Lie derivatives of the output along the state vector
fields until the components of the input appear. If the
coupling matrix is nonsingular, we may invert it and re-
construct the input of the system from bracket combina-
tions of its output. In our case the model is driftless and,
therefore, all the components of the input appear at the
first level of differentiation. The first time derivative of
the output is in fact where

1 0 1 2

0 1 1 2 Once

we observe enough points, we have an overdetermined
system which we may solve for the motion parameters in
a least-squares fashion: ˆ ˆ where
the symbol denotes the pseudo-inverse. Note that
depends on the image measurements , and on the depth
of each point, , which we do not know. In order to
reconstruct the initial depth it is necessary to observe it.
Dynamic observers are, in essence, computing differenti-
ations of the output until the matrix which couples the
initial condition and the derivatives of the output (ob-
servability matrix or observability codistribution) has full

rank. In our case, however, both the input and the ini-
tial state appear at the same level of differentiation, since

0 0. Therefore, we can hope to recover
either motion or depth with this technique, but not both.
See [13, 30] for more details on this formulation.

Because the model described above has no drift dynamics,
left-inversion/state-estimation reduces to a static (instan-
taneous) procedure and hence it does not exploit the noise
rejection properties of dynamic observers. One possible
way to proceed, based on the above considerations, is to
use “dynamic extension”. Instead of considering motion
as the input of the system, we consider as input its time
derivative, and insert motion into the state dynamics. We
arrive to the augmented model:

0 0_ 0 0_ 0 0
1 : 4

Denotewith ¯ the augmented state vectorfield of the above
model. Since and are unknown, the visual motion
problem may be formulated as an “unknown-input/state
estimation” problem. However, one may want to exploit
some a priori information about , for example a
simplified dynamical model when the camera is mounted
onto a moving vehicle. In absence of such information,
and may describe a statistical model. The simplest

case is 0, which corresponds to constant
velocity (or “small acceleration”). A model often used is
Brownianmotion. A crucial issue in state estimation using
observers is, of course, the observability of the model,
which is addressed in the following section.

4. Perspective local observability of rigid motion

In this section we study the local observability of the
model (3). In the case of constant velocity (or small accel-
eration), the model is not locally observable. However, by
enforcing metric constraints on the state space, it is pos-
sible to reduce the set of locally indistinguishable states.
Some definitions and standard results on local observabil-
ity may be found in [16].

4.1. Linear observability
Consider the linearization of the model (4): define
¯ . Suppose for simplicity 1:

1 1 1

where 1 0
0 1 . The observability matrix

for the linearized system has rank 5, in face of a state
space of dimension 9. The linearized system is, therefore,
not observable, and we say that the original model is not
linearly observable.



4.2. Local observability
The local observability space is defined as the set of
the output functions and all their possible Lie derivatives
along vector fields in the accessibility algebra [16]. Under
slow acceleration, the vector field in (3) is autonomous
and, therefore, the observability space is spanned by

¯ ¯ , where ¯ is the state vector field.
The observability codistribution is spanned by

. The state manifold is IR9, intended as
a local coordinatization of 3 IR3. The rank of
the observability codistribution reaches its maximum of
8 after three levels of Lie differentiation, after which it
becomes involutive. The null space of the observability
codistribution, in case of non-zero forward translation, is:

Span 1 0 0 0 5

and similarly in the case of zero forward translation but
non-zero lateral translation. The set of states which are
indistinguishable from 0 0 0 is

0

0
0

0
03
03

0
03
03

0

IR

for 03 0 and similarly for the other cases. For pure ro-
tation, a basis of the null space of the observability codis-
tribution is 1 0 0 0 0 0 0 and all
the points with the same projective coordinates are indis-
tinguishable.

4.3. Global scale ambiguity: metric constraints on the
state manifold
Consider the solution 0 0 0 of (4) starting
from the initial conditions 0 0 0 when the motion is
held constant 0 ; 0:

0 0 0 0 if 0 0
0 otherwise

where is defined in eq. (2). It is easily seen that

0 0 0 0 0 0

for all 0 0 0 Since for perspective projection
we have , we conclude that
any initial condition 1 0 1 0 0 is indistinguishable
from 2 0 2 0 0, for any possible 1 2 IR.

This one-dimensional unobservable space is very famil-
iar, as we experience that an object translating in front of
us produces the same impression of a similar one which
is “twice as big, twice as far, and moving twice as fast”.
However, we may impose norm constraints upon the vis-
ible objects or upon the translational velocity in order to
get rid of the scale factor ambiguity. For example, if we
impose 0 1, two initial conditions are indistinguish-
able only if 1 2. There are still some aspects of the

model (4) which have not been elucidated: we know that,
if an object is visible, it must be in front of the observer,
i.e. 0 . Moreover, no points are allowed to lie
on the focal plane 0 (plane at infinity), and therefore
1 2. If we apply such metric constraints to the lo-
cally unobservable codistribution, we can reduce the set
of indistinguishable states to the trivial set. However, an
appropriate model should include such constraints explic-
itly into the state manifold. This may be done at the price
of transforming the state from the linear space IR9 to the
differentiablemanifold with boundary IR2 1 2 IR3
( 1 is the half space of dimension one, and 2 is the two-
sphere [3]). We now summarize some of the limitations
of the model (4):

The model is not locally observable. Metric con-
straints which makes the model observable are not
explicitly encoded in the state representation.
Three levels of Lie bracketing are needed to cover
the observable part of the state space. We know
it is possible to estimate motion and structure from
the first derivative of the projection of the points
(optical flow) [10, 20].
The model has the property of being “block diago-
nal” with respect to the structure, so that the states
corresponding to different points are independent.
Therefore, adding more points does not improve the
estimate of motion. Indeed, that the more points are
visible, the better the perception of motion ought to
be proves to be highly intuitive.

5. Global observability: motion estimation as
identification of an implicit dynamical model

In this section we describe an alternative formalization
of the visual motion problem which has been presented
in [29]. It is based upon a motion representation first in-
troduced by Longuet-Higgins [20]. Motion estimation is
viewed as the problem of identifying a system in exterior
differential form [5] with parameters on a manifold, called
the “essential manifold” [29]. We show that the model is
globally observable/identifiable with zero level of differ-
entiation for any number of visible points. When more
points are available, the redundancy may be exploited in
order to reduce the effect of the measurement noise.

5.1. The “essential model”
Consider a point in 3D space, with coordinates in the
viewer’s reference. Let be the coordinates after a
rigid motion of the viewer , of which are the
canonical coordinates [25] as in equations (1)-(2)1. It is
immediate to see that , and are coplanar,

1Note that in this section differs from the one defined in the previous
section. Rigidmotion is representedhere as ,
for consistency with the notation of [20].



and hence their triple product is zero. Once expressed in a
common reference, for example the viewer’s at time , the
coplanarity constraint becomes [20]

0 1 :

The same relationship holds for and , since
they represent the projective coordinates of and

; 3 is a skew symmetric matrix.
After defining the essential matrix [20] as ,
the essential constraint is

0 1 : 6

Since there is an arbitrary scale factor in the above equality,
we impose 2 1. The essential matrix was
first introduced by Longuet-Higgins [20], together with a
quasi-linear batch technique for estimating structure and
motion from two views andmore than 8 visible points. His
techniquewas then extended and developed in [10, 29, 32].
The essential matrices are points of the space

˜ 3 3

which has the structure of an algebraic variety in IRP8 [10]
as well as that of a differentiablemanifold [31] (in fact it is
exactly the tangent bundle of the rotation group, 3 ).
We now show that for a slight modification of ˜ it is pos-
sible to find an explicit local coordinate homeomorphism.

Theorem 5.1 Let x x Q be the triangulation function2,
which gives the depth of a point from its motionQ and its
projective coordinates x at time and x at time 1.
Then ˜ 1

x x IR
2 is a topologicalmanifoldof class

at least 0.

Proof:

inherits the topology from IR9. Consider the map

: 2 3 (7)
3

2

where are defined by the Singular Value Decom-
position (SVD) of , 3 denotes the third
column of and 2 is a rotation of 2 about the
axis. As usual is the rotation 3-vector corresponding
to the 3 3 rotation matrix 2 and is obtained
using the Rodrigues’ formulæ [25]. is represented in
spherical coordinates. Note that the map defines the
local coordinates of the essential manifold modulo a sign
in the direction of translation and in the rotation angle of
, therefore the map associates to each element of the

essential manifold 4 distinct points in local coordinates.
2See equation (8) in the proof for an instance of realization of the

triangulation function.

This ambiguity can be resolved by imposing the “positive
depth constraint”, i.e. each visible point lies in front of
the observer [20, 21]. Consider one of the four local coun-
terparts of , and the function : IR1 1

defined by
8

with 2 1
and , which yields the depth

of each point as a function of the projection and themotion
parameters. Note that it is locally smooth away from zero
translation. Now redefine the essential space as

˜ 1 IR2

3 3 1
0 (9)

where IR is the positive open half space of IR, 1 de-
notes the preimage of . Consider restricted to .
It follows from the properties of the SVD that is contin-
uous, and furthermore it is bijective. It can be shown [9]
that diag 1 1 0 and hence the subspaces

1 2 and 1 2 are allowed to switch.
This happens, however, without affecting continuity of
and . The inverse map is simply 1

which is smooth. Hence is a topological manifold of
class at least 0.

5.2. Observability for 8 points
Since the essential constraint is linear in , it is possible
to write it using the notation

0

where is a 9 matrix and Q is interpreted as a
nine-dimensional vector obtained by stacking the columns
of on top of each other. The generic row of is

1 . Following the
track of the previous sections, we will assume small ac-
celeration or a statistical model for motion which, lifted to
the essential manifold, results in a statistical model forQ.
The resulting model has the form

where is either a dynamical model or a statistical model;
and are noise processes which can be characterized,

as discussed in [28]. In [29], two recursive schemes are
proposed for solving the estimation problem: one is based
upon an Implicit Extended Kalman Filter (IEKF) in the
local coordinates of the essential manifold, the other is
based upon a linear update on the linear embedding space
IR9, followed by a projection onto the essential manifold.

Now consider : if it has rank 8, then there exists a unique
Q which spans its null space modulo a sign, since we



have imposed a constraint on its norm. This generates
four distinct points in the local coordinates which reduce
to a single solution once the positive depth constraint is
imposed. Once this is done at one step, we choose a
branch of the local coordinates map and stick with it for
the subsequent time steps [10, 20, 32]. We are naturally
led to the following:

Definition 5.1 We say the points x are in general position
x x 8

Claim 5.1 If an essentialmodel is in general position then
it is possible to reconstruct the motion of the viewer
modulo four solutions. The solution is unique once the
positive depth constraint is imposed at one time instant.

We still have to address the issue of the conditions under
which the matrix has full rank. Furthermore, we need
to deal with the case of less than 8 visible points, since it
automatically excludes general position conditions.

5.3. Observability with less than 8 points
When less than 8 points are visible, it is not possible to
achieve the above sufficient conditions for motion observ-
ability. Suppose, at time , the matrix has a
null space of dimension . When the viewer moves with
small acceleration, we may write

0
1 1 1 0

...
...
0

until 0 1 8. If this happens, we can restate
the sufficient conditions for motion observability for the
extended matrix

¯
1

...

Definition 5.2 We say an essential model is in general
position (GP) when either there are more than 8 visible
points and has rank 8, or there exists a time instant
such that the extended matrix ¯ has rank 8.

5.4. General position: rank condition for global ob-
servability of rigid motion
We are now interested in writing explicitly the general
positions condition. This is done using results in [10, 21,
32] for the case of more than 8 points. The claim, extended
to our general position condition, may be stated as:

Theorem 5.2 An essential model is in general position
there does not exist a (proper) quadric surface in IR3

which contains all the visible points and the path of the
center of projection.

Remark 5.1 We report here a proof given by Men-
nucci [24] for the case of more than 8 visible points. The
original proof by Longuet-Higgins may be found in [21].
The general case is obtained by substituting x for x .
Note that the quadric surface is a thin set in the 3D Eu-
clidean space. The measurement noise in the projected
coordinates is sufficient to set the model in general posi-
tion. Note also that 0 plays a critical role in achieving
global observability, while (or ) has no influence.

Remark 5.2 There aremany situations inwhich themodel
is not in general position, for instance when observing one
single point while holding constant velocity (the center of
projection describes an arc of a circle, and we could fit a
quadric passing through the observed point). The noise
in the data will indeed set the model in general position;
however, questions of conditioning arise when close to a
singular (non-general position) configuration.

Proof:

Let 0. Consider the points to be fixed in an interme-
diate reference system, where their coordinates are
such that ; then

0 1 , and the same holds for x in
place of X. By substitution we get

0 (10)

We may change the variable in this equation to be
; since is invertible, this would not change any

of the considerations below. We will therefore assume
without loss of generality.

0 (11)

Call IR3 3

0 1 ; is a vector subspace of IR3 3,
and the fact that there is only one solution is equivalent to
saying that the dimension of is one; indeed, dim

is always bigger or equal than one, since it contains
the matrix , as can be seen by direct substitution in eq.
(11). Suppose that the equation (10) holds for a matrix ,
and decompose it in the symmetric and antisymmetric part

2 2 , then

2 0 1



Consider the set IR3 2
0 This set always contains the two points

and , the centers of projection (as a simple computa-
tion shows). Suppose there is no (proper) quadric surface
containing the points ; then it must be that IR3,
that means that 0 and 0; this means that
is necessarily a multiple of , so we get that

dim 1.

Vice versa, suppose that the symmetric part of is
nonzero or that 0; then the set is a quadric
surface that contains the points (by definition), and it
contains the points and , which are the two centers
of projection (if the symmetric part 0, then the set

IR3 0 is a plane, which is in any case a
quadric surface).

6. Conclusions

We have analyzed the observability of rigid motion un-
der projection. The model which defines the problem for
feature points in the Euclidean 3D space lacks local ob-
servability. The observable manifold is covered with three
levels of Lie differentiation. The problem is indeed ob-
servable, once formulated in the appropriate topological
space.

We have then studied a formulation of visual motion esti-
mation in terms of identification of an implicit dynamical
model with parameters on the essential manifold [29]. The
model is globally observable/identifiablewith zero level of
bracketing. When more points are available, redundancy
may be exploited to reduce the effect of measurement
noise.
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