CaltechAUTHORS
  A Caltech Library Service

Structure of MrsD, an FAD-binding protein of the HFCD family

Blaesse, Michael and Kupke, Thomas and Huber, Robert and Steinbacher, Stefan (2003) Structure of MrsD, an FAD-binding protein of the HFCD family. Acta Crystallographica Section D: Biological Crystallography, 59 (8). pp. 1414-1421. ISSN 0907-4449. https://resolver.caltech.edu/CaltechAUTHORS:20161014-154839701

[img] PDF - Published Version
See Usage Policy.

3513Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20161014-154839701

Abstract

MrsD from Bacillus sp. HIL-Y85/54728 is a member of the HFCD (homo-oligomeric flavin-containing Cys decarboxylases) family of flavoproteins and is involved in the biosynthesis of the lantibiotic mersacidin. It catalyses the oxidative decarboxylation of the C-terminal cysteine residue of the MrsA precursor peptide of mersacidin, yielding a (Z)-enethiol intermediate as the first step in the formation of the unusual amino acid S-[(Z)-2-aminovinyl]-methyl-D-cysteine. Surprisingly, MrsD was found to bind FAD, in contrast to the three other characterized members of the HFCD family, which bind FMN. To determine the molecular discriminators of FAD binding within the HFCD family, the crystal structure of MrsD was analyzed at a resolution of 2.54 Å. Crystals of space group F432 contain one MrsD monomer in the asymmetric unit. However, a Patterson search with EpiD-derived models failed. Based on the consideration that the dodecameric MrsD particle of tetrahedral symmetry resembles the quaternary structure of EpiD, rotational and translational parameters were derived from the geometric consideration that the MrsD dodecamer is generated from a monomer by crystallographic symmetry around the position (1/4, 1/4, 1/4) of the unit cell. A structural comparison with the FMN-binding members of the HFCD family EpiD and AtHAL3a shows conserved sequence motifs in contact with the flavin's pyrimidine ring but divergent environments for the dimethylbenzene ring of the isoalloxazine moiety. The position of the ribityl chain differs in MrsD from that found in EpiD and AtHAL3a. However, the FMN-phosphate binding sites are also highly conserved in their exact positions. In all three cases, the flavin cofactor is bound to a structurally conserved region of the Rossmann-fold monomer, exposing its Re side for catalysis. The adenosyl phosphate of FAD is anchored in a well defined binding site and the adenosine moieties are oriented towards the interior of the hollow particle, where three of them pack against each other around the threefold axis of a trimeric facet.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1107/S0907444903011831DOIArticle
http://scripts.iucr.org/cgi-bin/paper?S0907444903011831PublisherArticle
Additional Information:© 2003 International Union of Crystallography. Received 19 April 2003. Accepted 29 May 2003. The work was supported by Deutsche Forschungsgemeinschaft SFB 413 (StS) and Grant KU869/4 (TK). We thank Gabi Bierbaum for helpful discussion and Gleb Bourenkov for support with synchrotron data collection.
Funders:
Funding AgencyGrant Number
Deutsche Forschungsgemeinschaft (DFG)SFB 413
Deutsche Forschungsgemeinschaft (DFG)KU869/4
Subject Keywords:flavoproteins; lantibiotics; post-translational modification; oxidative decarboxylation; Rossmann fold; HFCD family
Issue or Number:8
Record Number:CaltechAUTHORS:20161014-154839701
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20161014-154839701
Official Citation:Blaesse, M., Kupke, T., Huber, R. & Steinbacher, S. (2003). Acta Cryst. D59, 1414-1421.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:71118
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:14 Oct 2016 23:00
Last Modified:03 Oct 2019 16:04

Repository Staff Only: item control page