Duivenvoorden, S. and Oliver, S. and Buat, V. and Darvish, B. and Efstathiou, A. and Farrah, D. and Griffin, M. and Hurley, P. D. and Ibar, E. and Jarvis, M. and Papadopoulos, A. and Sargent, M. T. and Scott, D. and Scudder, J. M. and Symeonidis, M. and Vaccari, M. and Viero, M. P. and Wang, L. (2016) HELP: star formation as a function of galaxy environment with Herschel. Monthly Notices of the Royal Astronomical Society, 462 (1). pp. 277-289. ISSN 0035-8711. doi:10.1093/mnras/stw1466. https://resolver.caltech.edu/CaltechAUTHORS:20161017-065053729
![]() |
PDF
- Published Version
See Usage Policy. 1MB |
![]() |
PDF
- Submitted Version
See Usage Policy. 2MB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20161017-065053729
Abstract
The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data from many astronomical observatories. Its main focus is on the Herschel data, which maps dust-obscured star formation over 1300 deg2. With this unprecedented combination of data sets, it is possible to investigate how the star formation versus stellar mass relation (main sequence) of star-forming galaxies depends on environment. In this pilot study, we explore this question within 0.1 < z < 3.2 using data in the COSMOS field. We estimate the local environment from a smoothed galaxy density field using the full photometric redshift probability distribution. We estimate star formation rates by stacking the SPIRE data from the Herschel Multi-tiered Extragalactic Survey. Our analysis rules out the hypothesis that the main sequence for star-forming systems is independent of environment at 1.5 < z < 2, while a simple model in which the mean specific star formation rate declines with increasing environmental density gives a better description. However, we cannot exclude a simple hypothesis in which the main sequence for star-forming systems is independent of environment at z < 1.5 and z > 2. We also estimate the evolution of the star formation rate density in the COSMOS field, and our results are consistent with previous measurements at z < 1.5 and z > 2 but we find a 1.4^(+0.3)_(−0.2) times higher peak value of the star formation rate density at z ∼ 1.9.
Item Type: | Article | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||||||||||
Additional Information: | © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Accepted 2016 June 16. Received 2016 June 16. In original form 2016 January 21. First published online June 20, 2016. We thank the referee for very useful comments that improved the quality of the work. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 607254. This publication reflects only the authors’ view and the European Union is not responsible for any use that may be made of the information contained therein. SD acknowledges support from the Science and Technology Facilities Council (grant number ST/M503836/1). SO acknowledges support from the Science and Technology Facilities Council (grant number ST/L000652/1). BD acknowledges financial support from NASA through the Astrophysics Data Analysis Program (ADAP), grant number NNX12AE20G. EI acknowledges funding from CONICYT/FONDECYT postdoctoral project No. 3130504. MV acknowledges support from the Square Kilometre Array South Africa project, the South African National Research Foundation and Department of Science and Technology (DST/CON 0134/2014) and the Italian Ministry for Foreign Affairs and International Cooperation (PGR GA ZA14GR02). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). | ||||||||||||||||||||||||||||||||||||||
Funders: |
| ||||||||||||||||||||||||||||||||||||||
Subject Keywords: | galaxies: evolution galaxies: star formation infrared: galaxies | ||||||||||||||||||||||||||||||||||||||
Issue or Number: | 1 | ||||||||||||||||||||||||||||||||||||||
DOI: | 10.1093/mnras/stw1466 | ||||||||||||||||||||||||||||||||||||||
Record Number: | CaltechAUTHORS:20161017-065053729 | ||||||||||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20161017-065053729 | ||||||||||||||||||||||||||||||||||||||
Official Citation: | S. Duivenvoorden, S. Oliver, V. Buat, B. Darvish, A. Efstathiou, D. Farrah, M. Griffin, P. D. Hurley, E. Ibar, M. Jarvis, A. Papadopoulos, M. T. Sargent, D. Scott, J. M. Scudder, M. Symeonidis, M. Vaccari, M. P. Viero, and L. Wang HELP: star formation as a function of galaxy environment with Herschel MNRAS (October 11, 2016) Vol. 462 277-289 doi:10.1093/mnras/stw1466 first published online June 20, 2016 | ||||||||||||||||||||||||||||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||||||||||
ID Code: | 71131 | ||||||||||||||||||||||||||||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||||||||||||||||||||||||||||
Deposited By: | Ruth Sustaita | ||||||||||||||||||||||||||||||||||||||
Deposited On: | 17 Oct 2016 17:26 | ||||||||||||||||||||||||||||||||||||||
Last Modified: | 11 Nov 2021 04:40 |
Repository Staff Only: item control page