PHYSICAL REVIEW B 71, 125102(2005

Origin of artificial electrodynamics in three-dimensional bosonic models
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Several simple models of strongly correlated bosons on three-dimensional lattices have been shown to
possess exotic fractionalized Mott insulating phases with a gapless “photon” excitation. In this paper we show
how to view the physics of this “Coulomb” state in terms of the excitations of proximate superfluid. We argue
for the presence of ordered vortex cores with a broken discrete symmetry in the nearby superfluid phase and
that proliferating these degenerate but distinct vortices with equal amplitudes produces the Coulomb phase.
This provides a simple physical description of the origin of the exotic excitations of the Coulomb state. The
physical picture is formalized by means of a dual description of three-dimensional bosonic systems in terms of
fluctuating quantum mechanical vortex loops. Such a dual formulation is extensively developed. It is shown
how the Coulomb phas@s well as various other familiar phag@$ three-dimensional bosonic systems may
be described in this vortex loop theory. For bosons at half-filling and the closely related system of spin-1/2
guantum magnets on a cubic lattice, fractionalized phases as well as bond- or “box"-ordered states are possible.
The latter are analyzed by an extension of techniques previously developed in two spatial dimensions. The
relation between these “confining” phases with broken translational symmetry and the fractionalized Coulomb
phase is exposed.
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[. INTRODUCTION tices while single ones remain gapped. The unpaired single
vortex survives in the resulting insulating phase as a gapped
Several recent studies have produced a variety of modekxcitation that retains &, quantum numbefonly the oddity
that exhibit quantum number fractionalization in two dimen-of vorticity remains well defined—this is theZ, vortex or
sions(2D) and in the absence of magnetic field3lt has  vison excitation of this fractionalized insulator.
been appreciated for some time that similar fractionalization Turning to 3D systems, we envisage a similar perspective
phenomenon can occur also in three dimensions and can také insulating states as vortex condensates, except that vortex
novel forms not possible in 2B° In particular, so-called excitations in the superfluid are now lines instead of point
Coulomb phases have recently been demonstrated in 3particles. For example, &, fractionalized insulator is ob-
bosonic models. In these Coulomb phases the fractionalize@ined by destroying the superfluid order by pairing and con-
degrees of freedom interact with a gapless emerggd)  densing vortex lines.
gauge field. The gauge excitations describe, at low energies The goal of the present paper is to develop a similar in-
and long distances, a linear dispersing transverse modsition for the 3D Coulomb phasfalso dubbed théJ(1)
which has been dubbed an “artificial photon.” The adjectivephasé. In particular, we want to understand the genesis of
“artificial” refers to the fact that this photon really corre- the excitation structure of this phase in an approach that de-
sponds to some collective excitation of the boson system anplarts from the superfluid state. We note that the excitation
has nothing directly to do with the true electromagnetic pho-structure of the Coulomb phase consists of gapped charge-
ton. In particular the artificial photon in the fractionalized 3D 1/2 chargons that are minimally coupled to an emergent gap-
Coulomb phases arises even in microscopic models of corrdess “photon” mode. In addition, there is another gapped ex-
lated bosons with purely short-ranged interactions. The Cougitation that may be viewed as a “magnetic monopole” that
lomb phase also contains additional gapped excitations thaicts as a source of the emergent magnetic flux. The picture
may be identified with magnetic monopoles of the internalthat appears from the present study is that physics inside
gauge field. The possibility of such dynamical generation ofvortex cores is intimately involved in producing tt#1)
“light” was noted more than two decades ago in Ref. 10. phase. We thus have a rather unusual but very interesting
In the case of fractionalization in 2D bosonic systems, asituation when we cannot ignore the microscopics of the vor-
very fruitful perspective is obtained by departing from a su-tex core when describing the relationship of the superfluid
perfluid state and considering nearby Mott insulator phasephase to the nearby insulating states.
as vortex condensatés4 Conventional insulating states of ~ The main idea is very simply illustrated by considering
bosons, with possibly charge or bond order, can be undebosons on a three-dimensional cubic lattice and at an average
stood in these terms. The same perspective also naturalfifling of one-half boson per site. In some semiclassical de-
predicts occurrence of 3, fractionalized state when the su- scriptions, there are two simple phases that might be imag-
perfluidity is destroyed by the condensation of doubled vorined for the bosons. First, there is a translationally invariant
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FIG. 1. View of the cross section of a vortex line in a three-
dimensional superfluid of bosons at half-filling on a cubic lattice. FIG. 2. Vortex lines with different core orders are indicatedhas
T‘_NO checkerboard ordering pa’Fterns—Where Fhe _bOS_O” density i§nd B. Left panel: a domain wall associated with the order in the
higher on one of the two sublattices—are possible inside the vortex e It the superfluid is disordered by proliferating both vortex
core. species simultaneously while keeping such domain walls gapped,

superfluid phase. Second, there is a Mott insulator in whicfh€ Coulomb phase results. The gapped domain walls survive as the
the bosons preferentially occupy sites on one or the other gionopoles of the Coulomb phase. Right panel: a “roton” loop is
the two sublattices. Clearly, such a Mott insulating groundfo”_ned by brlnglng together a vortex with one ordered core and an
state is twofold degenerate corresponding to the two possibl%m'vortex with the other core. Thes_e partlculgr roton loops corre-
states of boson charge ordering. The superfluid phase po&ond to loops of emergent magnetic flux which are strongly fluc-
sesses vortices which are extended line defects. The supdyating in the Coulomb phase. The artificial photon is associated
fluid order parameter will be suppressed in the core of such ¥ith fluctuations of these loops.

vortex line. If the vortex core size is larger than the Iattice"ne as shown in Fig. 2, but there is a gap for such a domain
spaciTg(as ",?i.ght well happen it makes sense to ask about 5| excitation. We ex’pect this gap to remain when such
what “phase” is obtained in the core. An immediate guess ig,ices proliferate while retaining their order. When both
that the core is simply the checkerboard charge-ordered Mo, oy gpecies proliferate, the domain wall excitations be-

insulating state as illustrated in Fig. 1. However, the check- ; ; ; ; : :
> come point particles which we identify with the monopoles
erboard state breaks a symmefithat of sublattice inter- of the Coulomb phase.

cra:jngehandhis twoflcl)lg deger;_ergte. ]}Ne are thgn led dt_o CON" The appearance of the artificial photon is more subtle, but
c E ?]t agltt?re ‘r']‘” h(_'} tr\]/vo b'” S Od vor.tt|cgs thepen INg ONjs also a consequence of proliferating two species of vortices.
which sublatlice has higher boson density in the core. To explain this, it is useful to recall what happens in the

will be modified once we take quantum fluctuations into ac-%Ore familiar situation of particle condensates. When the

count more seriously in the vortex core. In particular, as théjamcIe that is conden_smg IS _neutra(lrh the_sense of hav-
core has finite radius, it essentially behaves as a ondnd only short ranged interactiopghe resulting condensate

dimensional system. Quantum fluctuations will tend to re-SUPPOrts gapless Goldstone excitations. On the other hand, if

store the broken symmetry in the core and produce a uniqult 1S charged(in the sense of having long-ranged interac-
vortex line. However, as the broken sublattice symmetry igi0ns), there are no gapless excitations associated with the
discrete, it is natural to expect that the symmetry breakingondensatior(the Anderson-Higgs phenomenorConsider
will be stable to weak quantum fluctuations. Thus there willnow the dual description of bosonic Mott insulators in three
be some range of parameters in which there will be twospatial dimensions as “condensates” of extended vortex
distinct kinds of vortex lines with symmetry-broken cores. Inloops. For such a line condensate we may again expect that if
other range of parameters a unique vortex with no symmetrghe vortices have long-ranged interactions, then the resulting
breaking in the core may well result. The change between theondensate supports only gapped excitations. However, con-
two parameter ranges involves no ground-state phase transiider now the situation envisaged above where there are two
tion but only a change in the nature of the excited states. vortex specieqdistinguished by the ordering in the core
Now consider disordering the superfluid by proliferating which both condense. We may form a “roton” line from these
and condensing vortex line loops. Clearly, the insulatingtwo species by bringing together a vortex with one ordered
phase that obtains will depend on the structure of the vorticesore and an antivortex with the other core, and this is pic-
that are actually proliferating. Consider the situation whergured in Fig. 2. Such objects have no net vorticity, and there-
the vortices have ordered cores. If we preferentially confore only short-ranged interactions with one another. When
dense one or the other kind of vortex, we will clearly induceboth vortex species condense such roton loops condense as
checkerboard charge order in the insulator. But what if wewell. By analogy to particle condensates we may expect then
condense both species of vortices with equal amplitude? W find gapless excitations. We will show in this paper that
argue that the resulting phase is the Coulomb fractionalizethis is indeed the case and that the resulting gapless modes
insulator. We show how the excitations of this exotic insula-may be identified with the photon of the Coulomb phase.
tor may be understood in terms of the various excitations oMore precisely, we will argue that the roton lines described
the superfluid when it has ordered vortex cores. above may be viewed as the magnetic field lines of the emer-
Consider a vortex line. It is still possible for the core ordergent deconfinedJ(1) gauge field that obtains in the Cou-
to change from one state to the other somewhere along tHemb phase.

125102-2



ORIGIN OF ARTIFICIAL ELECTRODYNAMICS IN... PHYSICAL REVIEW B 71, 125102(2005

It is useful to point a connection with a recent sttitigf
so-called deconfined critical points in two dimensions such
as separating a superfluid and a bond density-wave insulator
of bosons at half-filling on a square lattice. In the superfluid
phase, we can speak of two vortex species with checkerboard
charge order in the cor@vortices are now point particlgs
There is a high-order mixing of the two species involving
four vortices of one type changing simultaneously to the
other type, so the vortex identity potentially becomes prob-
lematic as the gap to the vortex excitations is decreased. The
result of Ref. 15 is that the tunneling that mixes the two
species is in fact dangerously irrelevant at the transition to
the bond density-wave state, and the long-wavelength de-
scription contains two vortex fields with a separate number
conservation for each species. The tunneling is relevant
when the vortices condense and produces an insulating state
with specific bond order. As elaborated in Ref. 15 there is a
large intermediate region of length scales in the insulator
(close to the critical pointwhich may be described as a o _
two-dimensional version of the Coulomb phase. Timer- FIG. 3. Explicit model that realizes the Coulomb phase. Boson
mediate long-wavelength physics of this region is describedi,SIandS are located on the Iink-centered sitgs of a simple cubic lat-
in terms of a gapless excitation which may be regarded as tHice. _The islands can be also viewed as formln_g a network of corner-
two-dimensional version of the photon; this “photon” be- sharl_ng gctahedra, and _two octahedron2 unl_ts are shown. In the
comes massive at longer wavelengths because of the proliﬁam”tqn'an’ Eq(1), we stipulate a termiN; which prefers charge
eration of the discussed tunneling events. In contrast, in threr?-ﬁeUtraIIty of each octahedron.
dimensions, condensing vortices with ordered cores is a _ _
stable possibility at all length scales and gives the Coulom$he€ model motivates an effective theory, formulated as a
phase at the focus of the present study. compactU(1) gauge theory with two matter fieldshar-

The primary purpose of this paper is to develop the physigons, that properly captures the possible phases and is ame-
cal picture sketched above for the excitations of the Coulomiffable to an analytic description in terms of vortices, furnish-
phase in some detail. This goal is strongly aided by a formaing the main argument for the proposed physical picture. In
dual description of three-dimensional bosonic systems irfec. lll, we consider vortex phenomenology in this two-
terms of extended fluctuating vortex loops. This dualitychargon theory. Precise duality analysis is presented in Sec.
transformation—a generalization t8+1)D of the familiar IV, where we first review the conventional boson-vortex du-
boson-vortex duality in two spatial dimensions—has beerflity in (3+1)D from a modern perspective and then describe
available in the literature for many years, and is reviewed ifhow to include the physics of two vortex species in the dual
Sec. IV. Here we will use this and further develop it exten-description(the details of the derivation are given in Appen-
sively to obtain a dual description of the phases of variouglix A). In Appendix D, we consider &€+ 1)D Ising version
three-dimensional bosonic systems which gives substance @ the specific boson model in order to give some intuition in
the physical pictures. In the course of these studies, we d& more simple setting; this toy model realizes a topological
velop a description of bosons at half-filling on a three-Z, phase in two dimensions via a mechanism that resembles
dimensional cubic lattice that is capable of describing all théhe one proposed for the Coulomb phase in three dimensions,
insulating phases discussed above—the Coulomb phase, théth the vortices replaced by Ising domain walls. In Sec. V
checkerboard charge ordered phase, and also different bod supporting Appendixes B and C, we develop a dual de-
density-wave ordered phases. This gives a three-dimensionggription for bosons at half-integer filling. An important in-
generalization of the corresponding development in Ref. 15gredient of this description is monopole Berry phases gener-
Boson systems at half-filling are closely related to spin-1/2alizing Haldane’s result to three-dimensional spin-1/2
guantum magnets. Thus some of our results have direct inffuantum magnets on a cubic lattice. We apply this in Sec.
plications for quantum spin systems on cubic lattices as wellVl, where we show how bond density-wave states can be
Indeed we will borrow from techniques familiar from studies analyzed as monopole condensates coming from the Cou-
of quantum antiferromagnets in two spatial dimensions andomb phase.
generalize them in discussing the structure of the bond-
ordered insulating phases of bosons at half-filling Il. REALIZATION OF THE COULOMB PHASE AND

The paper is organized as follows. In Sec. Il, we first PHENOMENOLOGY
review a simple bosonic model that explicitly realizes the
fractionalized Coulomb phase. This provides a good starting
point for the discussion of the relationship of tbi¢l) state We begin with a review of a specific model that realizes
to other phases. The model has integer boson filling and i€oulomb phase in 3D%8The model is formulated in terms
simple to analyze in the charge representation, but the vortesf soft-core bosons(quantum rotors residing on link-
physics is obscured by the nontrivial lattice structure. Still,centered site€'islands” of a simple cubic lattice as depicted

A. Review of the boson Hubbard model
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In the ground-state sectdt, =0 for all r, an elementary
calculation gives

Superfluid HY = Uwzl: n - Kring% (Pooshaar + H.C),  (2)

ractionalized
Coulomb with King=2w?/U. When writing the “ring exchange” term
around a given placket, we label a boson island by the cor-
9 responding link end points.

2 A simple change of variables shows tHagf’? together
Conventional with the constrainlN,=0 can be regarded as the well-studied
Insulator (3+1)D compactU(1) gauge theory. Indeed, divide the un-

derlying cubic lattice of Fig. 3 inté\ and B sublattices. We

now define a vector fielé ,= 7 ¢+, Wherey=+1 if r
U/l]\v eAandzy=-1ifr e B, =X,y,Z we also perform the cor-

responding transformation to the vector fiegl,= 7,n; 1+,
FIG. 4. Schematic phase diagram of the boson model(Hg. conjugate taa,,. In the new variables,

exhibiting the stable phases discussed in the text; note that we do

not know the details for intermediate-coupling strengths and N,=7nV -E. 3

whether some other states may intervene.

w/uy

If a,, is interpreted as a compadt(1) vector potential and
o . . ~ E, as the corresponding electric field operator, the ground-
in Fig. 3. The boson islands can also be viewed as forming atate sector constraimt, =0 is simply the Gauss law, while

lattice of corner-sharing octahedra. Bosons can hop with amhe effective Hamiltonian has the declared lattice gauge
plitudew between neighboring islands. Besides the usual ontheory form

site repulsionu,, we also include repulsive interactions be-
tween the bosons that favor charge neutrality of each HY = u, > B2, — 2K;ing>, cogV X a). (4)
octahedron. The complete Hamiltonian is ra o

_ + 2 2 In (3+1)D, the compactJ(1) gauge theory has two dis-
H= Wd%(l’b' i +H.c) +u¢,$ A U; Neo (D) tinct phases: FoKn,,=<u,, the gauge theory is confining,

_ and all excitations carrying nonzero gauge charge are con-
wherey =€ creates a boson on a given island anis the  fined. Zero gauge charge excitations of course exist with a
corresponding boson number operator. Each octahedron ggmp «U; these carry integer physical charge in units of el-
labeled by the cubic lattice site at its center; the corre- ementary boson chargg, This is the conventional Mott

sponding operatoN, is defined through insulator of our boson model.
In the opposite regimé;,;=u,, the gauge theory is in
N.=>n, the deconfined Coulomb phase and has a gapless linearly
ler dispersing gauge bosdiphotor) and a gapped topological
wherel e r sums over all cubic lattice links emanating from Point defect(monopol¢ as its distinct excitations in thi,
r. The total boson number of the systenN@t:%ErNr. =0 sector. In the charged sectors, objects Wtk 1 at some

We summarize the analysis of the possibleé phases of thglte—i-€., physical charge,/2—are not confined and can
above Hamiltonian. When the boson hopping dominates, Propagate above a finite gap of ordér These charged ex-
>u,,U, the system is a superfluid. When the charging encitations interact via an emergent long-range Coulomb inter-
ergy dominatesy,,, Usw, the system is a conventional Mott action. A detailed description of the ground-state properties
insulator. On the other hand, as reviewed below, when th@f the Coulomb phase due to the gapless photon can be

charging energiesl andu,, are varied separately, there is an found in Ref. 8. _ , _
intermediate regimé >w3>/u,U such that the system is in This completes the_ review part of our discussion, and we
a Coulomb phas.This phase is a fractionalized insulator NOW focus on the relationship of th&(1) phase to the nearby
with the excitation spectrum consisting of gapped chargeMore conventional phases_.Atwo-dlmensmnaI quantum Ising
1/2 chargons, a gapless linearly dispersing photon, and ¥ersion of_the corner-sharing octahedra model is considered
gapped monopole. A schematic phase diagram of our modd? Appendix D.

is shown in Fig. 4.

The analysis in the limiu>w, u,, is similar to that in the
largeU limit of the electronic Hubbard model at half-filling.
Forw=u,=0 there is a degenerate manifold of ground states We want to obtain a description of the Coulomb phase
specified by the requirement =0 for eachr, separated by a that includes the chargon fields; this is required if we want to
large charge gap from the nearest sectors. Including the  discuss the transition from the Coulomb phase to the super-
u, terms lifts the degeneracy in each such sector, and this iguid as the charge gap collapses to zero. To this end, we
best described by deriving the corresponding effectiveneed to consider charge-carrying excitations in more detail.
Hamiltonians for small perturbing couplings. In the largeV limit, this is done by deriving effective Hamil-

B. Phenomenological gauge theory description
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tonians in the charged sectors, just as we did in the ground-
state sector, Eq2). For example, to study the motion of a ;
single chargon in a given region, we consider the sector with P
N, = 6”0 wherery can be anywhere in this region. By inspect- SUPE?rfIU'd
ing the possible moves of the chargon, we find that it can hop 5
only on the sites of the same sublattice of the cubic lattice.
More generally, the total chargon number on a given sublat-
tice is conserved for any chargon motion that derives from
the microscopic boson hopping. This means that there are
two distinct chargons and can be also seen directly from the Confined Ins.
Gauss law, Eq(3): An excitation with the gauge charge +1
carries boson chargeqgg/2 if it resides on theA sublattice
and —q,/2 if it resides on theB sublattice, and in the Cou- K
lomb phase the gauge and boson charges are both good quan-

tum numbers. FIG. 5. Schematic phase diagram of the comga¢t) gauge

~ Instead of working directly with the microscopically de- theory with two matter fields, Eq5). The dashed line in the super-
rived effective Hamiltonian for the chargons, which is com-fjyid phase represents the conjectured vortex core transition from a

plicated, we consider the following model gauge theory:  unique vortex to two physically distinct vorticéthere is no transi-
tion in the superfluid ground state across this)ine

unique vortex two vortices

S
Coulomb Ins.

Hoen= U, (N3, +n3,) =t (bl by €27 + b} by &)
r

!

Ny =Ngr == Ny (10

+ug 2 EZ-K 2 cogV X a). (5 Applying the corresponding slave-boson mean-field scheme

and studying fluctuations about the mean field, one obtains

the above gauge theofthe details of the derivation can be

found, e.g., in Appendix E of Ref. 15The constraint, Eq.

(10), formally corresponds to the limiig— o0 in Hy,., but

(6) we can imagine that some coarse-graingds finite, and the
description in terms ob;, and b,, as emergent degrees of

b, andb}, both carry gauge charge +1, and we take the firsfreedom applies in some regime of parameters.

to carry boson chargeqs/2 and the secondgg/2. There is The phase diagram of the two-chargon gauge thébgy

no discrimination between the two chargons, so the hoppiné§ €stablished by standard arguméhend is shown in Fig.

amplitude and the on-site interaction are taken equal for the- The different phases are readily identified with the phases

two species. This theory has the correct chargon content arf the microscopic boson Hamiltonian, Fig. @ In the re-

is therefore expected to capture the relevant physics of th@ime t<U, K>ug, the gauge theory is in the deconfined

This has two chargon fields minimally coupled to the com-
pact U(1) gauge field. The Hilbert space of the theory is
defined by

V-E=n1,+n2r.

microscopic model. Coulomb phase with gapped chargons; this is of course the
For later convenience, we also write down the corre-Coulomb phase of our microscopic model and has the correct
sponding(3+1)D classical action particle content by constructiolfii) In the regimet<U, K
<Ug, the gauge theory is confining and there are no free
Sy = ﬁz [cosV by —a,) + cOV b, — @,)] gauge charges; only gauge-neutral excitations are free and
carry integer boson charge; this phase corresponds to the
-K> cogV,a,-V,a,). (7) Mott insulator. (i) Finally, in the Higgs phasé>U both

chargon fields condense and the gauge-neutral &&te 2

For simplicity, the action is written in a space-time isotropic obtains an expectation value; this corresponds to the super-
form and is characterized by two coupling consta@itand  fluid phase of the bosons. It should be emphasized here that
K. The former characterizes the relative strength of the chawhile the model gauge theory reproduces the phase diagram
gon hopping versus repulsiot, while the latter character- of the physical system, it is only in the Coulomb phase that
izes the competition oK vs Ug. the chargon variables represent low-energy degrees of free-

As an aside, we note that the above gauge theory als@om; in the other phases, the chargons are confined and are
appears in a particular “slave-boson” treatment of a generigot present as individual particles in the spectrum at any

bosonic Hamiltonian at integer filling: energy.
The phenomenological description allows us in particular
Hgeneric= Up>y N2 =Wy, bibys + -+ (8)  todiscuss the nature of the phase transitions. Thus, we ex-
r ! pect the conventional insulator to superfluid transition to be

B _ _ in the (3+1)D XY universality(bosons at integer fillingfor
Specifically, consider an analog 6P" representation for the small K/ug, but it can also become first order for larger

bosons treated &3(2) rotors: K/ug. The deconfinement transition between the two insula-
£ + (o) tors is similar to that in the pure gauge theory and empiri-
by = €% =by by =& Pn%2), (9)  cally is believed to be first order. Finally, in the Coulomb to
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superfluid transition the gauge field can be viewed as nontwo distinct vortex speciegA more careful discussion re-
compact since the monopoles remain gapped and do not paguires the full dynamical theoyAs we vary the parameters
ticipate. This transition is expected to be fluctuation-inducedn the superfluid phase, there is a transition occurring inside
first order’ the core of vortex lines from a unique quantum core state to
Our treatment so far has been entirely in the boson chargevo degenerate but distinct states. The “transition line” cuts
degrees of freedom, and to conclude this discussion we poirthe superfluid phase into two regions as indicated in Fig. 5.
out some salient properties of the Coulomb phase. First, the It should be emphasized that there is no transition in the
Coulomb phase features an emergent gauge charge consergaound state of the system. The transition occurs in the prop-
tion law that isexactas long as the system remains in this erties of an infinite vortex line, which is a very high energy
phase. On a formal level, in this case, the projective transexcitation. But this has a bearing on which insulating state is
formation that has led us to thé(1) gauge theory is conver- obtained when vortices condense: If we have a unique vortex
gent as a series MU, and the result is a generit(1) gauge  which then condenses, we obtain the conventional insulator.
theory with the local constraint that is exact by constructionOn the other hand, as we argue below and in subsequent
Second, the Coulomb phase and the emergent conservatisactions, if we have two distinct vortex species and both
law are stable against addirgbitrary perturbations to the condense, we obtain the fractionalized Coulomb pHase
microscopic Hamiltonian as long as these perturbations ar&ig. 5. It is also possible to have two vortex species but
sufficiently small®6:8:10 this again follows from the local condense only one of them, and this will give an insulating
constraint imposed by the largéterm, since the resultis by state with broken discrete symmettly,; — b, symmetry in
fiat a gauge theory. This amazing fact holds for perturbationghe two-chargon model or more physically the sublattice in-
that can breakall symmetries of the microscopic Hamil- terchange symmetry in the microscopic boson mpdelthe
tonian and despite the fact that the low-energy theory has simple lattice model, Eq(7), this phase is probably not re-
gapless photon. This is a hallmark of the topological struc-alized.
ture present in the Coulomb phase. We begin with an effective description of the superfluid
However, the topological character of the Coulomb phas@hase, which is obtained by expanding the cosines in the
and its genesis appear mysterious in the charge languagéassical action, Eq.7); the terms read schematically

Much further insight is obtained when we consider vortices 2 2 2
in the superfluid phase from the point of view of the phe- (Vér=a)"+ (Ve =a)"+(V X&)%,
nomenological theory. Shiftinga—a’=a-V ¢, the fielda’ is massive, and at low

A precise topological characterization of the Coulombenergies we are left with one Goldstone mof€(¢;
phase is provided by the existence of the gapped monopoleg,)]?, as expected in the superfluid phase.
excitation. At energy scales well below the monopole gap, To study vortices, we apply an external electromagnetic
the physics is that of a noncompatk(l) gauge theory. gauge potential that couples to the physical boson number
Monopoles remain gapped across the transition to the supegdensity; this amounts to the replacements
fluid phase—as we show below this leads to unusual vortex 1 5 1 2
physics. ( = ) +( —a+= )+ 2.
Specifically, we argue for the presence of two distinct Véma ZAQXt Véma 2AeXt (V@

stable vortices in the superfluid adjacent to the Coulom + :
phase. We can think of the two vortices as having distinl-)rhe factors £1/2 correspond to the£2 charges carried by

guishable order in the core. Physically, the core can Changttge chargons. Aic/q, vortex is obtained by requiring
from one order to the other somewhere along the vortex line,

but this domain wall costs an additional energy. The stability % Aex- dl = 27
of two distinct vortices in some parameter regime is a con-

sequence of some microscopic energetics in the syster@n going around the vortex. At large distances from the core
When this superfluid state is disordered by proliferating botive have

vortex species, the Coulomb phase obtains, and the domain 1 1

wall excitations become particles identified with the gapped Vo, —a- EAext: 0, V¢,—a+ EAext: 0. (12
monopoles.

11

Consider configurations witle, , winding by 2mm ,, re-

Ill. VORTEX PHENOMENOLOGY AND PHYSICAL spectively, §V ¢y »-dl=2mm, ,. From the above equations
PICTURES we conclude

The two-chargon gauge theory is amenable to a precise Al = _
duality treatment, which gives a dynamical theory of vorti- %Ae“ dl = 2m(my —my), (13
ces. A formal derivation is given in Appendix A. Here, we

proceed gently and consider a semiclassical description of

vortices in the superfluid. This discussion provides a physical § a-dl =m(mg+my). (14
picture that underlies the more formal treatments of subse-

guent sections. We argue that, depending on the microscop- Thus, there are different ways to realize a physical vortex
ics, it is possible to have either a unique physical vortex otin terms of the chargon fields. For a unit vortex, the relevant
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realizations arém;,m,)=(1,0) and(0,-1) since these have interchange symmetry corresponds simply to interchange of
the lowest core energy. Notice that the two realizations carryhe A and B sublattices in the underlying model. We there-
the gauge field fluxb,= + 7 and -, respectively. More gen- fore conclude that this sublattice interchange symmetry
erally, different realizations of a given vortex are character{present in the microscopic modlés spontaneously broken
ized by values of the gauge fluk, that differ by multiples  in the core of a vortex line in the superfluid phase close to
of 277. Independent of specific realizations, we note an im+he transition to the Coulomb insulator. The two different
portant distinction between Odd-strength vortices, WthhvorteX Species S|mp|y Correspond to the two possib|e degen_
carry flux ®,=mmod2m), and even-strength vortices, erate ordered patterns for the core state.
which carry®,=0 mod2m). An almost similar situation also obtains for bosons at
In the above, the gauge fieilis treated as noncompact. nha|f-filling (see Sec. Yon a cubic lattice in a superfluid state
On a formal level, the multiplicity of the physical vortex ¢jose to the transition to a Coulomb insulator. There the two
appears to be an artifact of ignoring the compactness of thiterent vortex species again have broken sublattice symme-
gauge field. Indeed, by moving a monopole across the Syssy i the core which may be simply identified with check-

tem, which ?S a dynamical degree of free.dom,_ WE can Chang(@rboard density wave order. This kind of order in the vortex
the gauge field flux by 2. For the preceding discussion of a core is very natural for bosons at half-filling—thus a Cou-

single vortex, configurationél,0) and (0,—1) that differ in ; . o
@, by 2 can mix with each other and produce a uniquek.)r.nb insulator is perhaps_ a more natural possibility at half-
filling once the superfluidity is destroyed.

hysical vortex(the mixing occurs on the level of local line . . .
phy X d Having understood the vortex structure in the superfluid

segments In this case, the only gauge flux distinction that .
remains is between even and odd vortices. phase, we can now turn around and address the question of

However, it is crucial to note that the possibility of the Now to view the Coulomb phase in terms of the excitations

mixing discussed above is dynamicalquestion. We argue ©Of the superfluid. To destroy the superfluidity we need to
below that it effectively does not occur near the CoulombProliferate vortex lines. With two vortex species present, first
phase boundary. consider proliferating just one kind of vortex. The resulting
Consider a single physical vortex. As shown above, thdnsulator will then inherit the order in the core of the prolif-
vortex carries internal gauge flux ofmor — depending on ~ €rated vortex species. In other words, the resulting insulator
whether it is realized as a vortex ify or ¢,. Now consider will brea_lk a symmetry(for instance, the sublattice inter-
a *domain wall” inside the core of such a vortex where thechange in the boson Hubbard model of Se.@n the other
internal gauge flux changes frommito —. As the internal 1and, we may proliferate both vortex species with equal am-
gauge flux changes bymat such a domain wall, we may Plitudes. The resulting insulator will then not inherit the bro-
identify it with a monopole configuration of the gauge field. Ken symmetry of either vortex core. This is the Coulomb
In the Coulomb phase this monopole costs a finite nonzergha@se. The monopoles are clearly the remnants of the domain
energy. The monopole gap is expected to stay on approacM‘la"S betwe_en the two ordering patterns along _the vortex
ing the transition to the superfluid. Consequently, close t§Ore (See Fig. 2 The photon may then be associated with
this phase boundary but in the superfluid side, there will be uctuations of a “roton” formed by combining together a
finite nonzero energy cost associated with the domain wall£°0P Of one vortex species with a loop of an antivortex of the
inside the vortex core. This immediately implies the exis-Other vortex species. To understand this, we note that in the
tence of two distinct vortex species with the same physicap@uge-theoretic description of the superfluid phase such a
vorticity which are distinguished by the sign of the internal F0ton has no net vorticity but carries internal gauge flux of
gauge flux in the core. 2. In other words, it represents a tube of magnetic flux.
Upon moving away from the phase boundary between th&nce the two vortex species proliferate, the fIl_Jctuatlons c_)f
superfluid and Coulomb phases, the domain wall gap in théhe rqton may be'descrlbed in term§ of fluctuating magnetic
vortex core will eventually close. The domain walls will then field lines, and this physically describes the photon.
proliferate inside the core, leading to the destruction of the The above physical pictures are elaborated in precise for-
vortex core order so that there will then be a unique vortexMal terms in the following sections.
for any given physical vorticity.

What is thg physical meaning of the two vortex species? IV. DUAL-VORTEX DESCRIPTION
To explore this, first note that the two vortex species may be
described as being either a ful/2/ortex inb; (but not inb,) To make the above discussion of the vortex core structure

or vice versa. Thus the amplitude bf is suppressed in the and its implications for proximate insulating phases more
core of the¢, vortex while that ofb, is not, and the reverse precise, it will clearly be useful to have a dual formulation
happens for thep, vortex. Thus, the order in the core of the which focuses on the vortex line degrees of freedom. For the
vortex corresponds to spontaneously breaking the symmetigsues at the focus of the present paper—namely, a dual de-
of interchange ob; andb,. But what is this symmetry in scription of the Coulomb phase—it is necessary to have a
terms of a more microscopic description in terms of the un-dual formulation that clearly brings out the presence of the
derlying bosons? The answer clearly depends on the modélo distinct vortex species with ordered cores. This is most
considered. For the microscopic boson Hubbard model ofonveniently obtained by dualizing the gauge theoretic de-
Sec. ll, the two chargon specibs, are associated with sites scription in terms of the two chargon fields. Such a formula-
that belong to the two distinct sublattices of the cubic latticetion may be obtained by an extension of the duality transfor-
on whose links the physical bosons reside. Thus, the charganation for the usual lattic¥Y model in(3+1)D. This model
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describes bosons at some large integer filling on a three- * 1

dimensional lattice. Since even this duality is possibly unfa-= 2 ' |  [Dji,J&(V,j,Jexp| - 2—2 2,12 ji2mp? |
miliar to most readers, we first review it below and show (Gl = B i

how various familiar Mott insulating states of bosons at in- (19
teger filling may be described in terms of vortex line con- ) _ )
densates. We will then generalize this duality to incorporatdi€re, we introduced a real-valued fiejgl, which can be

. 0) -

the nontrivial core structure of the vortex lines when thereinterpreted as parucl_e_currer{q;)i(M)} is any member of the
are two vortex species and show how the Coulomb phaselass with given vorticityg;,,. The prime on the sum over
results from their proliferation. the vorticitiesq;,,, indicates that these satisfy schematically
d(q,,dx,0dx,)=0, which reads as an integer-valued con-
A. Review of vortex description for (3+1)D XY model straint

Here we review duality for generic 3D quantum bosons at
integer filling. The dualities are performed for the Euclidean
action, which in this case i+1)D XY model:

1
Eep(r,u,vv(rq;w: 0 (20)

for each direct lattice cube or equivalently each dual lattice
Soldl=-BD coqV ). (15) link. Here and in what follows, we _specifical_ly work 13
i +1)D and make use of the fully antisymmetric tensgy,,
to connect between direct and dual lattice objects; summa-
To avoid clutter, we take equal spatial and temporal coution over repeated indicies is implied unless specified other-
plings. The formalism is standat&!® but we want to bring  wise. The above constraint means that there are no sources
out its physical interpretation as was done in Refs. 11 and 2fbr vortices. We can also specify the vortex world sheets by
for (2+1)D. Our treatment below makes explicit the corre- an integer-valued field, ,, residing on the dual placketsp-
spondence of the dual variables to vorticities and enables yser case letters, ... specify dual lattice sitgs
to obtain a dual perspective on many familiar Mott insulating
states. The primary purpose of this review is to provide a 1

background for the subsequent duality treatments of more Foo = 2 oo 21
complicated cases.
We start with the Villain form for the partition function: V,F,,=0. (22)
* w B 5 The current conservation constrait,j,=0 can be
Zy= X [D¢ilexp| - EE (Vudp=2mp;,)° | solved by introducing a rank-2 antisymmetric figjg,, re-
[Py J==oe = i siding on the dual plackets
(16)
j =ty S (23)
We work on a(3+1)D hypercubic lattice; space-time sites Ju= AT

are labeled by lowercase Latin lettdis...), and the lattice
directions are labeled by Greek lette(g,...). Integer-  with factor 27 introduced for convenience. We now have
valued fieldsp;, ensure 2r periodicity in the angles. For

each configuration in the statistical sum, we define vorticities 251270 = 20 81poFipe (24)
iu l,p<o

=V,p,-V.p,. 17
Qur = VP = VP (7 so vorticity appears explicitly in the statistical sum. At this

In (3+1)D, q,, describe vortex world sheets. Here and be-Stage, we can integrate out the figlg. and obtain a descrip-

low, the lattice derivatives are indicated only schematicallyion in terms of the vortex world sheets with specific long-
but the precise meaning is readily recovered in each case.ranged interactions and consider different phases of the vor-

As usual forO(2) models, we want to separate the spin- {€x System as determined by this interaction. We expect that
wave and vortex parts. This is achieved by dividing configu-mOd'fy'ng the mteractl(_)ns at short distances W|Il_not change
rations{p;,,} into classes with the same vorticity. Two con- the physics of the various phases but only positions of the
figurations{p;,} and{p,} belong to the same class if they phase boundaries, and we therefore consider generalized

can be related vig/,=p;,+V,N with an integer-valued field models with added local *fugacity” terms
N;. Using the latter, we now extend thfintegrals over the

. . 1 1
whole real line and obtain Sug = N > 0= BN > Fl (25
l,p<o

i,,u<V
Z,= > D¢, f [Dj;,Jexp _iz 2 In order to describe the vortex system in more familiar
[Giy] J o 2B ™ terms, we instead retain tiyg,, field and proceed as follows.

The integer-valued constraint of no vorticity sources written
+i 2 jiu(V,— 27p9) (18)  interms ofF,,,, Eq.(22), is handled by introducing &/(1)
i o . variablec;, on each dual lattice link in the manner
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w free, and its single propagating mo@ehich can be found,
AV F ) f dc, exdic,V,F,.] (260 e.g., by doing quantum mechanics for this flelsl precisely
o the phonon mode of the superfluid.
(no sum overp). We can now perform the summation over _ The Mott insulatophase is obtained by proliferating vor-
vorticities, obtaining tices, soe is “condensed” or, more appropriately, “decon-
fined.” The rank-2 fieldy,, is gapped out and in the process
- 7 1 9 “eats” the photon mode&n analog of the Anderson-Higgs
Zv[)‘]:f [Dgipol f [Da,lex _ZB-EJ”‘] phenomenoh) so there are no gapless excitations, as ex-
- o " pected. Gapped charged excitations of the Mott insulator are
xexp N >, codV,c,~V,C, g, |, (27) represented by monopoles of the dual gauge field, and the
P P discreteness of charge is encoded in the corresponding quan-

tization condition for the rank-2 field, which is a generaliza-

where the cosine stands for the appropriate Villain form andjop, of the flux quantization in the Ginzburg-Landau theory.
j,.is given in Eq.(23). The only approximation in the above  |ngeed, let us consider a monopole worldline. Fix a time

duality transformation(besides Villain-izing is the added  gjice (of our Euclidean path integiaind evaluate the boson
vortex fugacity. The resulting dual theory has a compach,ymber

U(1) gauge field coupled to a noncompact rank-2 field. This
is a generalization of th¢2+1)D duality, where the dual
theory has &J(1) scalar field coupled to a noncompact gauge
field. The vorticityq,,, of the original angle variables is pre-
cisely the integer-valued electromagnetic field terfsgr of
the.compact elgctrodynami_cs in thg \_/aria_b!es. In a Hamil- Oy = VsGy — V40 = B,, (30)
tonian formulation, vortex lines are identified with the elec-

tric field lines—e.g. Ex=F ,=0qy, Thus, €°Rx is conjugate SO the right-hand side coincides with the outgoing magnetic

to Er, and can be viewed as a vortex line segment creatiof{u* divided by 27, which is equal to the enclosed monopole
operator number. Thus, monopole world lines in the dual description

For later convenience, we also exhibit the dual lattice ac&€ Precisely world lines of integer-quantized charges in the

; Sy ‘o : direct description.
tion using “soft-spin” vortex fields ) ) . : .
g P Z, fractionalized insulatarWe can readily generalize the

- * A g, above description of the Mott insulator to discuss more ex-
Sion= "1 2 (¥ W1 Ve Hig €700 + C.C otic insulatorrg))hases. Thg fractionalized phase is obtained
as a condensate of doubled vortices while single vortices are
+ 2 V(W) + K 2 (€40p0V 18,0)° (28)  not condensed. The dual action generically allows double-

I vortex hopping terms like

l,p<o

) 1
Niot = f j,dr = Py f do’r (Vigyz+ Vygox+ Vo). (29)

In the far field away from the monopole we have, e.g.,

l,p<o

Here W ~€%» creates a vortex line segment on the dual _ _ _

lattice Iilnk;V(|\If|2):s|\If|2+u4|\If|4+u6|\If|6+--- controls am- N2 2 €og2(V,C, = VoG~ aip)]: (3Y)
plitude fluctuations of the fieldl. From the preceding deri- ] . ] -

vation, the rank-2 fieldy, ,, describes boson density fluctua- When A is small whilex, is large, we expece“» to be
tions via Eq.(23). The first term in the action represents deconfined but no¢“s. Topological excitations in this phase
vortex line “hopping” by extending across a placket. The@re monopoles of the field*%, and these are seen to repre-
boson density acts as a source for the rank-2 gauge potenti#¢nt charged excitations carrying fraction 1/2 of the boson
seen by the vorticethis gauge potential produces the famil- charge. Odd-strength vortex line excitations correspond to
iar Berry phase when a vortex line moves in the supenfluid Vison line excitations of th&, phase.

The behavior of the compati(1) gauge theory without
the rank-2 field is well understood, and we can use this as a
starting point to develop intuition about the vortex system.
This line of thinking can be interpreted as considering We now show how to incorporate the physics of two dis-
screened vortices first. Indeed, for a charged boson systetinct vortex species with ordered cores in the dual formula-
we would conclude that the fielgl,, is massive and can be tion. As mentioned above, this is most conveniently done by
ignored. To obtain a faithful description of neutral bosons—dualizing the gauge-theoretic description in terms of two
e.g., to correctly reproduce the low-energy modes—we needhargon fields. The duality transformation is a straightfor-
to include the “gauging” by the rank-2 field. This can be ward but tedious extension of the methods of the previous
accomplished by a semiclassical analysis just as in theubsection. We therefore relegate the technical details to Ap-

l,p<o

B. Dual formulation with two vortex species

Ginzburg-Landau theory. pendix A and focus here on the result and the physics con-
We now summarize the dual description of the familiartained in it. As expected on the basis of the semiclassical
phases of 3D quantum bosons at integer filling. discussion in Sec. lll, the analysis in Appendix A yields a

The superfluichhase of the bosons is identified with con- dual theory with two vortex field®» andW® correspond-
finement in€. Vortex excitations in the superfluid are the ing to the two possible ordering patterns in the core. Further,
gapped electric field lines. The rank-2 figlg, is essentially  these vortices are allowed to turn from one flavor into the
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other, and the corresponding domain wall appears as an atiteractions only—indeed, it is precisely the roton formed by

ditional field Y in the dual theory. combining a vortex of one kind with an antivortex of the
A generic “soft-spin” action for the two vortex fields can other kind. To show that its fluctuations lead to a gapless
be expressed in the form photon mode, we focus on just the fluctuations of the

“phases”CV, C? of the two vortex species:

Snon=—\ 3 WL W, weom + ) P e gt (g
b=1,2
(Note that compared with Appendix A, we ugk’=c?,
+ 2 V(WP + [W22) + WD P2 2)] C@=-c@, while the monopole fieldd™ is the “phase” of
. . * e(m) . .
+ v 2.\ YYD p@ the domain wall particl&’, ~€“ .) Expanding to quadratic
1 22 (unpr¥otpo)® = hen 2 (VY 1 ¥,V order in small gradients of?, @, the resulting ‘elastic’
+c.c)+ 2 U(Y,]D. (32)  action has the following schematic structure:
S=(V x CW-g)2+(V x ? -g)? (34)

In the two-chargon theory, bott#|?" and ¥|?" create a
physical vortex line segment, but it is realized as a vortex in +[V X (CY-C?)P+-- (35)
b, in the first case and an antivortexln in the second case;
see Eq(13). The vortex interaction term¢ andW need not Hereg represents the rank-2 gauge field. The ellipses refer to
be specified at this stage but are important when determininthe kinetic energy term for thg and various anharmonic
the vortex condensate,, represents quantum tunneling be- corrections to the above quadratic action. It is now easy to
tween the two core states and is written here as the domaee that the combinatia®t? +C? is rendered massive while
wall hopping, whileU represents the domain wall energy the combinatiorC™-C? remains massless. The latter pre-
cost. cisely represents a linear dispersing gapless photon with two
Two broad possibilities need to be considered in the sutransverse polarizations in three spatial dimensions. Thus as
perfluid. The first possibility is that domain walls are ener-promised the photon is indeed associated with fluctuations of
getically cheap and proliferate inside vortex cores. In thisthe roton formed from a vortex of one kind and antivortex of
case the two vortex fields lock to each other. In the integethe other kind. The gappéd field simply corresponds to the
filling case considered here, this produces a unique physicahonopole excitation of the Coulomb phase. Finally, the
vortex, and the proper low-energy description is then in‘monopoles” of the proliferated dual fields¥ and W@ are
terms of a single vortex fieldthe situation at half-integer the two chargons. This completes our formal description. We
filling is more complicated; see the next secjion also point that Appendix D develops a similar description of
The second possibility is that domain walls are energetithe IsingP” phase in two spatial dimensions that incorpo-
cally costly and remain gapped inside vortex cores. In thigates the physics of two distinct Ising domain walls.
case the fieldY” has only short-ranged correlations and may We conclude by emphasizing that the vortex proliferation
be integrated out. The two vortex fields are proper low-transition is likely first order, in which case the lattice action
energy degrees of freedom. We can now ask what happerfier vortices does not have a formal continuum limit, but this
when these vortices condense—e.g., wlien0 becomes an does not affect the presented physical picture of the phases.
unstable state of the potentil Depending on the interac-

tion W the condensate either has qut one _of the two .vortex V. BOSONS AT HALFE-FILLING
species or has both vortex species proliferated simulta-
neously. The former case occurs whaf>0, and we write We now consider bosons at half-filling in some detail. We

schematicall)( W) # 0, (¥@)=0. The resulting Mott insu- have in mind some generic Hamiltonian

lator then inherits the order in the core of tHgY vortex. 12

There are no gapless modes: as discussed in the previous = _=) _ T

subsection, the rank-2 field Higgses out the gapless modes of Hgeneric ”bg (n, 2) Wb% brby+ e (36)

the single-species world sheet condensate. In the micro-

scopic boson Hubbard model on the lattice of corner-sharing’he physical picture presented in the Introduction and elabo-

octahedra, this Mott insulator breaks— B sublattice inter- rated in the previous section carries over readily and is per-

change symmetry. haps more appealing in this case. In particular, the ordering
On the other hand, for the interactit¥ of opposite sign, pattern in the vortex core when there are two species simply

it is favorable for both vortex species to proliferate simulta-corresponds to checkerboard density order of the bosons.

neously, schematicalfV)y=(W¥?) 0. In this case we ob- This is a very natural “insulating” core for the vortices to

tain a fractionalized Coulomb insulator with a gapless pho-develop when the bosons are at half-filling. Formally, this

ton, a gapped monopole, and two species of gappedore structure may readily be seen to arise in the same semi-

chargons. The gapless photon obtains since the rank-2 fieldassical treatment as in Sec. Ill. We first break up the boson

g,0 can Higgs out only the?™ w@" ‘part’ of the two- field into two “chargon” fields as before. This leads to a

species world sheet condensate. W& W@ part does not description in terms of a compadi(1) gauge theory coupled

couple tog,, it represents string objects with short-rangeto two chargon fields. A physical vortex in the superfluid
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order then corresponds to having a full vortexbin(but none
in b,) or a full antivortex inb, (and no vorticity inb;). Thus,
there are still two types of vortices which convert into each
other at the locations of monopoles of the gauge theory. Fol-
lowing the closely related discussion in Ref. 15 in two di-
mensions, it is readily seen that the two vortices correspond
to the two possible patterns of checkerboard density-wave
ordering in the core(The precise reason is simply that the
two vortices differ in the sign of the internal gauge flux. For
bosons at half-filling, this gauge flux couples linearly to the
difference of the boson densities on the two sublattices;
hence there is checkerboard density-wave ordering in the b) ! !
core.

As for bosons at integer filling, the insight into the vortex |

|

| |
structure can be given a precise form by employing a duality .5> } <— Qd
transformation. The dual action is derived in Appendix C. el 75/12 i s sl e
The Coulomb phase is again obtained when both vortex spe- ¥ &
cies condense with equal amplitude. The domain walls in the ‘,/)' T “';'PJ‘ T
ordered vortex core survive as gapped monopoles, and the = 5 - < even
photon emerges exactly as befgas the fluctuations of pro- lTC/12
liferated rotons made by combining a vortex and an antivor- C

tex of two different specigsThe gapped chargons are again

“monopoles” of the Mo vortex fields that ap_p(?ar in the dual FIG. 6. Description of the monopole Berry phases for bosons at
theory. Thus the main structure of the description of the Coupqjfiling on a simple cubic lattice in terms of a static gauge po-
lomb phase is unaffected from that appropriate at integefential seen by the monopoles hopping on the dual latt@et ),
filling. gives a flux of /3 through each spatial placket of the dual lattice
The primary differences arise when we consider the nawith the flux oriented from thé to B sublattice of the direct lattice.
ture of the possible confined phases. These may be obtaings) Our gauge choice foeiXS, which realizes the fluxegfor (Eq.
from the Coulomb phase by condensing the gapped mona46)).
poles. Such a condensation leads to confinement of the
gapped chargons and the disappearance of the photon fromdeed this is why the modifications induced by half-filling
the spectrum. However, as can be anticipated from experdo not affect much the description of the Coulomb phase
ence in two dimensions, the monopoles now transform nonitself. But they become more important when the monopole
trivially under lattice symmetries. This leads to broken latticegap closes at a phase transition from the Coulomb to a con-
symmetry in the confined phases. In particular, various bondined phase or when the domain wall gap closes inside vortex
or box density wave phases are possible. These will be excore.
plored directly in the next section. Deep in the superfluid phase when the vortex line is stiff,
Here we specify more precisely the modifications to thewe expect a single minimum in the domain wall dispersion,
two-vortex action, Eq(32), due to half-filling on a cubic and when the walls proliferate inside the core we obtain a
lattice and sketch some implications for the vortex coreunique vortex. However, for a vortex line that fluctuates suf-
structure. As discussed in Appendix C, there is an additiondiciently and explores the three-dimensional space so that the
static vector potentiaX,Op that couples to the domain wall effects ofxg are felt, the bottom of the domain wall band can
hopping term—the\,, term in Eq.(32)—see Eq(C4). This  split. This is the situation in the Coulomb phase, where do-
vector potential encodes the monopole Berry phases due pain walls become monopole particles, and one finds two
half-integer boson density. It is specified by the correspondlow-energy propagating monopole modsse the next sec-
ing fluxesh?,=V X2~V X> (modulo 2r) through the faces tion for details.
of the dual cubes. The fluxes are nonzero on the spatial Consider now what happens when we have two domain
plackets only and equal te/3 when oriented from th& to  wall band minima inside the vortex core in the superfluid
B sublattice of the direct cubic lattice as shown in Fig. 6. Thephase and the domain wall gap goes to zero. One possibility
derivation of this result is given in the next section, andmotivated by our analysis in the next section is that domain
further details can be found in Appendix C. wall proliferation leads to a VBS order inside the core. In
As discussed above, the two fields? and W@ corre-  this case, while the field¥? and W@ are locked, there can
spond to the two checkerboard charge orders inside a vortexe several degenerate ways for this to happen corresponding
core. We can now ask about the effect on the core dynamia® the number of favorable VBS states inside the dave
due to the static vector potentiaﬂg seen by the domain need to be even more careful here since, e.g., for the colum-
walls. The specific details of the domain wall motion such asar order the favorable states likely depend on the vortex line
change in the dispersion are not immediately relevant for therientation. This would mean that our choice of the basic
low-energy physics if the domain wall remains gappedfields W@ andW¥® is not a very good one and the analysis
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needs to be reconsidered, perhaps introducing different voboson models. The spinons are minimally coupled to a com-
tex fields. When a single such vortex condenses, the corrgpact U(1) gauge fielda;,. The action for the Sachdev-
sponding VBS state results, but it may be also possible tdalabert model reads

condense several such vortices simultaneously possibly lead- -
ing to new exotic states. Even more exotic possibility is for — 2_
thgeJ domain walls to become critical inside ?he coren,lwhich Zs1= E]f_w[Da.M]f[Dz,][adzJ 1)]

o
might occur due to the one dimensionality of the set&hin i
the present work, we have only touched upon these possibili- Xexp=$,- S-S,
ties and have not pursued any systematic studies. _

We now comment on the possibility of a direct analysis of S,=-B> [ziTe'awzH;L +c.cl+ -,
a more “microscopic” vortex theory for bosons at half-filling in

and the connection with the above two-vortex description.
Indeed such a direct analysis is very useful in two spatial _K
dimensions*'°> The bare vortex action at half-filling is de- S = 2
scribed in Appendix B. As iff2+1)D, the half-filling mani-
fests itself by “frustrating” the vortex propagation with addi- )
tional static Berry phases. I(8+1)D, this is encoded by SB:'E 7i8 -
placing half of a magnetic monopole inside each dual cube in '
the compact gauge field part that describes the vortex moFhe compactness of the gauge field is encapsulated by sum-
tion. As mentioned in Appendix B, at present we do notming over integer-valued fields,,. The last term represents
know how to analytically treat such frustrated gauge theoriest Berry phase that encapsulates the spin-1/2 nature of the
and how to connect directly with the two-vortex descriptionmoment at each site. Thg appearing in this term is +1 on
like it was done in Ref. 14 fo2+1)D. Our earlier discus- the A sublattice and -1 on th& sublattice of the spatial
sion and the analysis in Appendix C provide an alternativecubic lattice. The connection to microscopic spin models and
route in two dimensior$ that extends reasonably to three motivation may be found in the original references 23-25.
dimensions, and we expect the resulting action with two vorWith appropriate deformations d, this model can also
tex species to describe the vortex physics at low energies iflescribe bosonic systems at half-integer fillisge Refs. 15
some regime of parameter@ limited but direct attack is and 25.
possible on the bare vortex action as v#éjl. Here we are interested in paramagnetic states with gapped
spinons(interpreted as chargons in bosonic systermssuch
cases we may integrate out the spinon fields completely. This
VI. VALENCE BOND SOLIDS OF BOSONS AT HALF- effectively amounts to dropping tHg term from the action.
FILLING ON A 3D CUBIC LATTICE (As we are interested in the general structure of the paramag-

In this section, we show how valence bond solid phase§€tic phases, we will not worry much about effects such as
emerge due to monopole condensation out of the Coulom@enerating other short ranged interactions for the gauge
phase at half-filling. The crucial ingredient is the monopolefields) The remaining action is that of a compa#(tl) gauge
dynamics produced by the static vector poterXii To that  theory in(3+1)D on a cubic lattice but in the presence of the
end it is convenient to specialize to the hard-core limit inBerry phase term. The latter has a simple physical interpre-
which case we may view the bosons as representing spin-1/@tion in a Hamiltonian language. It simply corresponds to
moments residing on the cubic lattice. In this limit, the staticthe presence of a static background gauge charge of strength
vector potential may be viewed as arising from Berry phasegl on the sites of the spatial cubic lattice. The sign alternates
present in a path integral description of a spin-1/2 momentfrom one sublattice to the other. Indeed precisely the same
Because of the importance of this result, which is an extenkind of gauge theory arises in studies of two-dimensional
sion to three dimensions of Haldane’s calculation in twoSpin-1/2 quantum paramagnets.
dimensiong? we give a direct derivation in the context of  In the (2+1)D case, it is well known that the alternating
spin-1/2 systems. It is in this context that the valence bongtatic background charge leads to broken translational sym-
solids were analyzed in the work of Read and SacRélev, metry in confined paramagnetic phases. Our goal is to extend
providing us with familiar grounds. that analysis to three dimensions. To that end we perform a
duality transformation orS,+Ss. In the absence of back-
ground charge, this is just the familiar electric-magnetic du-
ality. The compactJ(1) gauge theory then becomes a theory

Our starting point is the “modified” of pointlike monopoles that are coupled to the dual fluctuat-
Sachdev-Jalabépt?#?Slattice model for spin-1/2 system on ing noncompact)(1) gauge field.(The noncompactness of
a cubic lattice in the vicinity of the collinear Néel state. Thisthe dual gauge field is because we have thrown out the
is defined in terms of a bosonic fielgl, which carries spin  spinons—which are the gauge “electric’ charges—in the
1/2 and resides on the sitédenotedi,j,...) of a(3+1)D  original theory. Indeed retaining them is equivalent to retain-
space-time latticéa= 1, is a spin index We will refer to  ing monopoles in the dual gauge figldhe presence of the
the quanta of this field as spinons. They are the anélmy  background charge means that there is dual magnetic flux
the spin systemof the chargon fields introduced earlier for emanating out of the center of each cube on the dual lattice

> (V,a,-V,a,-2m,,)>

i,,u<V

A. Monopole action and Berry phases
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on which the monopoles reside. This flux alternates in sigrviewed as a static staggered chemical potential seen by the
from one cube to the next and frustrates the monopole hoffields, and as long as it is much smaller than the spinon gap,
ping. We therefore expect the duality transformation§n it can be ignored for the low-energy properties.

+S; to yield a theory of monopoles with frustrated hopping  We now exhibithV that solves the two conditions, Egs.
that is coupled to the dual noncompact gauge field. This i$38) and (39). Only the electric field part&)=f?,, EJ, and

explicitly shown in what follows. E, are nonzero and satisfy
We proceed by writing
oo V.E°= (43)
1 s
e‘sa:f Df,Jexp - — X f2

_w[ L. 2Ki'/1/2<]/ luv

. 0 Kr10
xexpi > fm,,(VMaV—VVa#—ZTruW)]. E :—?V - (44

u<v

f,, can be interpreted as the electromagnetic field tensor. Wehis fixesE®

. : ; . uniquely to have value 1/6 on each bond from
classify configurationgu;,,,} by their monopole four-currents auey

the A to B sublattice(the valueny/g is also fixed at this
stage.

The phase terrz can be expressed in terms of the mono-
pole currents]f)m) by first transforming fronf®, to b,

1
Jm = > €0V ol (37)
Two configurationqu,,, } and{uﬁ’w} belong to the same class
if they can be relatedy’,=u,,+V,V,-V,V,, with an 1 5O
integer-valued fieldv,. This allows the separation of the fOV:— WW—PE (45)
Gaussian and topological defect parts of the statistical sum, w2 2m
since thea,, integration now extends over the full real line.
To treat the Berry phase term, we find a stdflg satis- ~ The latter has spatial componert§, by, b7, only, which
fying can be interpreted as fluxes through the faces of the dual
e 0 lattice cubes. The total outwards flux is #+Zor a dual cube
8r= Vol (38) surrounding arA-sublattice site of the direct lattice and =2
surrounding aB-sublattice site, and in each case the flux is
£0 :_%(5 V- 8,¥,7m). (39) divided equally among all six faces. This is shown in Fig.
i B v et 6(a). Since the total flux out of each cube is #2we can

(As will be clear below, the proportionality constamyK/ 3 write

is in fact fixed by the above conditions to be 1/12; the spe- 0 0 0

cific writing is chosen for convenience when reusing the Bpo = VX5 = VX, mod 2. (46)
present analysis in Appendix CThe first condition is pos-

sible sincev;, = 7;9,. has zero divergence. It allows us to Xg is a static field on the spatial links of the dual lattice, and

write the Berry phase term as one choice is shown in Fig.(6). We finally obtain
S=i 2 f,(V,.8,-V,8,). (40) -
w0 : S=i > IMxC 47)

We can now bring out the topological defect part by chang- _ _ o
ing variables tO?uv:fuv_f?Lu' In terms of the variabIeEW and interpret this as a monopole Berry phase. This is appro-

the action has the same form as in the absence of the originB[1at€ Since as we have explained the remaining contribu-
Berry phases except for additional contributions: tions to the low-energy action have the same form as in the

absence of the original Berry phaSg.

We can offer the following geometric representation of
the monopole Berry phase. Consider a monopole space-time
~ world line and trace out the spatial path traveled by the
Due to condition(38) the “phase” termS; depends on the monopole. The Berry phase is given by the fluxhSf(see

~ 1 ~ )
St S = EE fuf,+i2 10,2, (42)

m<v u<v

monopole configuration only. The second conditi@®) al-  Fig. 6) through any surface pulled onto this closed path. This
lows us to write the terng, as is (3+1)D generalization of Haldane’®+1)D resulf? for
the monopole Berry phase. [2+1)D, the Haldane’s result
S, :Eﬂmh_ (42) leads to destructive interference among monopole world
° T B paths unless monopoles are quadrupled3#1)D, the in-

terference pattern encodedfjﬁlﬂ is more subtle, and requires

Herej,=V,f,, can be viewed as the gauge charge currentys to study the monopole hopping in the static vector poten-
This follows by integrating over the, field; Appendixes A gl X% this is detailed below.

and C exhibit this explicitly folJ(1) matter fields, while in Wé now complete the duality mapping for the modgl
the absence of any matter we @ﬁwzo_ Thus,S, can be +S; without any matter field in order to exhibit the relevant
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structure of the monopole action; the relationship of this to Clearly, for small\,,, the monopole field is gapped. In this
the original Sachdev-Jalabert model will be commented uporase, the dual gauge field is free, and we obtaih(B spin

later. liquid phase of the original spin-1/2 problem. This phase has
Using the standard result for the monopole action in comgapped spinons, gapped monopoles, and a gapless photon
pact QED we obtain and respects all lattice symmetries.
To analyze possible monopole condensates, we closely
E f [DL,]’ follow Ref. 14. We first ignore fluctuations of the dual-gauge
Zoqedsy = field L, and study a frustratedY model defined by the static

vector potentlaIXO What we are essentially doing here is
averaging over fast fluctuations imposed Kg{ Once the
) structure of the resulting slow fluctuation description be-
comes clear, we will restore the field.
Xexp(—iE Jf]m)(Lp+X2)). mo((:jgr'iusnuous—tlme soft-spin action for the frustratd

><exp< 7722 (V,Le=V,l,)

p<o

Here, L, is a noncompact dual gauge field such tf
,wp(,V L,/(27). The prime on the sum indicates tha%;the JdT[E |0, D17~ 2 (trr PrPr +C. C)+EV(|CI)R| )|

monopole currents satisfy contmmtvp\];)m):o Integrating R (RR)

overL, we would obtain an action in terms of the monopole (50

world Iines only. Instead of doing this, we transform the

monopole action into a more familiar form by considering a

generalized model with added monopole fugacity term

with some potential V(|®g|?) =ro|Pgl>+Ug|Pg*+:--. We

work on the discrete spatial lattice labeled Rydual to the

original spin system lattigesince the lattice is crucial at this

1 stage.

Sug.= I > (Jf)m))z. (48) The frustration is encoded in the monopole hopping am-
m

.0
plitudestgr =te*rr, corresponding to the fluxes® on the
The constrain¥ J(pm)(l) 0 on each dual sitecan be solved Plackets as shown in Fig(#. Our gauge choice is shown in
by introducing aJ(1) field 6™, and upon summing oveilf Fig. 6(b), and details are follows:

the final result reads 3 , 1 ' ,

trrex= | g1 +igl ™)) + e — il
Zeqeds M) = f [DL,, )’ f [DE™]e 0™, (a9)

- -7 3 . 1 . .

tRR+§/= \/j(l _ieI7T(X+y)) + \/j(1+iel7r(x+y))e|71'Z’
' 8 8
1
S:Lpl 0 ] 8K7T2 E (VpLO'_ VO'Lp)z

p<o thR+i =1.

-\ cogV #mM —X0— ). 50 Diagonali_zing the I_(inetic energy, we find two low-energy
n2s cog P p~ Lo (50 modes with normalized real-space wave functions

¢/™ can be interpreted as a monopole creation operator; the 1 +(\s’§ - \E)e“fz

field 6™ is coupled to the noncompa@luab gauge field., Wi(R) = - (52)
and there is also static “frustrationrX® coming from the V2(3-16)

Berry phases for monopoles in our spin-1/2 system.

The relationship of the above action to the original W,(R) = 1—(\“"3—\““'2)(3””>< g™ —ie™ 53
_ . . _ 2 - /—r ”f— .
Sachdev-Jalabert model is as follows. The action was de V2(3-16) V2

rived in the absence of the spinon fietd(e.g., taking the
spinon gap to infinity. Now, z carries electric charge of the Thus, we find two monopole excitations carrying different
original gauge fielda,, and as usual in the electromagnetic lattice momenta.
duality, it acts as a magnetlc charge for the dual gauge field At the kinetic energy level, any linear combination
L, Thl_Js to have a complete correspondence W|_th the origi- D(R) = ¢y V4(R) + ¢, W,(R) (54)
nal spin model, we need to allow monopoles in the dual
gauge fieldL,, and these monopoles need to be spin-1/2s at the bottom of the monopole band, and there is a con-
particles. Ignormg the spinon field makes the dual gaugédinuum of states for the monopoles to condense to. Nonlinear
field noncompact as in the above action. terms will lift the degeneracy. This can be analyzed near the
monopole condensation transition by treatifhg and ¢, as
slowly varying fields and deriving Ginzburg-Landau theory
of these.

We now study possible phases of the above monopole By examining the action of the lattice symmetries, the
action, assuming throughout that the spinons are gapped. resulting Ginzburg-Landau functional is required to be in-

B. Monopole condensation patterns
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variant under the following transformatiori® our specific
gauge:
T ¢ ¢y, o= 1 ? 1 1
: : 1t 1 !
Ty: b1— P, Py — By, - . }’ . I’ H
\ , &g -S4 &3
Tidio by b b ] I I |
Rooepay 1= €' ™4y, ¢py— €™,
Gk sed COLUMNAR VBS
Roospxz 1 — [ b — - 5 -
V2 V2
The 90° rotations are about the lattice points on which mono- ¢
poles reside. Note that the realization of the above lattice
symmetries also involves conjugatighto ¢ (followed by -
appropriate gauge transformations : “‘“‘\“‘ :
The simplest invariants afeb,|?+|,|> and i Hl -
4 ¢l ol + a2 bal®) ~ Bl ol - (1)~ (tr0)*. W] 2B ] 2
The latter can be given a more clear form L‘..‘.‘:::a—V e L‘...::o—
la(br, o) = NENG + NINZ + N2NE, (55) 7
with BOX VBS
N (1, o) = ¢'5%. (56) FIG. 7. (a) Schematic picture of the columnar valence bond

solid (VBS) state obtained whemg>0. We have an increased

monopole densitfand also energy densjtypn the shaded-even

planes, which is interpreted as having valence bonds of the original

spin model preferentially crossing these planes. Arrows along the
placket edges indicate monopole currefiig.3D box VBS state is

Siow= J desRH(Vp_ in)¢|2+ U(|¢?) +vglg()]+ S, obtained whervg<<0. For clarity, only the planes with increased
monopole density are showr,y,z all ever), and the dimers reso-

(57) nate around the cubes centered where these planes meet.

We write down the continuum action for the two-
component complex fielep(R, 7), which respects the above
symmetries,

with some potentiall (| |?) =r| |2+ uy| |*+- - -. We have also 3 _
restored the dual gauge fielg, and included some generic EM™ = \/j| B?+ V2[(= DIN, + (= D™N,] (59
kinetic energy§_for L. 3

We focus on conflnlng paramagnets that obtain startlnq (m)

or E,
from the Coulomb phase and condensing single monopoles
so that(¢) # 0; this happens when< 0 in the potential[lt is
also possible to have paired condensates such(thiate) - 2
#0 but(#)=0 in some parameter regime—such states cor- N 5[(— DNy = (= N, (60)
respond toU(1) spin liquids with broken translational sym-
metry; these are not considered in any detail feBgound  for J™ =i(tg gy PrPriz—C.C)-
states are selected by minimiziogg(¢), and the sign obg We also quote the transformation properties N
determines the character of the resulting phase. =(N,,N,,N,) under the lattice symmetries
X1 1Ny

Each state can be characterized by the expectation values
N, Ny, N, defined above. For example, the spatial monopole T (NoNy,Np) — (= Ny, Ny, N);
density in a given state is given by

—tRR+;((I> rPrixtC.C., etc., while the monopole cur-
ent |s

T, (NX,N ,NZ) — (NX,—N ,NZ);
DR =| + 715[(— 1PN, + (= DYN, + (- DN, e v
| 58 Ty (N Ny, Ny — (N Ny, = N);

the monopole kinetic energy is Roorxy: (N, Ny, N) — (Ny, Ny, N,);
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Roo ez (N Ny Nz — (N2 Ny, Ny (61) Sygs= f d7d3r[(VM\I7)2 + W2+ u(W2)2 + p (W + Wy + vy,
Given the above information, we can characterize broken
lattice symmetries wheN obtains an expectation value. (65
where beside©(3)-invariant terms we have also included
1.vg>0 quartic interaction with cubic anisotropy since our system
In this case, there are six ground states resides on the cubic lattice. Thus, the VBS phases in three

dimensions are described by an effecti®é3) model with
(NwNy,N,) =(£1,0,0, (0,+£1,0, (0,0,+1. (62  cubic anisotropy. Depending on the sign of the anisotropy,

In a given state, the monopole density is the same in eveipe thiee—vectoﬂP can either point along one of the axes
other plane perpendicular to a fixed lattice axis. For exampld,8-g-,'¥'=(0,0,1], which leads to columnar order with six
the state(N,,N,,N,)=(0,0,1) has an increased density on degenerate states, or along a diagdea., W o< (1,1,1)/+3],

the z-even planes and decreased density orztbdd planes  which leads to box order with eight degenerate states.

and is illustrated in Fig. (&). In the original spin model, The connection with the preceding analysis is provided by
these dual planes are crossed by direct lattice bonds, and @e identification

a crude level there is an increased bond energy crossing the . .

z-even planes. Thus, this state corresponds to a columnar Pyps~ N=¢'Gob. (66)
valence bond solid with dimers oriented in thedirection - ) )

and in the particular registry. This identification is also sup-Indeed,¥ has the same transformation properties under lat-
ported by an analysis of the dual-gauge-field fluxes inducetice symmetries abl [see Eq.(61)—we recall that there the
by the monopole currents and the connection between thesetations are about pointR of the lattice on which mono-
fluxes and the bond order parametelhe above six states poles reside, which is dual to the original spin model lajtice

correspond to six possible columnar states on the cubic latrhys, the three-vectob is written with the help of the two-
tice. We expect that this is the phase realized when monq:omponent complex fielg precisely as in th€P! represen-
poles condense in the specific lattice model, &), based  tation of theO(3) nonlinears- model. As we know, a proper
on the angly5|s of the lattic€Y model and the larg&;, limit description of thed(3) model in theCP! language contains
of the action, Eq(50). besides the spinor fielgh also a compact/(1) gauge field,
and the monopoles of this gauge field are conventionally
identified with the hedgehog configurations of {B€3) vec-

In this case, there are eight ground states tor. ThisCP* gauge field is precisely our gauge fi¢ldn the
¢-field action, Eq.(57), and as discussed earlier, for a faith-
ful description of the original spin-1/2 system we need to
allow spin-1/2 carrying magnetic monopoles in the gauge
field L, which correspond to the gapped spinons.

(each of the three signs can be chosen independeiitigse The identification is complete when we realize, extending
states have monopole density oscillating in all three directhe discussion in a recent preprint by Levin and Serthil,

tions an(_:i correspond to three—dimensional f‘box" .valencqhat the VBS order parameter fieﬁVBsindeed has hedge-
bond solids analogous to box states in two dimensions. Fafogs which are precisely the spinons. This is dictated by the
example, the statN,,Ny,N,)=(1/v3)(1,1,) has maximal microscopic lattice origin ofW,gg which needs to be

monopole density fox, y, andz all even and is illustrated in 5,91t hack into consideratidfithis microscopic detail is

Fig. 7(b). In the original spin model, this state has dimers,pcant in the continuum acti®ygs Eq. (65)]. Consider, for
resonating around direct lattice cubes surrounding these du@Eample the columnar phase and construct a hedgehog in

lattice points. The above eight states correspond to eight pos- .~ = . . .
sible ways to register such 3D box states. %he fieldN b_y putting together the_correspondlng domams of
columnar dimer order. More precisely, we are constructing a

. . “hedgehog” of the corresponding six-state discrete model.
C. Discussion When we join these domains, there is an unpaired site left

The above considerations lead us to the following picturewhich we identify with a spinon residing on one sublattice;
In the spin-1/2 system we expect VBS order parameter to band if we construct an antihedgehog, we find a spinon resid-

2. l)8<0

1
(NX,Ny,NZ):—E(il, +1,+21 (63)
\J

a three-vector ing on the other sublattice. Of course, we pay huge domain
wall energies consistent with the fact that the spinons are
(- 1)xé 'érr confined in the VBS phase.
X
Yyes=| (-1'S 'Sr+9 : (64) D. Connection with the vortex description
(-1°S S We conclude by describing how to obtain the above pic-
R ture directly from the two-vortex action, Eq®2) and(C4),
We can write down a Ginzburg-Landau functional fbr at half-filling. We use hard-spin fields and notation as in
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Appendixes A and C. Consider phases with gapped chargordescription for the quantum systems of interest and used it to
obtained by proliferating both vortex fields? andc'?. Ig-  discuss the physics. To discuss the Coulomb phases, we
noring the chargons completely, we can expand the cosineshowed how the presence of two vortex species can be
containing VX c and, after simple analysis, arrive at the readily incorporated into the dual theory. The excitation
monopole action, Eq50), with Lp:c(l)+c(2). The real utility ~ spectrum of the Coulomb phase was then derived in this dual
of the two-vortex action is that it allows us to incorporate theformulation which provides detailed confirmation of the
chargons on equal footing in the dual description as “monophysical pictures. This theory also allows us to identify and
poles” in the vortex fields™ andc®. In particular, it for-  describe all basic nearby insulating states in a unified setting.
malizes for the easy-plane case the purported picture that we For bosons at half-filling(closely related to spin-1/2
are to include monopoles in the gauge fielgdto obtain the —gquantum antiferromagnetsapart from the fractionalized
full physical description; no such formalism is known for the phases, various confining phases are possible which break
Heisenberg case. lattice translation symmetry. The latter were analyzed by ex-
tension to(3+1)D of the methods of Haldad&and Read
VIl. CONCLUSIONS and Sachdé¥ (originally developed for lower dimensipn
This allowed us to discuss possible valence bond orders in
this system and their relation to the fractionalized Coulomb
In this paper, we described a physical mechanism for thehsulating state.
appearance of the fractionalized Coulomb phase in bosonic |n the present study of bosonic superfluids and proximate
models. This was accomplished by addressing the questigRsulators at half-filling, we concentrated on vortices with
of how to view this phase as a vortex condensate emanatingharge-ordered cores. It is conceivable instead to have va-
out of a proximate superfluid phase. We were led to suggesénce bond order inside the core in some regime of param-
one route whereby there are two degenerate but distingters in the superfluid phase, and it would be interesting to
physical vortices in the superfluid phase, and the superfluidevelop a broader picture of the core dynamics and its con-
is destroyed by proliferating both species of vortices withsequences. The above considerations provide further explicit
equal amplitude. The two vortex species correspond to Vorexamples of nontrivial effects arising from the vortex core
tices whose core@which are one-dimensional system@e  physics for disordering transitions oY ordered systems,
ordered and break a discrete symmetry. A simple example igchoing similar phenomena in two-dimensional syst&ms.
provided by bosons at half-filling where the vortex core de-|n particular, we showed that there can be transformations
velops insulating checkerboard charge density order. The twgccurring inside the core and that proliferating ordered cores
vortex species correspond to the two checkerboard states #an produce unusual phases. The importance of the core

the core. Domain walls in the core order survive as gappe@hysics may have broader implications for experimental
excitations when the two vortex species proliferate equallystudies of strongly correlated systems.

We argued that these domain walls may be identified with

the monopole excitations of the Coulomb phase. Roton loops ACKNOWLEDGMENTS
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the order is that of some nearby insulating phase with a bro-

ken discrete symmetry. For generic bosons at half-filling, oneappeNDIX A: DUALITY TRANSFORMATION FOR TWO-

simple candidate is the checkerboard charge order, while for CHARGON GAUGE THEORY, Eq. (7)
the specific corner-sharing octahedra model discussed in Sec. T
Il the candidate has checkerboard “octahedron” order. Here we perform a duality analysis of the two-chargon

The primary analytical tool used in the paper to give sub-gauge theory, Eq(7). Our final result is the two-vortex ac-
stance to this description is a duality mapping to vortex varition, Eg.(32), at integer filling. We first identify topological
ables which is an extension of the familiar boson-vortex du-defects in the model. The Villain-ized partition function for
ality to (3+1)D. We extensively developed such a the model is written as

v $ R 1 o, L
Zy= f [DhiDbaDa,] X f [DjuyPizDliulexp = 52 2 (5+15) - 50 f@)

[P1i P21 i == 7 =0 u<v

xexp{i Slis- (Véy-a-2mpy) +ip- (Vop=a-2mp)]+i 3 £i,(V,8,- V.8, - 2wui,w>}. (A1)

hu<v
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The real fieldg,,j,,f,, can be interpreted as the matter cur- 1 a,

rents and the electromagnetic field tensor.

PHYSICAL REVIEW B71, 125102(2005

i"=Ze,, V222

]p, 2 nrpo (A7)

We divide configurationgp,,p,,u,,} into classes equiva-

lent under integer-valued transformations,

Pp=Pp+t VN,-V, b=1,2,

=
Uy, = Uy, + V.V, =-V.V,,

Itis also convenient to pass from the variabfgs to their

dualg’ po Vid
1 G
(A2) Fur= 5 (A8

two vorticities

q,(z?l)/ = Vp.pbu - vab,u. + u,LLV

and monopole currents

1
(m — =
J > €popuvY oUpn-

The latter satisfy the continuity

(m) —
v, =0

while the vorticities satisfidg® =du, which can be written

as an integer-valued constraint

Fmally, it is convenient to specify VOftICItIG$(b) by the cor-
responding integer-valued f|elcﬂr'éb b=1,2,

(A4)

1
(b) - = (b) — 9(m)
Fpo’ 2 pa',u,vq,uw VO'Fpo' - ‘me ’ (Ag)
just as we did for thé3+1)D XY model in Eq.(22).
Putting everything together, the partition sum reads
A z= ¥ _[Dg},,IDgi,, )
LS i

1S 2,
X ex 4BE(J++J-) ZKWQE (6,0 )

1 (b p<o
) — (M) -
> EpousV SO0 =3" b=1,2. (A6)
xexp( =i 2 [g,,(FY +F?),, +g,,(FY - F<2>),w]).
The meaning of the last equation is that monopoles act as p=o
sources and sinks for both vorticities simultaneously.
For each allowed configuration of vorticities and mono- (A10)

pole currents, we can now perform the summation over all

{p1,p2,u,,} in the corresponding class using E¢&2). This ~ We can now in principle integrate out the fielgls, andg,,,
effectively extends the integration variables, ¢,,a, over ~ and obtain a theory in terms of vortex world sheets with
the whole real line, and the integrals give t@dgunction  sources and sinks on the monopole world lines. The vortex

conditions

RV A A PV (A0 PR EPR P
< [&V I, = Vof )]

interactions are such that combinatidfid +F®? enter with
short-ranged interactions similar to screened vortices, while
FW-F® enter with long-ranged interactions of unscreened
vortices. This is expected since the chargon field combina-
tion ¢+ ¢, is gauged whilep,— ¢, is gauge neutral. We
expect the physics to remain unchanged upon adding local

In the last line, we changed variablesjtej,+j,. Note that  vortex and monopole fugacity terms
not all conditions in the first line are independent, and the
precise meaning of thé functions is given by the second

line. Thus, we can completely eliminaté
The topological defects enter through

IWE (J+(pl + p2) +j_(p1 - pZ)) + IZWE f,uvu,uv

m<v

=im > Q0 +d2) +i7 X (p1—po).

u<v

ug._ o 2 [(FSL— 2+ |pg’)2] to E (le

2)\I p<c m Ip
(A11)

Just as in the case with th€Y model in Sec. IV A, to get
a better intuition about the theory at hand, we instead
introduce two compactJ(1l) gauge fleldsc (3 cf? and
a U(1) scalar field 0(”‘) that implement the constraints

Eqgs. (A9) and (A5) and are the appropriate conjugate

We now solve the constraii®t-j~=0 with a rank-2 fieldy,,, ~ variables.

defined on the dual plackets

The final expression reads
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m ” 1 1
= D e@p pm + -7 — 242y —
ZVD\v)\m] - f—w [Dclp Dclp DHlm ]f_w [Dglpo-][Dglpo] ex 43 E (]+ + J—) 2K 72

> (g,ﬁ(,)z)

p<o

xexp[)\mz cogV, 0™ - ¢ - ¢{?)

Ip

+N X cogV,eP -V, eV - g~ o) + N X codV, el -V,c? -gl +g, )] . (A12)
l,p<o l,p<o
[
A§ usual, cosines s+ta_nd for the appropriate \(|Ila|n forms. At <ereened U 2 né— t, > cogV oM — ¢ - ¢?)
this stage, the field , is massive and can be integrated out.
The variables of the resulting dual theory @jewo compact +u, >, (e+e)—t, > [coqV x cV)

U(1) gauge fieldse®” and €, which can be viewed as
vortex line segment creation operatd(is) a monopole mat-
ter fielde?™ that carries both dual gauge charges, @ingla ) _ _
noncompact rank-2 field™ that further “gauges” the vortex With the Hilbert space constraints

fields c® andc® and describes the physical boson density

fluctuations. Equatiori32) in Sec. IV B displays a soft-spin V.g=V .= (A14)
version of this dual theory by writing

+cogV x c?)],

Hereu,, andt,, are the bare monopole gap and hopping am-
(A13) plitude, whileu, is bare vortex core energy per unit length

andt, is vortex hopping amplitude. The superfluid phase of
(we also dropped the superscript on the rank-2 gaugeeld the boson model corresp_ongis to the thg confining phigse
that survives in the low-energy theory >t, Qf Hscreen_ethe electric fielke=e;-e, is the _conseryed

The analysis of the possible phases from this dual perPhysical vorticity, and we study a strength-1 line @bri-
spective can be done as in th& case in Sec. IV A by first €nted in say, the direction. In the limitu,>t,, we have &
considering a theory without the field (i.e., “screened vor- straight linee,=1, but its segments can be realized as either
tex” theory which would obtain if the two chargons were (€1x;€20=(1,0) or (0,-1). Each juncturé0,-1)—(1,0) has
also coupled to a fluctuating external electromagnetic)field @ *1 monopole andl,0) — (0,-1) has a -1 monopole, and
The field g~ is then included semiclassically and providesthe quantum dynamics is determined by the competition be-
correct count of the low-energy modes. tween theu,, andt,, terms. Writingo{=+1 for (1, 0) seg-

Thus, the screened vortex theory has a phasefed, — ment ando=-1 for (0,-1) segment, we obtain the follow-
Am<<1 in which both field=™ andc? are deconfined while ing 1D Hamiltonian for the straight line:
the monopole fieldd™ is gapped. The screened vortex
theory has two photons in this phase. Including fluctuations u t
in the rank-2 fieldg™, it obtains a mass and “eats” in the Hcore:_?mE G 5”‘2 oy (A15)
process one photon, so there remains precisely one photon ! '

[VX(cW+c@)J2. In the physical boson model, this is the
fractionalized Coulomb phase at the focus of this paper. This is simply the one-dimensional quantum Ising model and

On the other hand, in the regime>1, \,,>1 monopoles has two phases: Far,<t,, we obtain a paramagnet w¥
are also proliferated and destroy the photon, so this becomemsd the ground state is unique, schematicafly 1. In this
the conventional Mott insulator of bosons. case, the monopoles proliferate along the line, andethé

Finally, for small\ <1 both dual gauge field$? andc® line is unique. On the other hand, fap,>t., we obtain a
are confined. The dual electric field lines which are the vorferromagnet with two degenerate ground statés+1 and
tices of the physical boson model are gapped, and this cow?=-1. The monopoles remain gapped along the line, and
responds to the superfluid phase of bosons. As we vary thee have two distince=1 lines. The core Hamiltonian can be
parameter\,, inside this phase, there is a transition in thealso written in dual Ising variables, and this gives a descrip-
properties of these line excitations from a unique core statéon in terms of domain wall particles which we identify with
to two degenerate core states. the monopoles.

The dual formulation reveals some details of this core The above analysis is valid in the limit,>t,, but we
transition. Specifically, we consider a single vortex in theexpect the two regimes and the transition between them to
screened vortex theory—this allows us to avoid complica-extend throughout the confined phaseHaf,ceneq IN the su-
tions of coupling the vortex dynamics to phonons and focuperfluid phase of the original boson model, we conjecture
on the core physics. that the corresponding vortex core transition line extends all

It is convenient to use the Hamiltonian formulation the way to the insulating phases as shown in Fig. 5.

* io(D) * _ic(@ * i gm
v~ o, WP ~ety, Y]~ i
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APPENDIX B: DUALITY ANALYSIS FOR BOSONS AT Indeed, when we allow fluctuations i), the above stag-
HALF-INTEGER FILLING gered character is imprinted on the fluxgs, thus producing
taggered boson density. The two states correspond to two

Here we generalize the analysis in Sec. IV A to bosons ays to register this charge density wa@@DW) on the

half-integer filling and study the resulting dual theory di-

- ! lattice.
rectly. At halt-filling, we simply make the replacement Other deconfinement patterns are also possible, but likely
. AT require some deformation of the above simple action to be
liz— Jif—z (B1) stabilized. For example, it is possible to have a deconfined

state with an energy density wave, and this would correspond
in the final expression, Eq27), while the rest remains un- to some VBS phase for the original bosons.
changed. As i2+1)D, the noninteger boson density enters ~ Of direct interest here is the possibility of deconfinement
as an external “field” seen by the vortices, except that vortiin €°» that produceswo photons in the low-energy descrip-
ces are now lines and the gauge potential is a rank-2 tensdion and does not break any lattice symmetry. Allowing fluc-
A convenient formulation is obtained by finding stagﬁ;, tuations ing,,,, only one photon remains, and this would give

such that the sought for fractionalized Coulomb phase at half-integer
o filling. We know that this can indeed happen in the original

1 - }6 \v Ypo (B2) bosonic system, and Appendixes A and C provide an indirect

2 KT 2RI Vom” route to describe such a phase. It would be interesting to

f o0 . d as f h h the dual latti lack explore this in the above frustrated lattice gauge theory in
Iog o are viewed as fluxes through the dual lattice placketsy, e getail and develop direct analytical tools for treating
g" has total flux ofr coming out of each spatial cube. Shift- such theories.

ing g by g° we get

Z:f [Dg U]'f [Dc,,lexp — i 2 (dg)Z] APPENDIX C: DUALITY FOR TWO-CHARGON THEORY
. AR B 28 AT HALF-INTEGER FILLING
X exp[)\ > cogV,c, - VUC,J—QW—E?N)]- In this appendix, we derive a dual description for a two-
lLp<o chargon gauge theory corresponding to bosons at half-integer

Thus, there is a static contribution to the rank-2 gauge pot”"ng' Our analysis is a direct extension (8+1)D of Ap-

tential corresponding to placing half of a magnetic mono Oleoendix E of Ref. 15, which should be consulted for further
P glop 9 9 PO etails. Following Ref. 15, we arrive at a path integral which

inside ?aCh spatiql cube. When a vortex _Iine_ evolves "has the same form as at integer filling E&1) but with
space-time, this gives a Berry phase contributionmofor replacements

each cube in the 3D volume swept by the line.
As in our discussion for bosons at integer filling, it is (1% = Gi-=nom)?  (ain?— (j2i,— Nom)?,

helpful to first consider the compadt(1) part with only the

statngglr. This “frustrated” lattice gauge theory has not been

studied to our knowledge. At present, we do not have direct $=iS na (1)

tools for approaching this problem similar to the ones used i iz

for frustrated systems with global symmetries. We can still

describe what we expect to happen in such a model. In the limit K—O0 (i.e., in the absence of the gauge field
Two phases of the frustrated lattice gauge theory arglynamicg, any choice of the “chemical potentiafi for the

clearly identified. For smalk, we expect confinement in on-site gauge charge will give the same result due to the

€C, which correspondéupon restoring fluctuations ip,,) ~ constraintj;;;+j,.=const. This is no longer true for finite,
to the superfluid phase of the bosons. but the qualitative behavior is expected to be insensitive to

For large\, we expect deconfinement @f'», but we need  No, and we will use this freedom to make the structure of the

to be more specific since there can be different patterns dgjual theory more transparent. _ _
deconfinement in the presencegff,. For the hard-spin ac- ~ We proceed as in Appendix A while treating the phase
tion written above, we can proceed by considering first thderm Sz as in our analysis of the monopole Berry phase for

classical ground states and obtain the following picture. Foppin-1/2 systems in Sec. VI. Specifically, we taKg, de-

each spatial cube, the total outgoing ﬂuxd,(ppcg—vgcp-gg(,) fined by conditions in Eq938) an(’:i~ (39) and make the cor-

must bew modulo 2r because of the compactness of theresponding change of variablés,=f ,,+f° . In terms of the
gauge field. For an individual cube, the lowest energy isvariablesj,,,,j,,.f,,. we obtain the same action as at integer
obtained by dividing this flux equally among the six faces.filling except for additional contributions

On the lattice, we put such cubes with the outgoing placket 1 .
fluxes of +7/6 and cubes with the outgoing fluxes ofr+6 N7 0 _'o SR 0

in a checkerboard pattern, and there are two degenerate KE Pl B 2 il i P2y (C2)
ground states. This structure survives as a phase in the frus- ) ) ) .
trated lattice gauge theory. For the original bosonic systemi Particular, upon integrating oup,, ¢,,a,, we havej,

this phase corresponds to checkerboard charge density waweV ,f,,. The first two terms cancel each other Kiny/ 3

and an additional term in the action

u<v u<v

125102-20



ORIGIN OF ARTIFICIAL ELECTRODYNAMICS IN... PHYSICAL REVIEW B 71, 125102(2005

The phase diagram of the model can be analyzed as in
Sec. Il. When the Ising coupling dominateks>1",U, the
system is ferromagnetically ordered. When the transverse
fields dominate]",U>J, the system is a conventional Ising
paramagnet.

The intermediate regime > J> \TU is most interesting
and realizes an unusual topologically ordered paramagnet
(Ising P* phasg. The excitation spectrum in this phase con-
tains a gapped Ising vortexison) and gapped Ising matter
fields. The argument is similar for the Ising and boson mod-
els. In the larged limit, the ground-state sector is deter-
mined by the projectioiil; _,07'=1 for all r, and the effective
Hamiltonian in this sector is

HY = FEG}( KE 0712053034091, (D2)

FIG. 8. Quantum Ising model that realiz& phase in two ~With K=J?/U. This is just the familiar Ising gauge theory.
dimensions. Spins are located on the link-centered sites of a squafe®r K=<I" the theory is confining and corresponds to the
lattice. Each shaded diamond indicates theerm in the Hamil- ~ conventional paramagnet, but f&r=1" we have a decon-

tonian, Eq.(D1). fined phase and this is the Isifj phase.
The topology of the phase diagram is the same as in Fig.

=1/12[see Eq.(42)]. The importance of the specific form 4, with the correspondences superflaidferromagnet, con-

for foV is that for generahy the first two terms add up to ventional insulator— conventional paramagnet, and frac-

(8no/ B)Simj., which can be viewed as a staggered chemicafionalized insulator— P° paramagnet. We are led to ask
§||m|lar questions on the relatlonshlps among the phases, in

otential seen by the gauge charges. As long as this potenti
P y gaug 9 g P articular, how to view thé®* phase coming from the ferro-

is small, it effectively averages out and does not modify the®
low-energy modes; in the following, we sét,=0. magnet. In the ferromagnet, excitations are domain walls,

The remaining phase term can be expressed ent|rely nd we can think of a paramagnet as a result of proliferating
ese. The?" phase features the vison, which is a topological

terms of the monopole curreml§n ; o . . .
pomt excitation, and we ask how this appears in the domain

T (M)0 wall condensate.

SB_IEJP Xy €3 To push the analogy somewhat further, (®+1)D the
with X° defined in Sec. VI. This term needs to be added tcappearance of the Coulomb phase with the monopole excita-
the dual action expressed in terms of the topological defectgion is “natural” when anO(3) spin model is disordered
Eq. (A10). Thus, we have managed to absorb all effects ofvithout proliferating hedgehoggiapped hedgehogs then be-
half-integer filling into the monopole Berry phases. To obtaincome the monopol¢sAs discussed in the main text, the
the final action in terms of the dual fields™,cV,c?, we  appearance of the Coulomb phase in a nomir@llg) model
simply take the expression at integer filling, E§12), and is more subtle in terms of the vortex line defects of the or-
make the replacement dered phase. Similar situation occurs(#t+1)D, where the

appearance of thg, fractionalized phase with the vison ex-
Vpa““) - Vp‘9<m) - Xg. (C4) citation is natural when a®(2) model is disordered by pro-
liferating double vortices but not single vortices, but the ap-
pearance of such, phase is not so clear in a nominally Ising
model. We argue that the key to this puzzle lies in the pres-
Toy model Here we consider a toy model which is a 2D ence of two degenerate but distinct domain walls in the fer-
guantum Ising version of the 3D boson model of Sec. II. Asromagnetic phase near ti phase.
we will see, some physical aspects are similar in the two Direct analysis of domain walldn the present model, we
problems, while the formalism is much simpler in the Ising can perform a direct analysis in the limit of smélli.e., in
case and gives some guidance for the bosons. Ising spirige upper right corner of the phase diagram Fig. 4.
reside on links of a square lattice, and the Hamiltonian is ~ WhenI'=0 in the microscopic model, we find that for
each square lattice placket the correspondindflux” ®p
H=-31Y ofo, - FE od-UXxIlef. (D) =oi0i0i0? is conserved. This simplifies the analysis,
() roler since in each sector with fixed’s the Hamiltonian de-

The lattice is shown in Fig. 8. The spins can be viewed ascouples into two quantum Ising models. Indeed, let us work

forming a network of corner-sharing diamonds, and we a the o bas% and fix a sectdee}. I&etztoj)s I('g;dz(% specific
introduced four-spin interactiot) on each diamond. For reahzatlon{a } of the fluxes @p=075 035 o5, 41 Ao

simplicity, we takeU > 0. belongs to thls sector if we can Wrné s%sz Urr’ ,

APPENDIX D: ISING P" PHASE IN (2+1)D

and we
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can label all states in the sector by the new Ising variablefused by our reuse of the letters for the coupling consjants
{S}. The action of the Hamiltonian in this sector reads Rather, this model is to be considered as capturing the rel-
evant physics of th®" phase.
Hp=— 2 JawSiSy —UX Si- 2 JeeSESh - U S5 The analysis of the phenomenological gauge theory pro-
(AA') A (BB") B ceeds exactly as in the two-chargon theory, and the phase
diagram has the same topology as in Fig. 5. The ordered
phase has ferromagnetic order in the “physical” spfn

' 2 2 1 !
for example,Jas is determined by considering the square — 71r72r In the ferromagn_etlc phase, we have do_maln vv_aII
excitations, and a domain wall segment crossing a link

lattice placket[14,2,3,,4] that hasAA’ as its diagonal: e i i X i
Inn = 3079620 4+ 520 520y 7,7,,=—1 can be realized as either a domain wall 7in
AA/— .

012 023 14 Y43 z 27 —_q d i i Z, fl i t
For arbitraryJ/U (with T=0) the ground-state sector has (77171 =~1) or a domain wall in7,. Z, flux (vison) acts

no fluxes, ®p=1, andan =Jgg =2J. As we changd/U, we  as a source for both domain walls, and there is a linearly
have a simultaneous Ising ordering transition for spiis confining potential between a pair of visons in the ferromag-
andS,. The gap to the nearest sector is at least of odder ~ Netic phase. On a physical domain wall, however, the vison
the ferromagnetic phase and of ord#/U in the spin-  Costs only finite energy and can hop along the domain wall;
disordered phase. this hopping represents quantum tunneling between the two
Consider the ferromagnetic phase. In the sector with ndnicroscopic realizations of the hopped segment. The vison
fluxes, excitations are domain walls for the Ising variaties can be thought of as a point “domain wall” for the order
or Ss. When translated to the original variable$,, a do- along the line which is the Ising domain wall of the ferro-

main wall inS, is a physical domain wall that passes throughma\?\/ne'[IC phase. ibilities: One is that vi lif
the B sublattice sites, while a domain wall & is a physical e expect two possibilities: One is that visons proliterate

domain wall that passes through tAesites. In a sector with alqng the domain wall, .'n..Wh.'Ch case the doma!n wall is

two visons, one finds that the lowest-energy state has ajique. The othgr possibility is that visons remain gapp‘?d

A-type domain walldefined by frustrated bondk., S.S) inside the domain wall, and there are two distinct domain
. nSiSh

tina the t . d alsoBat d ) I walls. A precise formulation is to consider an externally im-
connecting the two visons and alsosatype domain wa osed domain wall in the ferromagnetic phase. As we change
connecting the visons. Thus, visons act as sources for bo

_ . : e parameters in the ferromagnetic phase, there is a transi-
domain walls and are linearly confined.

Consid th in-disordered oh It be vi tion from a disordered domain wall with a unique ground
onsigér now the spin-disordered pnase. It can be VIEWEE o 14 an ordered domain wall with two degenerate ground
as a condensate of both domain walls, and has two Isin

. . . gtates, and this domain wall ordering transition is (&f
matter fieldsS, andSs with the mass .Of order._ The dn‘fe.r +1)D Ising type. When we have ordered domain walls and
ent sectors are accounted for as vison excitations with the . . : .

. > proliferate both with equal amplitudes, tie phase results.
vison gap of orded</U.

For nonzerol', the different sectors will mix, but the The mathematical formalism for the above picture is

o : . transformation to dual variables, which is readily done in the
above description of the phases will remain true as lonfj as o L
is much smaller than the gap to the nearest sector. Sma'l_fam"tonlan language. The dual Hamiltonian is
nonzerol” will induce energy-energy coupling between the
two Ising models; this will affect the nature of the transition, Haig qua= — U2, (C3,C55C54C4, + DZ,D5,D3,D%))
either making it first-order or driving to a different univer- o
sality class; however, the above physical picture with two
distinct domain walls remains.

A phenomenological gauge theory descriptgimilar to
the two-chargon theory is also possible. Again, it relies on KDV
the observation that in th@" phase we find two distinct Ising R
matter excitations. The phenomenological Hamiltonian is

_ z z z z
H2is— - UE (T>1(r + 7'ér) - ‘]2 (Urr’ﬁrTlr’ + Urr’él’TZr’)
r (r')

Here A and B refer to the two sublattices of the square lat-
tice. Ising couplingsa, andJgg depend on the sectéiPp};

~JY (Clg +Dhg)—T > VAVACE DEq
(RR) (RR)

the Hilbert space is defined by

VST Cie=1, VAII D =1. (D4)
_FE U)r(r'_KE 0120330340 41; R’ eR R eR
(') u
it contains two Ising matter fields,,, 7, coupled to an Ising The two domain wall variables are denoted@sD, while
gauge fieldo ... The Hilbert space of the theory is defined the Z, flux variable is denoted a¥: Cgg =07, 75,77,,
by Dig =07, 7575, and V&= 0%,05505,0%,. Compare this
X _ with the dual formulation, Eq(A12), of the two-chargon
i ar H T =1 (D3) theory. The ferromagnetic phase in the dual language corre-
rer sponds to confinement in both dual gauge figldandD. In
We emphasize that this model is not derived from the Hamilthe P phase, both these fields become deconfined while the
tonian, Eq.(D1) (in particular, the reader should not be con- dual matter fieldv where the two connect remains gapped.
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