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ABSTRACT

Exactly solving the absolute minimum potential energy state (Lorenz reference state) is a difficult problem

because of the nonlinear nature of the equation of state of seawater. This problem has been solved recently

but the algorithm comes at a high computational cost. As the first part of this study, the authors develop an

algorithm that is;103–105 times faster,making it useful for energy diagnosis in oceanmodels. The second part

of this study shows that the global patterns of Lorenz available potential energy (APE) density are distinct

from those of eddy kinetic energy (EKE). This is because the Lorenz APE density is based on the entire

domainwide parcel rearrangement, while mesoscale eddies, if related to baroclinic instability, are typically

generated through local parcel rearrangement approximately around the eddy size. Inspired by this contrast,

this study develops a locally defined APE framework: the eddy size–constrained APE density based on the

strong constraint that the parcel rearrangement/displacement to achieve the minimum potential energy state

should not exceed the local eddy size horizontally. This concept typically identifies baroclinically unstable

regions. It is shown to be helpful to detect individual eddies/vortices and local EKE patterns, for example,

around the Southern Ocean fronts and subtropical western boundary currents. This is consistent with the

physical picture that mesoscale eddies are associated with a strong signature in both the velocity field (i.e.,

EKE) and the stratification (i.e., local APE). The new APE concept may be useful in parameterizing me-

soscale eddies in ocean models.

1. Introduction

Available potential energy (APE) is the primary energy

source for generating mesoscale eddies (e.g., Vallis 2006).

The Lorenz APE is the most widely used framework

of APE [Lorenz 1955; see Tailleux (2013b), which distin-

guishes the general concept of APE and the Lorenz APE].

For a given ocean system, the Lorenz APE is commonly

defined as the potential energy (PE) of the system minus

the PE of the Lorenz reference state (the absolute/global

minimum PE state), which is achievable through un-

constrained adiabatic parcel rearrangement. Exactly

solving the Lorenz reference state is theoretically difficult

due to the nonlinear nature (e.g., thermobaricity) of the

equation of state (EOS) of seawater (Huang 2005).

Huang (2005) and Saenz et al. (2015) provide fast but es-

sentially approximatemethods to solve theLorenz reference

state, the latter of which is based on an extension of the

approach proposed by Tseng and Ferziger (2001).

Hieronymus and Nycander (2015, hereinafter HN15) are

the first to exactly solve the Lorenz reference state by using

the linear assignment algorithm (LAA; i.e., the Hungarian

algorithm). This result is encouraging due to its absolute

accuracy. However, as they point out, LAA comes at a high

computational cost that makes it difficult to be applied in

ocean GCMs. As the first part of this study (section 2), we

develop an algorithm that is ;103–105 times faster than

LAA in achieving the same exact Lorenz reference state for

the examined World Ocean datasets, making it useful for

energy diagnosis in ocean GCMs.

Our algorithm has applications to calculate APE

density. LorenzAPE density is commonly defined based

on the Lorenz reference state and is a positive definite

function of position that integrates to the system’s

Lorenz APE [Roullet and Klein 2009; Winters and

Barkan 2013; Molemaker and McWilliams 2010; Scotti

and White 2014; see Tailleux (2013a) for a review].

Tailleux (2013b) extends the concept of APE density

to one based on an arbitrary reference state (i.e., not

necessarily the Lorenz reference state); theAPE density
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of a fluid parcel is the positive-definite work done against

buoyancy forces when adiabatically displacing this parcel

among the given reference state from its reference-state

position to its current-state position [section 2.1 of Tailleux

(2013b)]. Global Lorenz APE density is the largest around

Antarctica and the Arctic, where significant amounts of

dense water masses would have to move thousands of ki-

lometers to tropical ocean bottoms to achieve the Lorenz

reference state with flat isopycnals (Fig. 3d of Tailleux

2013b). Although useful for many purposes, this globally

defined concept does not directly represent the local (;10–

300km) parcel rearrangement that releases local APE into

eddy kinetic energy (EKE) through baroclinic instability

(e.g., Vallis 2006). This causes a significant mismatch be-

tween the global patterns of Lorenz APE density and those

of EKE (as shown in section 3). In the second part of this

study (section 3), we aim to develop a locally defined APE

framework, in strong contrast to the Lorenz APE frame-

work, in order to better detect the EKE patterns. Our de-

fined APE framework could compare the APE products

derived from different rearrangement length scales (from

the whole domain scale to an eddy scale; Fig. 2) and

determine their quality for the eddy detection.

2. Solving the Lorenz reference state

Inspired by HN15 and under their framework, with

the caveats mentioned in their section 1, here we effi-

ciently and exactly solve the Lorenz reference (absolute

minimum PE) state for an arbitrary ocean system with a

nonlinear EOS. For convenience, we grid the 3D domain

into columns with the same horizontal area; each col-

umn is further divided continuously into vertical parcels

with the same mass m0. This can be done accurately in

the presence of bottom topography, with caveats as

noted below, and does not impact the solution, provided

that the grid spacing has a sufficiently high resolution

(e.g., the solution converges with increasing resolutions;

Fig. 1a). Note that the widely used World Ocean Atlas

2009 (WOA 2009) dataset (Antonov et al. 2010) itself, as

applied in this section, only has 50 levels and cannot

accurately represent the real-ocean bottom topography.

Thus, in this sense there may always be some un-

accounted masses on the ocean bottom, no matter how

small m0 is. Further, m0, if smaller, can only approach

but typically cannot reach the resolution limit of the

applied original dataset in our scenario because of the

interpolation strategy here. This is a common problem

for the finite-difference scheme. For parcel iwith salinity

Si and potential temperature ui, we label its current-state

pressure as Pi (i 5 1, 2, . . . , n), where n is the total

number of parcels in our gridded system. Therefore, the

3D system has n parcels located uniquely in n positions

(note that lots of positions here have the same value of

pressure, e.g., those positions at the top layer). Assum-

ing hydrostatic balance, any adiabatic parcel rearrange-

ment, which can be decomposed into a series of two-parcel

exchanges, does not change the pressure distribution of

the n positions of the system. It is to redistribute the n

parcels among the n positions Pi (i 5 1, 2, . . . , n), as a

transition from the current state to a rearrangement

state. Our goal is to find the rearrangement state that has

FIG. 1. (a) Lorenz APE of the World Ocean and (b) the associated computation time vs the horizontal spatial resolution of the applied

dataset. All applied datasets in Fig. 1 have 50 vertical levels and are interpolated from the 18 grid WOA 2009 climatology. The code of

LAA and MCFA are both nonparallelized and are performed on a normal Unix workstation (a Dell PowerEdge SC1435 rackmount

server, two quad coreAMDOpteron 2372HE 2.1-GhzCPU, totally 8 cores, and 16GB ofmemory), which is used for all the computations

in this paper (Figs. 2b–f, 5b–f, and 6c,d). From (a), the solution converges with increasing resolution. From (b), for the 314-km gridded

global dataset, LAA takes;1.33 107 s’ 155 days, whileMCFAonly takes;52 s. (c) The zonal-mean depth (km)where the current-state

parcels reside in the Lorenz reference state. The contour interval is 0.5 km. It is solved byMCFA using the 111-km gridded global dataset.

Clearly Antarctic Bottom Water (AABW), North Atlantic Deep Water (NADW), and Arctic Bottom Water (ABW) are rearranged to

the ocean bottom at the Lorenz reference state, since they are the densest water masses in the World Ocean. Note that NADW is within

the Atlantic Ocean but (c) is the global zonal mean. See section 2 for details.
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the absolute minimum PE (i.e., the Lorenz reference

state). Note that the total number of rearrangement

states for the system is the factorial of n and is a huge

number. Here, the assumption of hydrostatic balance is

typically accurate for the global-ocean system or for the

mesoscale dynamic system that we focus on; the pres-

sure error percentage (i.e., the error here equals the real

pressure minus the hydrostatic pressure) should be &

Ro3 a2� 1%, where Ro is the Rossby number and a is

the aspect ratio [typically Ro� 1 and a& 0.1 for a

system * mesoscale; section 2.8.5 of Vallis (2006)].

We define h5 [hi,j] (i, j5 1, 2, . . . , n), where hi,j 5 h(ui,

Si, Pj) is the specific enthalpy (in units of joules per

kilogram) of parcel i at pressure Pj. Note that the ui
and Si of parcel i are always conserved under adiabatic

parcel rearrangements. For a rearrangement state

where parcel k (k 5 1, 2, . . . , n) is at Pl, we define a

matrix x5 [xi,j] (i, j5 1, 2, . . . , n) that maps the current

state to the rearrangement state, with xk,l 5 1 and xk,e 5
0 (e 6¼ l, 1 # e # n) (i.e., xi,j is either 0 or 1). Therefore,

each rearrangement state has a unique x. The system’s

enthalpy (in units of joules) of this rearrangement state is

m0�n

i51�
n

j51hi,jxi,j, which represents the system’s PE

(Reid et al. 1981). Thus, solving for the Lorenz reference

state, which has the absolute minimum enthalpy/PE, re-

quires solving the following problem:

Given a n3 n matrix h, find a n3 n matrix x, to minimize �
n

i51
�
n

j51

h
i,j
x
i,j
,

where x
i,j
5 0 or 1, subject to �

n

i51

x
i,j
5 1 for any j and �

n

j51

x
i,j
5 1 for any i . (1)

HN15 have derived (1) and demonstrated that the

above problem is the classic linear assignment problem

(LA) in applied mathematics (Kuhn 1955), which can

be exactly solved by the LAA. However, as they point

out, LAA is too slow to be useful for energy diagnosis

in a GCM. We confirm this by using one of the fastest

codes of LAA (Jonker and Volgenant 1987); LAA

takes ;2 days and ;155 days, respectively, to solve

the Lorenz reference state for a 628-km and 314-km

gridded global ocean (blue curves in Figs. 1a,b). This

is performed on a normal Unix workstation (detailed

in the caption of Fig. 1b). All global datasets in sec-

tion 2 have 50 vertical levels and are interpolated

from the 18 grid WOA 2009 climatology (Antonov

et al. 2010).

Here, we extremely reduce the complexity of the

problem [(1)] by simplifying the spatial dependence of

[hi,j]. This simplification is according to the fact that the

n 3 n matrix [hi,j] (i, j 5 1, 2, . . . , n) includes elements

that are substantially repeated, as illustrated below. For

the deepest column among the gridded system, we de-

note its total parcel/layer number as s. Here, s, the

maximum vertical-layer number of the system, is much

smaller than n, the total parcel number of the 3D system

(i.e., s� n). So totally the system has s vertical pressure

layers (i.e., each layer has a unique pressure value) by

utilizing the assumption of hydrostatic balance and

noting that all gridded parcels have the same mass and

the same horizontal area (subject to the errors discussed

above). For vertical pressure layer k (k5 1, 2, . . . , s), we

denote its number of horizontal positions as nk, subject

to�s

k51nk 5 n. These nk positions in layer k correspond

to nk numbers of Pj ( j here are among 1, 2, . . . , n and are

the indexes for these nk positions), which all have a

unique pressure value, denoted as Prk. In other words,

Prk (k5 1, 2, . . . , s) is the pressure for the vertical layer k

that includes nk numbers of parcels (or, say, positions).

Therefore, the n 3 1 array [Pj] ( j 5 1, 2, . . . , n) has

elements that are substantially repeated and includes

only s unique values: Prk (k 5 1, 2, . . . , s; again s � n).

Thus, [hi,j] 5 h(ui, Si, Pj) (i, j 5 1, 2, . . . , n) also has ele-

ments that are substantially repeated (due to the repetition

of Pj values) and can be reduced to [ ~hi,k] 5 h(ui, Si, Prk)

(i5 1, 2, . . . ,n;k5 1, 2, . . . , s), that is, then3 nmatrix [hi,j]

can be largely reduced into a n3 smatrix [ ~hi,k] by noting

s� n. Essentially, theLorenz reference state is not unique:

for a constant pressure layer in the Lorenz reference state,

the adiabatic redistributionof parcelswithin this layer does

not alter the enthalpy/PE of the system [e.g., h(ui, Si, Prk)

for parcel i is unchanged during this redistribution since

Prk is a constant within this layer]. We define ~h 5 [ ~hi,k]

and ~x5 [~xi,k] (i5 1, 2, . . . , n; k5 1, 2, . . . , s), where ~xi,k 5 1

represents parcel i located at pressure Prk in the re-

arrangement state.1 Thus, the problem (1) can be

modified as follows by taking advantage of the fact

that s ,, n:

1 Our approach of constructing the pressure categories, in

which the density and depth are unknown a priori, has strong

parallels with constructing a probability density function for

potential density in which the pressure levels and depths for

each density category are unknown a priori (see Tseng and

Ferziger 2001).
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Given a n3 s matrix ~h, find a n3 s matrix ~x, to minimize �
n

i51
�
s

k51

~h
i,k
~x
i,k
,

where ~x
i,k
5 0 or 1, subject to �

n

i51

~x
i,k
5 n

k
for any k and �

s

k51

~x
i,k
5 1 for any i . (2)

We find that this belongs to the classical minimum-

cost flow problem (MCF)2 in applied mathematics

(Goldberg and Tarjan 1989; Bland and Jensen 1992;

Ahuja et al. 1992). From (1) and (2), clearly LA is just a

special case of MCF by prescribing s 5 n and nj 5 1.

Solving the Lorenz reference state is extremely simpli-

fied by using (2) rather than (1), since n/s is�1 due to a

typical large aspect ratio in ocean systems with meso-

scale circulation (e.g., n/s ; 104 for a 100-km gridded

global ocean, with s 5 50 for our cases). We use one of

the fastest codes of the MCF algorithm (MCFA;

Goldberg 1997). We find that MCFA achieves the exact

same3 Lorenz reference state as LAA (Fig. 1a) but is 103

–105 times faster, depending on the data resolution

(Fig. 1b; see footnote 2 for the related time complexity).

We find that the dependence of the solved APE using

MCFA on the vertical resolution of the dataset (i.e., on

s) is similar to the results shown in Table 1 of Huang

(2005). MCFA only takes;10min to solve for a 111-km

gridded global dataset. This is efficient enough for some

useful energy diagnosis in ocean GCMs. The exact

Lorenz reference state solved by MCFA (Fig. 1c) is

largely consistent with that solved by approximate

methods (e.g., Fig. 3d of Tailleux 2013b), while non-

linear effects of EOS (e.g., thermobaricity) can cause a

difference between them (see appendix B of HN15).

3. Eddy size–constrained APE density

In this section, we aim to develop a newAPE framework

that may detect local EKE patterns and even individual

eddies/vortices. We first investigate the energetic me-

soscale eddy field in the Southern Ocean (SO) system

(Fig. 2a; from the 18-km grid ECCO2 state estimate as

described in the caption). EKE in Fig. 2a is defined as

0:53 (u2 u)2 1 (y2 y)2 with a unit of joules per kilo-

gram, where u and y are, respectively, the zonal and

meridional velocities, and the overbar here denotes the time

mean. The EKE patterns are distinct from those of the

LorenzAPE density (Fig. 2a vs Fig. 2f; vertically averaged).

This is because the Lorenz APE density is based on entire

domainwide parcel rearrangement, which reflects the de-

viation of the local current-state stratification from the

Lorenz reference state in the considered system. For ex-

ample, Lorenz APE density has a minimum at ;458S
(Fig. 2f), since at this latitude the current-state stratification

is approximately closest to the Lorenz reference state

(Fig. 4a, leftmost versus rightmost panel). In contrast, me-

soscale eddies are widely considered to bemainly generated

by baroclinic instability, which is associatedwith local parcel

rearrangement that acts to flatten local isopycnals and re-

lease local APE into EKE (e.g., Pedlosky 1987). The hori-

zontal scale of this local parcel rearrangement may not be

uniquely quantified due to the nonlinear development of

eddies, but it is close to the local eddy size, the deformation

radius, and the width of the baroclinic zone with essentially

similar magnitude (Visbeck et al. 1997). We have done a

related sensitivity test, as discussed later in Fig. 2, and find

that the local eddy size is generally a good proxy for the

local parcel rearrangement.4 To better represent the

generation of EKE, it is intuitive to consider a locally

definedAPE framework: the eddy size–constrainedAPE

density that reflects the local baroclinicity. It is still based

on adiabatic parcel rearrangement from the current state

to the reference (minimum PE) state but with the strong

constraint that the rearrangement should not exceed the

local eddy size horizontally. Solving this new reference

state is identical to problem (1), except with the extra

enforced condition of xi,j 5 0 (i, j5 1, 2, . . . , n) provided

that parcels i and j in the current state would be separated

2 In the framework of MCF, the flow network of (2) includes one

source, one sink, n edges representing all parcels, and s edges

representing Prk (k 5 1, 2, . . . , s). The n arcs from the source to

parcel edges all have a capacity of [1, 1] with a zero cost. The s arcs

from Prk edges to the sink all have a zero cost with a capacity of

[nk, nk]. The left arcs (totally n3 s) are from the parcel edges (e.g.,

parcel i) to the Prk edges with a flow of ~xi,k 5 0 or 1 (i.e., a capacity

of [0, 1]) and a cost of ~hi,k. Here, [~xi,k] is to be solved. Denote A as

the total arc number (A 5 n 1 s 1 n 3 s) and E as the total edge

number (E5 21 n1 s); the fastest known polynomialMCFA runs in

O[A(logE) (A1 E logE)];O(A2);O(n2s2), sinceA� E, logE,
10, and A ; ns. In contrast, the time complexity of LAA is ;O(n3).

3 For a given dataset, the discrete optimization problems (1) and

(2) can be solved by LAA and MCFA, respectively, both with

100% accuracy (Kuhn 1955; Goldberg 1997). Therefore, their solu-

tions for the Lorenz reference state are exactly the same.

4 As shown in our sensitivity study in Fig. 2, using a smaller size as

the constraint would consistently decrease the APE density. The

first baroclinic radius of deformation is typically smaller than the

eddy size (Fig. 12 of Chelton et al. 2011), thus using it rather than

the eddy size as the constraint would decrease the APE density.
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by a horizontal distance larger than the local eddy size

around parcel i. This problem can be exactly and effi-

ciently solved by MCFA.5 Based on the solved reference

state, we obtain the eddy size–constrained APE density

[APE density can be defined for an arbitrary reference

state by essentially following Tailleux (2013b); note that

the reference state here can be horizontally in-

homogeneous, and thus the APE density here is defined

as the positive-definite work done against buoyancy

forces, when adiabatically displacing this parcel vertically

through its reference-state column from its reference-

state pressure level to its current-state pressure level].

From observations, the SO has an eddy size of around

40–80 km (Sallée et al. 2008). As a test, we prescribe an

eddy size constraint of 50 km arbitrarily for the entire

SO domain. The resulting eddy size–constrained APE

density is in general consistent with the EKE patterns

(Fig. 2b vs Fig. 2a; vertically averaged), for example,

enhancement of EKE around strong ACC fronts and

subtropical western boundary currents (Fig. 3a). This is

consistent with the physical picture that local APE is a

critical energy source6 for EKE. We note that there is

FIG. 2. (a) Vertical-mean EKE (Jkg21) in the Southern Ocean. It is calculated from a 3-yr dataset (August 2003 – July

2006) of global ECCO2 state estimate (Menemenlis et al. 2008). This dataset is observation and model constrained, with

18-km horizontal grid spacing and 50 vertical levels. The timemean of this dataset is used for Figs. 2b–f. (b) Vertical-

meanAPEdensity (J kg21), defined based on the constraint that the adiabatic parcel rearrangement from the current

state to the reference (minimum PE) state should not exceed 50km horizontally. The reference state is solved by MCFA.

The 50km constraint is approximately the size of mesoscale eddies in the Southern Ocean (Fig. 6b). The pattern of APE

density is close to theEKEpattern shown in (a). (c)–(f)As in (b), butwith the horizontal constraint of parcel rearrangement

loosened to 100, 300, and 700km and no constraint (i.e., the LorenzAPE case), respectively. In (f), the black curve denotes

the positions whose current-state surface density is equal to the surface density at the Lorenz reference state (which is

a constant, e.g., see the rightmostpanelofFig. 4a).Thisblackcurveagreeswellwith thearea thathas theminimumLorenzAPE

density in (f) (blue or green areas), since the LorenzAPE density reflects the deviation of local current-state stratification from

theLorenz reference state in the considered system (SouthernOceanhere; see Fig. 4a, leftmost vs rightmost panel). In contrast,

eddy size–constrained APE density in (b) reflects local baroclinicity (e.g., Fig. 3b), which has large values around midlatitude

[;408–558S; the red and green stripe in (b)]. (g) QGAPE density of the Southern Ocean. See section 3 for details.

5 This problem is essentially LA and a special case ofMCF.Here,

MCFAwould exclude all arcs that connect parcel i to pressure Pj if

knowing xi,j 5 0 a priori, which largely reduces computational

complexity. In contrast, LAA is extremely slow: hi,j is set as an

artificially large value to represent xi,j5 0 (i.e., too high cost to be a

solution). MCFA takes a few hours to obtain the results of Figs. 2b–e,

5b–e, and 6c due to an 18-km grid spacing of ECCO2 dataset, con-

trasting to the $111-km WOA 2009 grid spacing in section 2.

6 Via baroclinic instability, mean APE is the direct source for

eddy APE, while eddy APE is the direct source for EKE (Chen

et al. 2014). Thus, mean APE is the indirect source for EKE.

Therefore, our defined eddy size–constrained APE, no matter for

the time-mean part or for the eddy part, is the direct or indirect

source of EKE via baroclinic instability.
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high APE density along the southern/northern bound-

aries (Fig. 2b), while there is little EKE there. This is

because we consider the closed SO system with solid

southern/northern boundaries; this artificial inconsis-

tency disappears in the World Ocean case as discussed

later. Note that the conversion rate of local APE density

to EKE can be highly inhomogeneous spatially because

of the intricate influences from standing meanders, to-

pography, zonal fronts, nonlocal energy propagation,

turbulent energy cascade, and so on (Thompson and

Sallée 2012; Chen et al. 2014; Chapman et al. 2015).

Interestingly, high EKE between 308 and 2408 longitude
are generally located downstream of the corresponding

APE density patterns (Fig. 2a vs Fig. 2b), while the

maximum EKE is also found downstream of the baro-

clinically unstable regions (indicated by Eady growth

rate; Williams et al. 2007). This similarity suggests the use-

fulness of our defined APE density to diagnose baroclini-

cally unstable regions. This downstream relationship

is likely contributed from the southward advection

of eddies by the southeastward ACC fronts (Fig. 3a),

while also associating with the fact that high EKE is

often found downstream of significant topographic fea-

tures and standing meanders (Thompson and Naveira

Garabato 2014). Local baroclinicity, and hence eddy

size–constrained APE density, may be strongly modu-

lated by topography (Fig. 3b), baroclinic instability,

Ekman pumping (Marshall and Speer 2012), ocean jet

formation (Thompson 2010), differential surface heat-

ing (Bryan and Cox 1968), and so on.

As a sensitivity study, we loosen the eddy size con-

straint from 50 to 100, 300, and 700 km, respectively. As

expected, this generally leads to flatter isopycnals in the

reference state (Fig. 4a) and a resulting larger APE

density (Figs. 2b–e), which matches better with the

Lorenz APE density (Fig. 2f) but matches worse with

the EKE (Fig. 2a). Figures 4c and 4b schematically ex-

plain the following two features, respectively: (i) con-

trasting Fig. 2e with Fig. 2f, the 700-km constrainedAPE

(note 700 km � domain scale ; 3000km) already ac-

counts for most (;75%) of the Lorenz APE in the SO

system; and (ii) there is a strong zonal asymmetry be-

tween regions A, B, and C (Fig. 2e vs Fig. 2f).

There is a striking feature that the minimum Lorenz

APE density (blue or green areas in Fig. 2f) is located in

areas with roughly the maximum eddy size–constrained

APE density (red or yellow areas in Fig. 2b), which are

also the ACC front areas characterized by themaximum

EKE in Fig. 2a. This feature is explained as follows: In

Fig. 2f, the black curve denotes the positions whose

current-state surface density is equal to the surface

density at the Lorenz reference state (which is a con-

stant; e.g., see the rightmost panel of Fig. 4a). This black

curve agrees well with the areas that have the minimum

LorenzAPE density in Fig. 2f (blue or green areas). This

is because the Lorenz APE density reflects the deviation

of local current-state stratification from the Lorenz

reference state (i.e., the black curve areas have

roughly a zero deviation and hence have no need of

parcel rearrangement to reach the Lorenz reference

state and therefore have the minimum Lorenz APE

density). Further, the surface density at the Lorenz

reference state (i.e., also the density along the black

curve) is approximately the surface-mean density of

the current state in the quasigeostrophic (QG) limit

(e.g., Vallis 2006). Thus, the black curve, which has

about the mean density, is located meridionally right

between the maximum density in the south and the

minimum density in the north (see the leftmost panel

in Fig. 4a). Therefore, the black curve roughly

FIG. 3. (a) Time and vertical mean kinetic energy (MKE; J kg21) from the same dataset as Fig. 2a. It shows strong

southeastward ACC fronts that can advect eddies southward. This partly explains why the EKE patterns in Fig. 2a are

generally located downstream of the corresponding APE density patterns in Fig. 2b. (b) Potential density (kgm23,

referenced to the 2-km depth) at 51.48S. The contour interval is 0.1 kgm23. Topographic highs may generate local APE

density by inducing local isopycnal bumps (marked by blue ellipses). These bumps also cause the interfacial form drag of

transient/standing eddies (Rintoul et al. 2001). For (b), we choose to use potential density rather than neutral density

because the former achieves qualitatively the same result as the latter but with a much better computational efficiency,

similarly for Figs. 4a and 4b. See section 3 for details.
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represents the locations with the maximum meridional

density gradient, where the ACC fronts are located with

about the maximum EKE and the maximum eddy size–

constrained APE density.

Figure 2g shows the QG–APE of the SO [see, e.g.,

(2.6) of Roullet and Klein (2009) for the definition of

QG–APE], which acts to approximate the Lorenz

APE under the QG approximation (Huang 2005;

Pedlosky 1987). Contrasting Fig. 2g with Fig. 2f,

clearly QG–APE is basically consistent with the

Lorenz APE (e.g., in region A), although having ev-

ident departures in regions B and C. This is because

regions A, B, and C have similar depth, (&500m)

deeper and (&500m) shallower isopycnals, respec-

tively, contrasting to the mean of the whole SO

(Fig. 4b vs the leftmost panel of Fig. 4a; especially

around 508–608S). Therefore, regions B and C require

strong isopycnal displacements to reach the Lorenz

reference state and hence cause the departure of QG–

APE from the Lorenz APE in these regions [see

Roullet and Klein (2009) for a detailed study of this].

This suggests that QG approximation for APE,

although useful, should be treated with caution for

the SO.

Figure 5 shows the same energy quantities as Fig. 2

but based on a snapshot of the dataset. These transient

APE densities are generally consistent with the 3-yr

mean counterpart in Fig. 2, but with much more me-

soscale turbulent features, as expected. There is a high

correspondence between the eddies (vortices) in

Fig. 5a and theAPE patches in Fig. 5b (e.g., at the south

of Africa; around Australia). This further demon-

strates the potential usefulness of our defined eddy

size–constrained APE density to diagnose/parameterize

mesoscale eddies. This correspondence should be con-

tributed by two factors: (i) local APE is a critical

energy source for mesoscale eddies and is partly con-

verted to EKE via baroclinic instability, and (ii) baro-

clinic eddies (vortices) are associated with local

stratification (and hence APE) signals, that is, corre-

sponding to local baroclinicity (a doming or a bowling

of the isopycnals) through thermal wind balance. In-

deed, EKE and APE for an eddy would scale directly

with one another in the QG limit [see (4) below]. These

FIG. 4. (a) Zonal-mean potential density (kg m23, referenced to the 2-km depth) of the current state and five

reference states that define the APE density in Figs. 2b–f, respectively. The contour interval is 0.25 kg m23.

The loosening of the constraint (i.e., from 50 km to Lorenz) decreases the baroclinicity of the reference state

and leads to a larger APE density as shown in Figs. 2b–f. (b) As in (a), but showing the zonal-mean current

state for regions A, B, and C labeled in Fig. 2f. Regions A, B, and C have similar depth and deeper and

shallower isopycnals, respectively, contrasting to the mean of the whole Southern Ocean [the leftmost panel in

(a); e.g., comparing the isopycnals $1036.5 kg m23; see Orsi et al. 1999]. Therefore, current-state dense

parcels in region C are still constrained in region C in the reference state of Fig. 2e but are rearranged to region

B in the Lorenz reference state (Fig. 2f). Thus, the 700-km constrained APE density has similar, smaller, and

larger values than the Lorenz APE density counterpart in regions A, B, and C, respectively (Fig. 2e vs Fig. 2f).

(c) Schematic that illustrates the ;700-km scale for the horizontal parcel rearrangement from the current state

to the Lorenz reference state. The interfacemay represent the isopycnal of 1036.5 kgm23 shown in (a). Here,M and

N denote the center of the light water (blue) in the current and the Lorenz reference state, respectively; the light-

water area on the right of M (grid shading) is about half of the whole light-water area. In a zonal-mean sense, this

schematic explains why the second-rightmost panel in (a) has almost flat isopycnals and why the APE in Fig. 2e can

account for most (;75%) of the Lorenz APE in Fig. 2f. See section 3 for details.
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two factors above are related and may not be separated

explicitly.

We now consider the World Ocean. Using the

altimeter-observed eddy size (Fig. 6b; Chelton et al.

2011) as the constraint for parcel rearrangement, we

obtain the global eddy size–constrained APE density

(Fig. 6c). Its mean magnitude is ;2.5 times larger than

the EKE (Fig. 6c vs Fig. 6a), which can be explained by

QG scaling [e.g., (5.160) of Vallis (2006)]:

EKE/QG-APE;KE/QG-APE; (L
d
/L)2 , (3)

where we have applied EKE ; KE since geostrophic

eddies account formost of theKEof the oceans [section 6

of Ferrari and Wunsch (2009)]. In (3), Ld is the de-

formation radius, and L is the considered scale. Now we

consider a closed system of only an eddy scale, that is,

where L is equal to the eddy scale Le. Then the Lorenz

APE of this eddy-scale system, which is approximated by

theQG–APEof this system, is essentially equivalent to the

eddy size–constrained APE that we focus on here (note

again that the system considered here is of only eddy scale;

in contrast, the LorenzAPE andQG–APE in Figs. 2 and 5

are for the whole SO system). Thus, (3) implies that

EKE/eddy size-constrained APE; (L
d
/L

e
)2 . (4)

The eddy scale Le is typically larger than Ld (Fig. 12

of Chelton et al. 2011). Therefore, from (4), eddy

size–constrained APE should be typically larger than

EKE, as shown by Fig. 6a versus Fig. 6c. Note that

(4), because of its scaling analysis nature, should be

only treated as a qualitative argument rather than an

accurate description.

The distribution of eddy size–constrained APE in

general well captures the high EKE in most ocean

regions (Fig. 6c vs Fig. 6a), especially around the SO

fronts and subtropical western boundary currents

(e.g., Gulf Stream, Kuroshio, Agulhas, Brazil/Mal-

vinas, and East Australian Currents). This is consis-

tent with the classic hypothesis that baroclinic instability

provides the dominant source for local eddy growth in

most ocean regions (e.g., Arbic 2000), that is, by

converting local APE to EKE (e.g., Vallis 2006). The

mismatching part between Figs. 6a and 6c may be

caused by some interactions as discussed before. For

example, barotropic instability is an important

EKE source in the Gulf Stream (Gula et al. 2015)

and in tropical oceans (Jochum et al. 2004). Subpolar

oceans have much larger eddy size–constrained APE

density than EKE (Fig. 6c vs Fig. 6a; e.g., around the

Weddell and Greenland Seas, Antarctic continental

shelf). This is likely because Ld/Le decreases with

latitude and becomes very small at high-latitude

regions (Fig. 12 of Chelton et al. 2011). According

to (4) we should have APE much larger than EKE in

these regions. Further, this may also be contributed

FIG. 5. As inFig. 2, but basedona snapshotof theECCO2state estimate (16Feb2005) rather than the3-yrmean inFig. 2.

The EKE snapshot in (a) defined as 0:5[(u2u)2 1 (y2 y)2], where u and y are, respectively, the zonal and meridional

velocity for this snapshot, and u and y are the time-mean (August 2003–July 2006) counterparts. These transient patterns are

generally consistent with the time-mean counterparts in Fig. 2 but have much more mesoscale turbulent features, as ex-

pected. There is a high correspondence between the eddies in (a) and the APE patches in (b). See section 3 for details.
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by the underestimate of EKE in our applied 18-km

grid ECCO2 dataset, the suppression of baroclinic

instability above continental slope and along the

ocean front (Stewart and Thompson 2013; Su et al.

2014), and the potential smallness of real-ocean

parcel rearrangement scale relative to our applied

eddy size.

Global patterns of Lorenz APE density are again distinct

fromEKE (see Fig. 6d and its caption); it mainly reflects the

ocean regions with dense water production/circulation.

QG–APE of the World Ocean (Fig. 6e vs Fig. 6d) has

generally consistent patterns with the Lorenz APE.

However, they have a significant discrepancy in

magnitude especially around high-latitude regions,

where the densest waters are located and hence

strong isopycnal displacements are required to reach

the global Lorenz reference state. This makes QG

approximation less effective (Roullet and Klein

2009) in contrast to the lower-latitude regions.

4. Discussion

Our proposed MCFA efficiently and exactly solves the

Lorenz reference state for anocean systemwith anonlinear

EOS. This may be helpful for associated energy diagnosis

in oceanmodels, especially for regions where the nonlinear

effect of EOS is significant to determine the Lorenz APE

(thermobaricitymay compete with baroclinicity, e.g., in the

Weddell Sea; Su et al. 2016a,b,c). In contrast, approximate

methods such as theQG–APE typically cannot capture this

nonlinear effect (see appendix B of HN15).

There is a general match, although with non-

neglectable difference, between the patterns of high

EKE and high eddy size–constrained APE density (i.e.,

high local baroclinicity; Fig. 6a vs Fig. 6c). This newAPE

framework is also shown to be helpful to detect indi-

vidual eddies/vortices (Fig. 5a vs Fig. 5b). These sug-

gest the likely usefulness of our APE framework

in diagnosing/parameterizing mesoscale eddies and

FIG. 6. (a) Global vertical-mean EKE (J kg21). It uses the same dataset as Fig. 2a. (b) Meridional profile of

zonal-mean surface eddy size by altimeter observations (blue; Chelton et al. 2011). The observed eddy size is

highly homogenous zonally (Fig. 12 of Chelton et al. 2011), and hence we only consider its meridional variation.

The polynomial fitting (red; using MATLAB’s polynomial fitting of degree 17) extends the blue curve from the

observation edge at;708 latitude to 808, by which we approximate the eddy size for 708–808 regions. (c) Global

vertical-mean eddy size–constrained APE density (J kg21). It applies the observed eddy size [red curve in (b)]

as the horizontal constraint for adiabatic parcel rearrangement from the current state to the reference (min-

imum PE) state. The match between (c) and (a) is consistent with the physical picture that mesoscale eddies are

associated with a strong signature in both the velocity field (i.e., EKE) and the stratification (i.e., local APE).

(d) Global vertical-mean Lorenz APE density (J kg21). It has large values (red, ;101 J kg21) mainly around

Antarctica and the Arctic, where dense water is produced and circulated (i.e., AABW, NADW, and ABW). In

contrast, it has medium values (yellow, ;100 J kg21) in broad ocean areas, including regions with strong ocean

currents/EKE, for example, around ACC fronts, the Kuroshio Current, and the Gulf Stream. The Lorenz APE

density, as in (d), reflects the deviation of local current-state stratification from the Lorenz reference state in

the considered system. (e) QG APE density of the World Ocean.

SEPTEMBER 2016 SU AND INGERSOLL 2671



identifying the mechanisms that cause nonlocal EKE

development. These results open new routes to un-

derstand the dynamics that influences the conversion

of local APE to EKE (e.g., related eddy-mean energy

fluxes, the vertical structure of energy transfer, the in-

fluences from topography, standing meanders, nonlocal

energy propagation, waves, and so on).

Roullet et al. (2014) show the global map of the eddy

APE as diagnosed from Argo data, which is highly

consistent with the surface EKE patterns estimated

from satellite altimetry. Note that the eddy APE is the

direct source for EKE (Fig. 1 of Chen et al. 2014). In

contrast, our eddy size–constrained APE density is de-

fined only from a given dataset (rather than from a time

series of datasets as required for the definition of eddy

APE). However, it can still well capture the EKE pat-

terns in most ocean regions; the strong connection be-

tween them is again explained qualitatively by (4).

From a time series of datasets, we can investigate the

time-mean part and the eddy part of our APE concept.

The high sensitivity of our eddy size–constrained APE

concept to the rearrangement length scales (Figs. 2b–f)

suggests that a higher-resolution observation for the

stratification (e.g., by Argo floats) would be very helpful

to detect local eddy patterns.

This study focuses on the energy reservoirs (i.e., APE

and EKE) rather than the conversion rate between

them. Via the baroclinic instability, the mean APE is

converted to the eddy APE, while the eddy APE is then

converted to EKE by 2gr0w0 (Chen et al. 2014). Here,

r is density, w is vertical velocity, and the prime denotes

the deviation from the time mean. Roullet et al. (2012,

see their Figs. 8, 11), Zhai and Marshall (2013, see their

Figs. 5–7), and Chen et al. (2014, see their Table 1) have

provided valuable discussions on these conversions.

Figures 5a and 5b of Chen et al. (2014) show the global

map of the conversion term 2gr0w0 and the conversion

term from the mean APE to eddy APE, respectively, as

diagnosed from the ECCO2 state estimate.7 Their pat-

terns generally agree with the patterns of EKE and our

defined eddy size–constrained APE density (our Figs. 6a,

6c); this is consistent with the classic hypothesis that the

dominant source for local eddy growth is the energy re-

leased locally from the mean flow (i.e., APE) through

baroclinic instability (Tulloch et al. 2011; Chen et al.

2014). Exploring the conversion terms using our defined

new APE framework will be investigated in a following

study. In the Southern Ocean, the eddy field includes

the transient and standing eddies. The related energy

transfer between the (time and zonal) mean field and

the eddy field may be more complicated than the

classic Lorenz energy cycle (see, e.g., Abernathey and

Cessi 2014). Our eddy size–constrained APE is likely

to be closely associated with the dynamics of both the

standing and the transient eddies (e.g., Fig. 5a vs

Fig. 5b).

The QG–APE shown in Figs. 2g and 6e are for the

SO system and the World Ocean system, respectively.

The QG–APE of a parcel is traditionally defined based

on the deviation of density/buoyancy of this parcel

from the horizontal mean of the considered system

[e.g., (4) of Huang 2005; (3.183) of Vallis 2006]. It is

possible to define a newQG–APE concept, defined not

based on the horizontal mean of the considered sys-

tem, but based on the horizontal mean of an eddy-size

domain surrounding the considered parcel (i.e., the

domain here is a small part of the system, of only eddy

size). This is essentially a similar concept as the eddy size–

constrained APE density we defined in this study: the

former is based on the QG approximation, while the

latter is based on adiabatic parcel rearrangements. This

potential new concept of QG–APEmay similarly capture

the EKE patterns as the eddy size–constrained APE

density but should be much cheaper to compute

numerically.
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