CaltechAUTHORS
  A Caltech Library Service

Binary Black Hole Mergers in the First Advanced LIGO Observing Run

Abbott, B. P. and Abbott, R. and Adhikari, R. X. and Anderson, S. B. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Brunett, S. and Cahillane, C. and Callister, T. and Cepeda, C. B. and Couvares, P. and Coyne, D. C. and Dergachev, V. and Drever, R. W. P. and Ehrens, P. and Eichholz, J. and Etzel, T. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Hall, E. D. and Heptonstall, A. W. and Isi, M. and Kanner, J. B. and Kells, W. and Kondrashov, V. and Korth, W. Z. and Kozak, D. B. and Lazzarini, A. and Lewis, J. B. and Maros, E. and Marx, J. N. and McIntyre, G. and McIver, J. and Meshkov, S. and Pedraza, M. and Perreca, A. and Price, L. R. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Schmidt, P. and Singer, A. and Smith, N. D. and Smith, R. J. E. and Taylor, R. and Thirugnanasambandam, M. P. and Torrie, C. I. and Vajente, G. and Vass, S. and Wallace, L. and Weinstein, A. J. and Whitcomb, S. E. and Williams, R. D. and Wipf, C. C. and Yamamoto, H. and Zhang, L. and Zucker, M. E. and Zweizig, J. and Chen, Y. and Engels, W. and Vallisneri, M. (2016) Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6 (4). Art. No. 041015. ISSN 2160-3308. http://resolver.caltech.edu/CaltechAUTHORS:20161027-140916426

[img] PDF - Published Version
Creative Commons Attribution.

3330Kb
[img] PDF - Submitted Version
See Usage Policy.

4Mb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20161027-140916426

Abstract

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9–240 Gpc^(−3)  yr^(−1). These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1103/PhysRevX.6.041015DOIArticle
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041015PublisherArticle
https://arxiv.org/abs/1606.04856arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Billingsley, G.0000-0002-4141-2744
Callister, T.0000-0001-9892-177X
Isi, M.0000-0001-8830-8672
Kanner, J. B.0000-0001-8115-0577
Korth, W. Z.0000-0003-3527-1348
Kozak, D. B.0000-0003-3118-8950
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Zucker, M. E.0000-0002-2544-1596
Zweizig, J.0000-0002-1521-3397
Vallisneri, M.0000-0002-4162-0033
Additional Information:© 2016 Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Received 24 June 2016; revised manuscript received 8 August 2016; published 21 October 2016. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies, as well as by the Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economía y Competitividad; the Conselleria d’Economia i Competitivitat and Conselleria d’Educació; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Fundaćão de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Russian Foundation for Basic Research; the Leverhulme Trust, the Research Corporation; Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.
Group:LIGO
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max-Planck-SocietyUNSPECIFIED
State of Niedersachsen/GermanyUNSPECIFIED
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche Scientifique (CNRS)UNSPECIFIED
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)UNSPECIFIED
Council of Scientific and Industrial Research (India)UNSPECIFIED
Department of Science and Technology (India)UNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development (India)UNSPECIFIED
Ministerio de Economía y Competitividad (MINECO)UNSPECIFIED
Conselleria d’Economia i Competitivitat and Conselleria d’EducacióUNSPECIFIED
Cultura i Universitats of the Govern de les Illes BalearsUNSPECIFIED
National Science Centre (Poland)UNSPECIFIED
European CommissionUNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding CouncilUNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Hungarian Scientific Research Fund (OTKA)UNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Ontario Ministry of Research and InnovationUNSPECIFIED
Natural Science and Engineering Research Council of Canada (NSERC) UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Ministério da Ciência, Tecnologia e InovaçãoUNSPECIFIED
Fundaćão de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNSPECIFIED
Russian Foundation for Basic ResearchUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Kavli FoundationUNSPECIFIED
Record Number:CaltechAUTHORS:20161027-140916426
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20161027-140916426
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:71557
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:28 Oct 2016 15:02
Last Modified:17 Nov 2017 00:00

Repository Staff Only: item control page