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We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be
written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space ofN -qubits,
serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap
bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can
be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a
thermal heat bath. The bound can be shown to behave asλ ≥ O(N−1 exp(−2β ǫ)), whereǫ is a generalization
of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect
this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor ofN−1.
Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant
lower bound can be proven.

I. INTRODUCTION

A fundamental challenge in quantum information science is the protection of quantum
information from decoherence. A proposed solution [1, 2] tothis problem has been to encode
the quantum information into a many-body entangled state and protect it this way from the
action of local noise. This proposal lead to a new research field, referred to as quantum
error correction [3, 4]. It has turned out that many ideas from quantum error correction have
become increasingly useful in the theory of condensed matter physics [5], as they help to
understand new phases of quantum matter [6]. One of the central questions in this field is that
of thermal stability [2, 7–11]. Thermal stability plays a role in both the understanding of the
behavior of topologically ordered systems at finite temperature, as well as in the estimation
of the life time of self-correcting quantum memories. A standard approach to self-correcting
quantum memories is to encode the quantum information into the ground state, or any other
suitable, subspace of a Hamiltonian. The Hamiltonian should have the property of shielding
this subspace from thermal excitations. An important, and also frequently studied, class
of models are so-called stabilizer Hamiltonians. These Hamiltonians are directly related
to stabilizer quantum codes [4] and are given by the sum of commuting multi-qubit Pauli
operators.

In this paper, we will derive thermalization time bounds, also-called mixing time bounds,
for the Davies generators [12, 13] of these Hamiltonians. Davies generators are given in the
form of a Lindblad equation [14] and are known to converge to the Gibbs distribution of the
particular Hamiltonian for which they are derived.

The first rigorous upper bound on the memory time of a stabilizer Hamiltonian was derived
for the two dimensional toric code model [15] in [11]. The authors first proved a constant
lower bound for the spectral gap of the Davies generator of the one dimensional Ising model.
This bound could then be related to the spectral gap of the Davies generator of the toric
code through a suitable partitioning of the two dimensionallattice. Other no-go results for
stabilizer quantum memories [16–18] in lower dimensions rely on the absence of an energy
barrier that separates two logical states in the code space.The argument proceeds to connect
the energy barrier to the memory’s life time through the phenomenological Arrhenius law
tmem ∼ eβEB , whereEB is the energy barrier of the code [16, 19]. It has been an open
question, whether there is in fact a rigorous connection between the energy barrierEB and
thermalization time of the quantum system. Recent results [20–22] indicate that this law can
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only serve as an upper bound to the life time of the quantum memory.

The main result of this paper is a rigorous upper bound on the thermalization time of a
qubit stabilizer Hamiltonian in terms of a quantity that canbe seen as a generalization of
the energy barrierEB . The result is stated in theorem 15 in section IV. We estimatethe
thermalization time by finding lower bounds on the spectral gap of the Davies generators.
The lower bounds on the spectral gap can be related to estimates of the trace-norm distance
between any initial state and the thermal state of the stabilizer Hamiltonian. We show that
the spectral gap can always be lower bounded byλ ≥ O(N−1e−2βǫ), whereN denotes the
number of qubits in the stabilizer Hamiltonian andǫ is the generalized energy barrier that
will be defined in eqn. (79). Furthermore, we show that in several cases the pre factorN−1

can be removed, and we provide conditions addmitting an improvement of the lower bound
to λ ≥ O(e−2βǫ). We believe this to be the correct scaling of the spectral gapin the low
- temperature limit, and are convinced that the prefactorN−1, present in the general case,
is an artifact of the method used to derive the generic bound.To illustrate the evaluation
of this bound for a particular quantum memory we discuss the toric code, as well as one -
dimensional models as a examples in section IV A. We observe that the generalized energy
barrier essentially corresponds to the largest energy barrier of the logical operators. The
bound proves that although the existence of an energy barrier is not sufficient [20, 21], it is
certainly necessary.

The paper is organized as follows: First, in the remainder ofthis section we state the nec-
essary background for Hamiltonians comprised of commutingPauli operators and briefly in-
troduce Davies generators for these Hamiltonians. Then in section II we provide an overview
of the convergence analysis of Lindblad generators. The lower bound to the spectral gap
for stabilizer Davies generators is derived in the section III. This section contains the central
technical contributions and states the lower bound in termsof a quantity which is very similar
to the classical canonical paths bound derived by Jerrum andSinclair. The final result which
relates the spectral gap to the generalized energy barrier is presented in section IV. The reader
only interested in the main result may skip to this section, where an intuitive description of
the generalized energy barrier and examples are provided.

A. Preliminaries

Before we discuss the bounds on the equilibration times, we need to establish some back-
ground and notation. The Pauli group on the Hilbert space ofN - qubitsHN = ⊗N

i=1C
2

is defined as the group that results from theN -fold tensor product of the Pauli matrices
1, σx, σy, σz so thatPN = 〈i1, X1, Z1, . . . , XN , ZN〉. HereXi denotes the action ofσx

on thei’th qubit and identity on the remainingN − 1. Note, we will refer to the set of
weight one Pauli operators asW1 = {Xi, Yi, Zi}i=1,...,N . By weight one we refer to all
Pauli operators that act non-trivially on only a single qubit. We consider HamiltoniansH
on HN that can be written as the sum of a set of Hermitian, commutingPauli operators
G = {g1, . . . , gM} ⊂ PN , with [gi, gj] = 0 for all i, j. Together with the numbersJk ∈ R
we can write the commuting Pauli Hamiltonian as

H = −
M
∑

k=1

Jkgk. (1)

The setG is the generating set for the commuting subgroupS = 〈g1, . . . , gM 〉 of PN . This
subgroup is referred to as the stabilizer group if it does notcontain−1. The stabilizer group
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encodes logical qubits in states that are stabilized, i.e.s|ψ〉 = |ψ〉, by all s ∈ S, whenS
is a strict subset of the centralizerCPN

(S) of the stabilizer group. Pauli matrices that are
contained in the set differenceCPN

(S)\S are called logical operators and act non-trivially
on the stabilized code space. The interested reader is referred to [4] for a good introduction
into stabilizer quantum codes. It is important to point out,that we do not assume that the
setG generates a stabilizer code in order to derive the thermalization time bound forH .
Although we will use the notation of stabilizer codes, the result holds for any commuting
Pauli Hamiltonian.

There is a natural way of identifying every element of the Pauli groupPN with an element
inZ2

2⋊Z
2N
2 , where two bits inZ2

2 are needed to encode the phase information [4]. As we will
be working with the Pauli algebraC[PN ] we only associate vectors over the finite fieldZ2N

2

with Pauli operators and drop the phase dependence from now on. This means, we consider
for α ∈ Z2N

2 , with α = (αx, αz) the projective representationσ : Z2N
2 → PN , given by

σ(α) = ei
π
2 〈αx,αz〉

Z X
αx

Z
αz

, (2)

where we have defined the operatorsX
αx

= X
αx

1
1 ⊗ . . .⊗Xαx

N

N and for the PauliZ operators

respectivelyZαz

= Z
αz

1
1 ⊗ . . . ⊗ Z

αz
N

N . Note, that we will denote the addition modulo2 in
Z2 by ⊕ to distinguish it from the addition inC. We have thatXi corresponds to a vector
(1, 0)i, whereasYi = (1, 1)i andZi = (0, 1)i respectively. Furthermore, we have that for the
product ofσ(α), σ(β) the following holds

σ(α)σ(β) = ei
π
2 Sp(α,β)

Z σ(α ⊕ β) (3)

σ(α)σ(β) = θα,β σ(β)σ(α) with θα,β = eiπSp(α,β)
Z , (4)

where we define the symplectic product overZ betweenα andβ as

Sp(α, β)
Z

=
(

αx αz
)

(

0 −1
1 0

)(

βx

βz

)

. (5)

The parameterθα,β = ±1, depending on whetherσ(α) and σ(β) commute or anti-
commute. The Pauli algebraC[PN ] is defined via the span of the vectorsC[PN ] =
span{| γ)}γ∈Z2N

2
. For convenience we will use the representation| γ) ∈ C[PN ] ≃ HN⊗HN

given by

| γ) = σ(γ)⊗ 1|Ω〉, with |Ω〉 = 1

2N/2

2N−1
∑

k=0

| k〉 ⊗ | k〉. (6)

Recall that the Pauli matrices form a complete orthonormal basis of the matrix algebra
M2N (C) with respect to the Hilbert-Schmidt scalar product. This implies immediately, that
the vectors (6) form an orthonormal basis and the Pauli algebra is nothing butM2N (C).

It is convenient to introduce the binary matrixG : ZM
2 → Z

2N
2 to encode the generating

setG. This matrix is of the form

G =

(

GX

GZ

)

, where GX , GZ ∈ MN×M (Z2).
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This binary matrix defines the elements of the generating setG through it’s column space.
Since all elements inG commute, we can identify every elements ∈ S by anM dimensional
bit stringx ∈ ZM

2 , throughs =
∏M

i=1 g
xi

i . This allows us to write anys ∈ S in terms of the
matrixG by simply observing that

s =

M
∏

i=1

gxi

i = σ ( G x ) . (7)

WhenG generates a stabilizer code, this matrix is often referred to as the code matrix.
Quantum codes can for instance be obtained by choosingG as the direct sum of two classical
code matrices encoding theX andZ part independently [23]. We note that the generating set
G does not need to be independent, i.e. there may existx1 6= x2 ∈ ZM

2 such thatGx1 = Gx2.
This language allows for a very efficient representation of the spectrum of the Hamiltonian

H . To every matrixG we associate a matrixE : Z2N
2 → Z

M
2 referred to as parity check

matrix that can be obtained fromG through the identificationE = (GT
Z , G

T
X). SinceG

encodes a commuting set, we have thatEG = 0. This matrix has the property that with the
symplectic product as defined above we have for anyx ∈ ZM

2 and anyα ∈ Z2N
2 that

eiπSp(α,Gx)
Z = eiπ〈Eα,x〉. (8)

Here, we denote by〈a, b〉 the canonical inner product overCM and treat the vectorsEα, x
as belonging to this space. The parity check matrixE plays an important role in coding
theory, and allows for the detection of errors in a code. The image ofE will be referred to as
the syndrome space and can be associated to the space of excitations of the HamiltonianH .
In essence given a Pauli matrix labeled byγ, the parity check matrix indicates the generators
that anti-commute with this Pauli. These generators are then referred to as supporting an
excitation. We will refer to the vector

e(γ) = Eγ ∈ ZM
2 . (9)

as the syndrome of the Pauliγ. We denote byek(γ) = [e(γ)]k thek’th component of the
syndrome vector.

The Pauli matricesgk have eigenvalues±1. The local projectorsΠk(ak) =
2−1

(

1+ eiπakgk
)

, project onto the positiveak = 0 or negativeak = 1 eigen space of
the Pauli matrixgk. Since allgk commute we can furthermore consider the product of all the
local projectorsP (a) = Π1(a1) . . .ΠM (aM ), for anya ∈ ZM

2 . Note that this projector can
easily be expressed in terms of aZ2 Fourier transform over the elements inS through

P (a) =
1

2M

∑

x∈ZM
2

eiπ〈a,x〉σ(Gx). (10)

The inverse is naturally given byσ(Gx) =
∑

a e
iπ〈a,x〉P (a) and one can immediately

verify that
∑

a P (a) = 1. Since we have already stated that the setG is not necessarily
independent, we also observe that there may be ana ∈ ZM

2 for whichP (a) = 0. Thea for
whichP (a) does not vanish coincides with the image of the parity check matrixE and will
be referred to as being in the syndrome space ofG. The projectorsP (a) satisfy an important
identity when conjugated by Pauli operators. It can be verified by making use of the identity
in eqn. (8) and the Fourier expansion eqn. (10), that the projectors satisfy
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σ(α)P (a)σ(α) = P (a⊕ Eα). (11)

Since this additiona⊕Eα of syndromes will appear frequently we will write as shorthand
notation

aα = a⊕ e(α). (12)

The projectorsP (a) can now be used to diagonalize the Hamiltonian so that we can write

H =
∑

a∈ZM
2

ǫaP (a) with eigenvalues ǫa = −
∑

k

Jk(−1)ak . (13)

From this particular form, it is straight forward to computethe Gibbs distributionρ =
Z−1 exp(−βH) and we obtain that

ρ =
1

Z

∑

a

e−βǫaP (a) =
∑

a

ρaP (a). (14)

B. Davies generator

We will describe the thermalization of the system in terms ofa Davies generator. This
generator has assumed the role of a bona fide standard model inthe description of thermal-
ization in quantum memories. The Lindblad master equation arrises from the weak coupling
limit of the system to a thermal heat bath. For a microscopic derivation, the reader is re-
ferred to [12, 13, 24, 25]. We will consider the generator as given and will not focus on
its derivation. The physical picture is the following: We assume that the system and bath
evolve together under the HamiltonianHtot = H +HB +HI , whereHB denotes the bath
Hamiltonian, which we will not specify here. The Bath is in a Gibbs state with respect toHB

at some fixed temperatureβ. We assume a weak interaction between system and bath given
by HI =

∑

α S
α ⊗ Bα. HereSα is a Hermitian operator that acts only onHN , whereas

Bα is some Hermitian bath operator. After tracing out the bath degrees of freedom and
a complex sequence of approximations one is left with a Lindblad master equation of the
form ∂tσt = −i[Heff , σt] + L∗

β(σt). It can be shown, that the effective Hamiltonian term
[Heff , σt] does not contribute to the spectral gap [11, 26] and we therefore neglect this term
here. We will therefore only refer to the termLβ as Davies generator for convenience. The
generator is given by

Lβ(f) =
∑

α∈W1

∑

ω

hα(ω)

(

Sα
ω
†fSα

ω − 1

2

{

Sα
ω
†Sα

ω , f
}

)

. (15)

For our model, we make the assumption that the system couplesto the bath via single
qubit Pauli operators,Sα = σ(α) ∈ W1 = {Xi, Yi, Zi}i=1,...,N . The second sum overω is
a sum over all Bohr frequencies of the commuting Pauli HamiltonianH . A Bohr frequency
ω = ǫa−ǫb is an eigenvalue difference of the the Hamiltonian. The operatorsSα

ω are obtained
from the coupling operators through the Fourier expansion of exp(iHt)Sα exp(−iHt) =
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∑

ω S
α
ωe

iωt. Since we can diagonalize the HamiltonianH and the individual summands
commute we can compute the time evolution ofSα and read off the components

Sα
ω =

∑

a

δ[ωα(a)− ω]σ(α)P (a), with δ[x] =

{

1 : x = 0
0 : else. (16)

We have definedωα(a) = ǫa − ǫaα . Due to the particularly simple form of the eigenvalues,
the Bohr frequency can be evaluated as

ωα(a) = −2

M
∑

k=1

Jkek(α)(−1)ak . (17)

Note that we consider the binary variablesek(α) as 0, 1 valued integers and use the
natural addition. The bath temperature is encoded in thetransition rateshα(ω). This
function is obtained from the Fourier transform of the autocorrelation of the bath operator
Bα(t) = exp(iHBt)B

α exp(−iHBt) with respect to the bath’s Gibbs state at inverse tem-
peratureβ. The specific form of the transition rates depends of course on the particular choice
of bath model [27]. However, the only property which is relevant for our derivation is that
the transition rates satisfy the KMS condition [28]

hα(−ω) = hα(ω)e−βω, (18)

to ensure detailed balance, c.f. definition 3. Moreover, we assume that the functions are
positive and bounded byc ≤ hα(ω) ≤ C, wherec, C > 0 are constants independent ofN . In
particular we will assume that the lower bound behaves asc ∼ e−β∆, where∆ is the gap of
the Hamiltonian (1). The coupling operatorsSα ∈ W1 ensure thatLβ has a unique full rank
stationary stateρ > 0 for whichL∗

β(ρ) = 0, sinceW1 generates the full algebra [29, 30].
Furthermore, the detailed balance ofLβ with respect to the Gibbs state ofH implies that the
unique fixed point of this map is given byρ = Z−1 exp(−βH). We therefore have thatLβ

is a map that converges to the thermal state of the HamiltonianH . The Davies generator can
therefore be seen as a physically motivated generalizationof Glauber dynamics to quantum
systems [31, 32].

II. THE POINCARE INEQUALITY AND CONVERGENCE BOUNDS

We are interested in the derivation of convergence time bounds for the Davies generator
(15) defined in the previous section. In order to analyze the convergence of density matrices

we will work with the trace norm‖A‖tr = tr
[√
A†A

]

to determine the distance from the

steady state. This norm is the natural non-commutative generalization of the total variation
distance [33]. Let us denote the steady state of the Davies generator byρ. We will define the
convergence time, or so-calledmixing time, tmix(ǫ) as the time the semi-groupLβ needs to
beǫ-close to its stationary distribution for all initial statesσ0.

tmix(ǫ) = min
{

t
∣

∣ t′ > t we have ‖eL∗
βt

′

(σ0)− ρ‖tr ≤ ǫ ∀ σ0
}

. (19)

The mixing time gives a valid estimate for the thermalization time of the quantum system.
Moreover, this time also provides an upper bound to the time information can be encoded
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in the system. Once the system has become thermal it has lost all information of its initial
configuration. Note that the system’s ability to store quantum information may be lost before
the Hamiltonian starts to thermalize. Hence, the mixing time bounds only what is referred
to as the classical memory time. This time is of course a natural upper bound to the life
time of a quantum memory. To find appropriate upper bounds to the mixing time, we take an
approach that was developed in [34–36] and generalized to quantum mechanical semi-groups
in [37]. We need to have access to the spectral gapλ of the generatorL. Here, the spectrum
of the mapL is understood in terms of the matrix representation ofL on the vector space
M2N (C) ≃ C

2N×2N . The spectral gapλ of L will be introduced properly in lemma 4. In
[37] the following exponentially decaying bound, which holds for anyL was proven.

Theorem 1 LetL : Md → Md be a Liouvillian with stationary stateρ and spectral gapλ
Then the following trace norm convergence bound holds:

‖σt − ρ‖tr ≤
√

‖ρ−1‖e−λt. (20)

Here‖ρ−1‖ denotes the inverse of the smallest eigenvalue of the stationary state, andσt =
etL

∗

(σ0) for initial stateσ0.

The convergence result of theorem 1 provides a simple upper bound on the mixing time.
Recall that we consider thermalizing semi-groups, for which the fixed point is always given
by the Gibbs distribution for which‖ρ−1‖ ≤ exp(constβN). Let us now choose a fixed
ǫ = e−1/2 for which tmix ≡ tmix(e

−1/2). One can easily rearrange the upper bound to find
that we can choose

tmix ≤ O(βNλ−1). (21)

The bound on the mixing time derived from the spectral gap scales at least linearly in
the the system sizeN , even when the spectral gap is a constant independent ofN . Other
approaches to bounding the mixing time exist, which can yield bounds that can scale as
O(log(N)). These bounds are based on logarithmic Sobolev inequalites[38–40] which are
more challenging to prove in general [41, 42].

The spectral properties of the generator (15) can best be understood when working with
an inner product that is weighted with respect to some full rank reference stateρ > 0. This
reference state is typically chosen as the fixed point of the Liouvillian, i.e. the Gibbs state.
We furthermore introduce the variance and the Dirichlet form, which will play an important
role in the spectral analysis of the semi-group.

Definition 2 Given a full rank stateρ and a LiovillianL, we define the following quadratic
forms onM2N (C):

1. Theρ-weighted non-commutativeinner product for all f, g ∈ M2N (C):

〈f, g〉ρ = tr
[

ρf †g
]

. (22)

2. Thevariance of f ∈ M2N (C) with respect toρ:

Varρ(f, f) = tr
[

ρf †f
]

− |tr [ρf ] |2. (23)

3. TheDirichlet form ofL with respect toρ:

E(f, f) = −〈f,L(f)〉ρ = −tr
[

ρf †L(f)
]

. (24)
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These quantities give convenient access to the spectral properties of the Davies generator.
Lindblad generators in general may have a complex spectrum,which makes it necessary to
be more careful in the definition of the spectral gap [37]. ForDavies generators, however,
this is not the case since this map becomes Hermitian with respect to the previously definedρ
weighted inner product. We will refer to this property as detailed balance and give its formal
definition below.

Definition 3 We say a LiouvillianL satisfiesdetailed balance (or is reversible) with respect
to the stateρ > 0, if

〈f,L(g)〉ρ = 〈L(f), g〉ρ (25)

for all f, g ∈ M2N (C).

It follows from the KMS condition discussed previously in eqn. (18) that the Davies gen-
erator is reversible [43] with respect to the Gibbs distribution. This was already shown in the
seminal work by Davies [12, 13]. Detailed balance immediately implies two things: First, that
the spectrum ofLβ is real. Second, as can be verified easily, reversibility ensures that the state
ρ = Z−1 exp(−βH) is a fixed point of the Liouvillian [37]. Moreover, since we consider
the case where the system is coupled via all single qubits Pauli W1 = {Xi, Yi, Zi}i=1,...,N

operators to the bath, we automatically have that the Gibbs state is the unique fixed point
[29]. We are now ready to find a convenient variational expression for the spectral gap of the
Davies generator. The following lemma was proved in [37].

Lemma 4 Thespectral gap of a primitive LiouvillianL : M2N (C) → M2N (C) with sta-
tionary stateρ is given by the variational expression

λ = min
f∈M2N

E(f, f)
Varρ(f, f)

. (26)

Note thatf ∈ M2N (C) in the optimization can be chosen as a Hermitian matrix.

This lemma leads to a very useful inequality referred to as the Poincare inequality. It is
clear that the problem of finding good lower bounds to the spectral gap can be rephrased as
the problem of finding a constantλ so that the inequality

λVarρ(f, f) ≤ E(f, f) (27)

is satisfied for all Hermitianf . This inequality will be the starting point to prove spectral
gap lower bounds for the Davies generator.

Lower bounds toλ in the Poincare inequality can be found for instance by expressing the
inequality for the two quadratic forms in terms of a matrix inequality. We make use of the
vectorization off through| f) = f ⊗1|Ω〉 as discussed in the previous section I A. Both the
quadratic forms can be written as

Varρ(f, f) = (f |V̂ | f) and E(f, f) = (f |Ê | f). (28)

The matriceŝV andÊ will be explicitly given in section III. The Poincare inequality (27) is
then trivially equivalent to a positive semi-definite matrix inequality, where we now want to
find the smallestτ ∈ R such that the following holds,

τ Ê − V̂ ≥ 0. (29)
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It is clear that this optimalτ , which is often also referred to as support number, is related to
the spectral gap viaτ = λ−1. Any upper bound onτ will immediately constitute a lower
bound on the spectral gapλ. Note, thatτ is well defined even for singular matrices, as long
asker(Ê) ⊂ ker(V̂). This will be the case here, sinceL is ergodic so that both maps have the
same kernel given by the identity.

A very useful lemma to finding bounds onτ was developed in [44, 45]. It is possible to
expressτ as the constrained minimization over a certain matrix factorization. We therefore
have that any factorization that satisfies the constraints gives rise to a valid upper bound on
the support number. This is expressed in a lemma first proved in [44].

Lemma 5 Let Ê , V̂ be positive semi-definite with a decompositionÊ = AA† andV̂ = BB†.
then the minimalτ for which the matrixτ Ê − V̂ is positive semi-definite is given by

τ = min
W

‖W‖2 subject toAW = B. (30)

Here,‖W‖ denotes the operator norm, i.e largest singular values, ofW .

The direct evaluation of the operator‖ ·‖ norm does at first appear to be just as challenging
as the original problem. However, since we are only trying tofind upper bounds onτ suitable
norm inequalities will suffice. Once such a factorization isfound, several different norm
bounds can be used to yield different lower bounds to the spectral gap. One common choice
is for instance given by Schur’s bound [46] on the operator norm ‖W‖2 ≤ ‖W‖∞‖W‖1,
where‖W‖1 and‖W‖∞ denote the maximal row and column sum ofW respectively. The
bound on the operator norm which will be most relevant to us has been introduced in [45],
since it does yield a lower bound to the spectral gap which is very similar to the canonical
paths bound for classical Markov chains given in [34–36, 47].

Lemma 6 Let W ∈ MK,M (C) denote a complex rectangular matrixW =
∑K

k=1

∑

mWk,m| k〉〈m | with row vectors|wk〉 =
∑M

m=1Wk,m|m〉, then the operator
norm ofW is bounded by

‖W‖2 ≤ max
m

∑

k : Wkm 6=0

‖|wk〉‖22. (31)

PROOF: We follow the proof in [45]. Given the matrixW , suppose we could find an isom-
etry S with SS† = 1 and a matrixW̃ such thatW = SW̃ , then we can bound‖W‖2 ≤
‖S‖2‖W̃‖2 = ‖W̃‖2, since the operator norm ofS is bounded by unity. Moreover, if we can

find aW̃ =
∑K′

k′=1

∑M
m=1 W̃k′m| k′〉〈m | such that it’s columns| w̃m〉 =∑k′ W̃k′m| k′〉 are

orthogonal, we have that

‖W‖2 ≤ max
m

‖| w̃m〉‖22. (32)

Now, consider the matrix pair

S =

K
∑

k=1

M
∑

m=1

Wk,m

‖|wk〉‖2
| k〉〈k | ⊗ 〈m | and

W̃ =

K
∑

k=1

M
∑

m=1

‖|wk〉‖2(1− δ[Wk,m])| k〉 ⊗ |m〉〈m |. (33)

One can easily see that the constraints onS and W̃ are met so that‖| w̃m〉‖22 =
∑

k : Wkm 6=0 ‖|wk〉‖22 and by (32) the bound as stated in the lemma holds.
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In order to derive the spectral gap bound, we now proceed as follows: First we find suitable
matrix representations for̂E andV̂ , then we try to find a factorization in terms of a matrix
triple [A,B,W ] as given in lemma 5. An upper bound on the constantτ is then obtained by
applying the norm bound from lemma 6.

III. LOWER BOUND TO THE SPECTRAL GAP

The central task is now to find a suitable upper bound on the support number of the matrix
pair that stems from the Dirichlet form and the variance. We do so by first finding the matrices
that constitute the quadratic forms and then by expressing this matrix in a suitable basis. It
turns out, that the most natural operator basis to work with is given by the Pauli matrices
considered earlier. Since the stabilizer group acts as a subgroup in this algebra, we will find
that both the variance, as well as the Dirichlet form can be expressed efficiently.

A. Matrix Representations of the quadratic forms

As discussed in the previous section, we now proceed to derive the matrices that give rise
to the quadratic formsE(f, f) = (f |Ê | f) andVarρ(f, f) = (f |V̂ | f). We choose the Pauli
matrices as a basis ofM2N (C).

Recall thatS is a subgroup of the full Pauli groupPN , we can therefore consider the right
cosets ofS in PN . For each coset we can define a suitable coset algebra, which is naturally
a subspace ofC[PN ] ≃ M2N (C). The full algebra can then be decomposed in terms of its
cosets. This is a decomposition which will turn out to be useful in the following. Assume
we are given some representativeσ(γ0) ∈ PN , then the right cosetSσ(γ0), for which we
will write [γ0] is spanned by the Pauli matricesσ(Gx)σ(γ0) for x ∈ ZM

2 . So that the coset
algebra is spanned by the vectors

C[γ0] = span{|Gx⊕ γ0)}x∈ZM
2
. (34)

Moreover, it will become important later to also consider the dual algebra of the coset
which is obtained by aZM

2 Fourier transform. The dual algebra of each coset[γ0] given by

C[γ0]
∗
= span

{

| a)γ0

}

a∈ZM
2

(35)

is spanned by the vectors

| a)γ0 =
1

2M/2

∑

x

eiπ〈x,a〉ei
π
2 Sp(Gx,γ0)|Gx⊕ γ0). (36)

These vectors form an orthonormal basis. Recall that, depending on the generating set
G, for somea the projection operatorsP (a) can vanish. This pathology carries over to
the vectors| a)γ0 . This however, is not relevant for our analysis here, since we can always
interpret thesea values as being omitted in the sum so that we sum only over legitimate
syndromes ofG. We now consider the decomposition ofÊ andV̂ in terms of this basis.

Lemma 7 The matrixÊ is block diagonal over the right cosetsC[γ0] of the subgroupS with
representativesγ0 ∈ Z2N

2 in the full Pauli groupPN ,

Ê =
⊕

[γ0]

Êγ0 , (37)
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where everŷEγ0 is only supported onC[γ0]. Moreover, we can write each block as

Êγ0 =
∑

α∈W1

∑

a

Êα
γ0
(a), (38)

with

Êα
γ0
(a) =

1

2
(hαaa + hαaγ0aγ0 ) ρa| a)(a |γ0 − hαaaγ0ρaθα,γ0 | a)(aα |γ0 . (39)

Where we have thathαa,b = hα(ωα(a))δ[ωα(a)− ωα(b)].

PROOF: The Davies generator can be split into a sum over the individual coupling opera-
tors asLβ(f) =

∑

α∈W1
Lα
β(f). The individualLα

β(f) are obtained from Eqn. (15) by
substitution ofSα

ω as in given in Eqn. (16). A summation over all values ofω then yields

Lα
β (f) =

∑

ω

hα(ω)

(

Sα
ω
†fSα

ω − 1

2

{

Sα
ω
†Sα

ω , f
}

)

=
∑

ab

hαab

(

P (a)σ(α)fσ(α)P (b) − δa,b
2

{P (a), f}+
)

. (40)

We want to find a matrix that represents the Dirichlet formE(f, f). This means that we

need to find a matrix̂Eα for every summandα ∈ W1 so that−tr
[

ρLα
β(f)f

]

= (f |Êα| f)
for any | f) ∈ C[PN ]. Note that we have made use of detailed balance here. Let us there-
fore consider the action of this map on some matrixf ∈ M2N (C) for which we can then
write Eα(f) = −ρLα

β(f). The Gibbs state can be written asρ =
∑

a ρaP (a), so a direct
substitution yields the result

Eα(f) =
∑

a,b

1

2
(hαaa + hαbb) ρaP (a)fP (b)− hαa,bρaP (a)σ(α)fσ(α)P (b). (41)

We will work in the Pauli basis, so that we need to understand the action ofEα, on
any 2−N/2σ(γ). With the commutation relation (11) between the projectorsP (a) and any
Pauli we have thatP (a)σ(γ)P (b) = P (a)δa,b⊕e(γ)σ(γ). Furthermore we can write for any
σ(α)σ(γ)σ(α) = θα,γσ(γ), whereθα,γ = ±1 was introduced in eqn. (3). We obtain

Eα(σ(γ)) =
∑

a

[

1

2
(hαaa + hαaγaγ ) ρa − hαa,aγρa θα,γ

]

P (a)σ(γ).

Recall, thatP (a) =
∑

x 2
−Meiπ〈a,x〉σ(Gx), so that this substitution yields the double

sum

Eα(σ(γ)) =
1

2M

∑

a,x

[

1

2
(hαaa + hαaγaγ )− θα,γh

α
aaγ

]

ρae
iπ〈a,x〉σ(Gx)σ(γ).

Since we now understand the action ofEα on the Pauli matrices2−N/2σ(γ), we can ex-
press the matrix now in terms of the operator basis elements| γ). The multiplication rule for
the Pauli matrices was given in (3). Since all Paulis are orthogonal, we can write
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Êα =
1

2M

∑

γ

∑

a,x

[

1

2
(hαaa + hαaγaγ )− θα,γh

α
aaγ

]

ρae
iπ〈a,x〉ei

π
2 Sp(Gx,γ)|Gx⊕ γ)(γ |.(42)

To simplify the notation in the following we write

E1
α,γ(a) =

1

2
(hαaa + hαaγaγ ) ρa and E2

α,γ(a) = haaγρa. (43)

We observe that since bothρa andh(ωα(a)) only depend on elements of the syndrome
space, we have that bothE1

α,γ(a) andE2
α,γ(a) only depend on the syndromese(α) and

e(γ) and not on the specific Pauli’sα, γ themselves. Since we have thatEG = 0 it can be
inferred that the syndromes of two Pauli operators agreee(γ1) = e(γ2), if the operators are

related by an element inS. Hence the functionsE1/2
α,γ (a) are in fact constant inγ over the

cosets. Moreover, we can decompose the full Pauli groupPN in terms of its right cosets
PN = ∪i[γi]. Hence we can choose some representativeγ0 ∈ Z2N

2 /ZM
2 andy ∈ ZM

2 so that
any Pauli can be written asγ = Gy ⊕ γ0. We can therefore write

Êα =
1

2M

∑

[γ0]

∑

a

∑

x,y

[

E1
α,γ0

(a)− E2
α,γ0

(a)θα,Gy+γ0

]

×eiπ〈a,x〉eiπ2 Sp(Gx,Gy+γ0)|G(x⊕ y)⊕ γ0)(Gy ⊕ γ0 |. (44)

We define the matrix the diagonal matrix

Θ̂α,γ0 =
∑

x

θα,Gx+γ0|Gx⊕ γ0)(Gx⊕ γ0 |, (45)

Furthermore, we define two bit stringsx1 = x ⊕ y and x2 = y, for which then
exp (iπ 〈x, a〉) = exp (iπ 〈x1, a〉 − iπ 〈x2, a〉). Moreover, sinceSp(Gx,Gy) = 0,
which from the fact that all elements inS commute, we have thatSp(Gx,Gy + γ0) =
Sp(Gx1, γ0)− Sp(Gx2, γ0). We can write with with the dual basis| a)γ0 as defined in (36)

Êα =
∑

[γ0]

∑

a

E1
α,γ0

(a)| a)(a |γ0 − E2
α,γ0

(a)| a)(a |γ0Θ̂α. (46)

Note that,| a)(a |γ0 is only supported onC[γ0]. Hence, we have that for every[γ0] the
matrix can be decomposed into disjoined blocks and we can write for Êα = ⊕[γ0]Êα

γ0
, where

the blocks are given by

Êα
γ0

=
∑

a

| a)(a |γ0

(

E1
α,γ0

(a)− E2
α,γ0

(a)Θ̂α

)

. (47)

Let us now look at̂Θα,γ0, this map was originally diagonal in the Pauli basis. However in
the dual basis| a)γ0 we have that, due to the identity (8) and an application of theZ

M
2 Fourier

transform, the matrix can be written as

Θ̂α = θα,γ0

∑

a

| a)(aα |γ0 . (48)
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Applying this matrix to| a)(a |γ0 in (47) and taking the sum overα ∈ W1, yields the
decomposition of the matrix̂E as stated in the lemma.

Remark: In the derivation of the matrixÊα
γ0

we have made the choice of a par-
ticular representativeγ0 for the coset. Here we will see, that the matrices are in fact
independent of the representative. Any otherγ1 in the same coset is related toγ0
by γ1 = Gx∗ ⊕ γ0. If we consider the dual vectors| a)γ1 , we can see that these
are related to the ones defined byγ0 by | a)γ1 = exp(iπ 〈a, x∗〉)| a)γ0 . This follows
from expanding| a)γ1 in the basis{|Gx + γ1)} and using the identity (8). Since
the vector only changes by a phase, the projectors| a)(a |γ1 = | a)(a |γ0 are in fact
identical. However, the matrix unit of the new representative changes according to
| a)(aα |γ1 = exp(iπ 〈x∗e(α)〉)| a)(aα |γ0 . This is nevertheless consistent with the phase
θα,γ1 in the equation. Sinceexp(iπSp(α,Gx∗ + γ0)) = exp(iπ 〈e(α), x∗〉+ Sp(α, γ0)) we
have thatθα,γ1 = exp(iπ 〈x∗, e(α)〉)θα,γ0 canceling the phase from the matrix unit. This
leads to the observation that ifγ1 andγ0 are related as stated above, i.e. they belong to the
same coset, we have thatÊα

γ1
= Êα

γ0
.

Furthermore it is easy to see that the matrixÊα
γ is Hermitian, which is a direct consequence

of the KMS conditionh(−ωα(a)) = exp(−βωα(a))h(ωα(a)). This condition ensures that
E2

α,γ(a) = E2
α,γ(a

α). One can therefore verify easily by simple Hermitian conjugation and

a substitution of the labels according toa→ aα that Êα
γ0

= Eα†
γ0

.

We now need to see whether it is in fact possible to find a decomposition ofV̂ that is similar
to the one ofÊ . If the two matrices are not too different form each other, westand a good
chance to factor them according to lemma 5 and bound the spectral gap this way. Indeed,
it turns out that the matrix̂V obeys the same block diagonal structure and is in many ways
rather similar toÊ .

Lemma 8 The matrixV̂ is block diagonal over the left cosets[γ0] of the stabilizer groupS
in the Pauli - groupPN . This matrix can be written as

V̂ =
⊕

[γ0]

V̂γ0 . (49)

Here everyV̂γ0 is only supported onC[γ0] and can be written as

V̂γ0 =
1

2N

∑

η∈Z2N
2

∑

a

ρaρaη

(

| a)(a |γ0 − θη,γ0 | a)(aη |γ0

)

. (50)

PROOF: This matrix is related to the variance throughVar(f, f) = (f |V̂| f). The definition
of the variance (23), for Hermitianf ∈ M2N (C) was given by

Varρ(f, f) = tr [ρff ]− tr [ρf ]2 . (51)

Since we are taking a full sum over all group elements we have that for any matrixX defined
onMd the following identity holds

tr [X ]1 =
1

2N

∑

η∈Z2N
2

σ(η)Xσ(η). (52)
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This identity is particularly helpful in finding a suitable matrix representation for̂V. We can
write the following:

1 =
1

2N

∑

η

σ(η)ρσ(η),

tr [ρf ]1 =
1

2N

∑

η

σ(η)ρfσ(η). (53)

Due to these identities, we can express the trace in the variance in terms of a full sum over all
elements inZ2N

2 and we can write that

Varρ(f, f) =
1

2N

∑

η

tr [fρσ(η)ρσ(η)f ]− 1

2N

∑

η

tr [fρσ(η)ρfσ(η)] . (54)

In particular, if we defineVarρ(f, f) =
∑

η tr [fVη(f)], where for eachη we have that

Vη(f) =
1

2N

(

ρσ(η)ρσ(η)f − ρσ(η)ρfσ(η)
)

. (55)

If we now substitute the decomposition of the Gibbs state in terms of the projectorsρ =
∑

a ρaP (a), we obtain for the matrix

Vη(f) =
1

2N

∑

a,b

ρaρb (P (a)σ(η)P (b)σ(η)f − P (a)σ(η)P (b)fσ(η)) . (56)

We are now in the position to evaluate this matrix on the Paulibasisσ(γ), in the identical
fashion as we have done for the Dirichlet matrix in the previous proof by using identity (3).
We thus obtain

Vη(σ(γ)) =
1

2N

∑

a

(ρaρaη − ρaρaηθη,γ)P (a)σ(γ) (57)

Recall that we can now substituteP (a) = 2−M
∑

x e
iπ〈a,x〉σ(Gx), as we have done previ-

ously to obtain the following expression purely written in the basis{| γ)}.

V̂η =
1

2M+N

∑

γ

∑

a,x

(ρaρaη − θα,γρaρaη) eiπ〈x,a〉ei
π
2 Sp(Gx,γ)|Gx⊕ γ)(γ |. (58)

Note that this matrix is in its form very similar tôEα. If we define the two functions

V 1
η,γ(a) =

1

2N
ρaρaη and V 2

η,γ(a) = V 1
η,γ(a), (59)

which also only depend on the syndromee(η) and are in fact even independent ofγ and are
thus trivially constant over the cosets. We have that equation (58) is now similar to (42).
We only need to substitute the functionsV 1/2

η,γ (a) for theE1/2
η,γ (a) in Eqn. (47). The proof

proceeds identically to the one for the Dirichlet form. The only difference is that sum is taken
over all η ∈ Z

2N
2 in the final step, which then leads to the decomposition as stated in the

lemma.

As we have seen, both matrices are block diagonal in the same basis, and we can moreover
write the Dirichlet matrix, as well as the variance matrix assum of two dimensional positive
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matrices in the basis dual to the coset algebra. BothV̂ and Ê are positive semi definite by
construction and share the same kernel given by the identitymatrix. Hence, the only matrix
pair (Êγ0 , V̂γ0) that is rank deficient corresponds to the coset that is given by S itself. The
central structural difference between the two matrices is given by the fact that for̂E the sum
is only taken overα ∈ W1, i.e. single qubit Pauli matrices, whereas forV̂ we sum over the
full setη ∈ Z2N

2 . This means that there are transitions of the forma→ aη which occur inV̂ ,
that are missing in̂E .

B. Comparison Theorems

Since both matriceŝE andV̂ are block diagonal in the same basis, it suffices to bound the
support numberτγ0 for each subspaceC[γ0] separately, since

τ = max
γ0

τγ0 . (60)

To obtain the bounds onτγ0 we have to devise a strategy of factoring bothÊγ0 andV̂γ0 and
embedding each into the other as discussed in lemma 5. It doesprove convenient to consider
a set of vectors that facilitate the embedding. We define for all Paulisα, γ0 ∈ Z2N

2 and for
all a ∈ ZM

2 in the syndrome space the vectors

| −α
a )γ0 =

1√
2

(

| a)γ0 − θα,γ0 | aα)γ0

)

. (61)

These are easily obtained for every cosets and only differ bya relative phaseθα,γ0 in each
coset. Moreover, the{|−α

a )γ0} do not depend on the representative of the cosetγ0. Direct
calculation reveals that| −α

a )γ0 = | −α
a )γ1 if the two representatives are related byγ1 =

Gx∗ ⊕ γ0 for somex∗ ∈ Z2M
2 .

These vectors possess a convenient telescoping sum property. Given some general Pauli
η which can be expressed by a product of simpler Pauli operators {αi}, we can express the
vector associated to the former Pauli as a sum of the vectors associated to theαi.

Proposition 9 Let{αi}i=1,...,k denote a set of Pauli labelsαi ∈ Z2N
2 so that the binary sum

yieldsη = ⊕k
i=1αi, then we have for all syndromesa ∈ ZM

2 that

| −η
a)γ0 =

k−1
∑

s=0

θ αs,γ0 | −
αs+1

aαs
)γ0 , (62)

whereαs = ⊕s
i=1αi, so thatαk = η.

PROOF: We prove the claim by induction. For the trivial caser = 1 whereη = αr nothing is
to prove. Let us therefore consider the induction step. Recall that by (9) and (12) we have that
e(α)⊕ e(β) = e(α⊕ β) so that(aα)β = aα⊕β . Moreover, the phasesθα,γ0 satisfy a simple
multiplication rule withθα1,γ0θα2,γ0 = θα1⊕α2,γ0 which follows from the bi-linearity of
Sp(α, γ)

Z

. With this it is easy to show that the proposition follows from inductionr → r+1
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through

| −αr⊕αr+1
a )γ0 =

1√
2

(

| a)γ0 − θαr,γ0 | aαr )γ0

+ θαr ,γ0 | aαr )γ0 − θ αr⊕αr+1,γ0 | aαr⊕αr+1)γ0

)

= | −αr
a )γ0 + θ αr,γ0 | −

αr+1

aαr
)γ0

=
r−1
∑

s=0

θ αs,γ0 | −
αs+1

aαs
)γ0 + θ αr ,γ0 | −

αr+1

aαr
)γ0

=

r
∑

s=0

θ αs,γ0 | −
αs+1

aαs
)γ0 . (63)

It is our goal to stay conceptionally as close as possible to the analysis of classical
Markov chains [47], so we can make use of the geometric picture that the classical approach
provides. We therefore proceed to introduce a set of so-called canonical paths. Motivated
by proposition 9, the form of the canonical paths for this quantum problem becomes clear.
It is our goal to span a suitable linear combination of basis elements| a)γ0 and| aη)γ0 with
appropriately chosen phases by a subset of the vectors{|−α

a )γ0}a∈ZM
2 ,η∈Z2N

2
. A canonical

path then corresponds to a suitable choice of intermediate states that connects the first
configuration given by| a)γ0 to the final configuration| aη)γ0 .

It is important to differentiate between the different kinds of paths here. The small latin
lettersa ∈ ZM

2 , label the syndromes that stem from the generators inG, whereas theγ, η ∈
Z

2N
2 label the Pauli operators that give rise to particular syndromese(γ), e(η). Since the

phasesθη,γ0 = ±1 in proposition 9 are needed we need to keep track of both the syndromes,
as well as the corresponding Pauli operator that generates them. We will therefore distinguish
between simple Pauli paths, which build up a particular Pauli operator by applying single
qubit Pauli operators and Pauli operators, which are dressed with syndrome values.

Definition 10 We introduce new labels(a, η), wherea ∈ ZM
2 denotes a syndrome of the code

G andη ∈ Z2N
2 a Pauli matrix. We define the following:

1. APauli path η is a sequence of single qubit Pauli operators labeled by{αi}i=1...T ⊂
W1, so thatη = ⊕T

i=1αi. We denote byηt = ⊕t
i=1αi the partially constructed Pauli

operator at stept ∈ {0, 1, . . . , T } of the path. We defineη0 = (0, 0)N .

2. Acanonical path, or dressed Pauli path, from(a, 0) → (aη, η) is constructed for every
syndromea in G and any Pauliη from a Pauli pathη as the sequence of pairs

η̂a =
[

(a, 0), (aη1 , η1), . . . , (a
ηT−1 , ηT−1), (a

η, η)
]

. (64)

The length of the canonical path is defined by|η̂a| = T . The set of canonical paths
that uniquely connects all paired labels(a, 0) → (aη, η) is denoted byΓ.

3. Furthermore, a subsequent pair of labelsξ̂ = [(aξ, ξ), (aξ⊕α, ξ ⊕ α)], which only
differs by a single qubit Pauliα ∈ W1 is called anedge. We denote byΓ(ξ̂) ⊂ Γ, the
subset of canonical pathŝηa that contain the edgêξ.

Since, every Pauli matrixσ(η) can be decomposed into at mostN single qubit Pauli’s the
differentαi can be determined easily. However, what is not directly obvious is the order
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by which the single qubit Pauli’s are applied. It turns out infact, that this order matters in
the derivation of good bounds as we will see in the subsequentsection. This particular order
strongly depends on the particular code that is investigated in order to obtain the best possible
bound admissible by our aproach. With these paths, we can nowstate the upper bound on the
support numberτ .

Theorem 11 The support numberτ for the matrix pair(V̂ , Ê) with a choice of canonical
pathsΓ is bounded by

τ ≤ max
(a,µ)

∑

ξ̂∈µ̂a

4

2Nh(ωα(aξ))ρaξ

∑

η̂a∈Γ(ξ̂)

ρaρaη . (65)

The maximum is take over all syndrome - Pauli labels(a, µ) and we denote bŷξ ∈ µ̂a the
sum over all edgeŝξ = [(aξ, ξ), (aξ⊕α, ξ ⊕ α)] that are crossed in the canonical patĥµa.

PROOF: Recall thatτ = max[γ0] τγ0 , due to the decomposition̂E = ⊕[γ0]Êγ0 and V̂ =

⊕[γ0]V̂γ0 . We therefore only need to consider the support numberτγ0 for every individual

coset of the pair̂Eγ0 , V̂γ0 . The matriceŝVγ0 andÊγ0 can be brought into a particularly simple
form which bears some resemblance to that of a graph Laplacian [48]. The form is, however,
different in that both matrices have positive as well as negative off diagonals which stem from
the phasesθη,γ0 = ±1 in both (39) and (50). Nevertheless the matrices can be related to a
sum of rank one projectors. Consider first

V̂γ0 =
1

2N

∑

η

∑

a

ρaρaη

(

| a)(a |γ0 − θη,γ0 | a)(aη |γ0

)

=
1

2N

∑

η

∑

a

ρaρaη | −η
a)(−η

a |γ0 , (66)

which follows by direct calculation.

TheÊγ0 can only be brought into this form for particular cosets, which are related to Pauli
operatorsγ0 that have a vanishing syndrome. These Paulis correspond to operators in the
centerCPN

(S). For these cosets we havee(γ0) = 0 so thatωα(a) = ωα(aγ0) and the
matrices in (39) simplify to

Êγ0 =
∑

α∈W1

∑

a

hα(ωα(a))ρa| −α
a )(−α

a |γ0 . (67)

This is not the case in general, however. When we consider cosets for whiche(γ0) 6= 0,
we naturally have that there exist pairs of Bohr frequenciesfor whichωα(a) 6= ωα(aγ0) so
thathαaaγ0 = 0. However, it is still possible to bound these cosets at the expense of a factor
of four by the expression (67). Consider the basis| a)γ0 , | aα)γ0 so that we can express the
symmetrization of eqn. (39),

1

2

(

Êα
γ0
(a) + Êα

γ0
(aα)

)

=
1

2

(

1
2 (h

α
aa + hαaγaγ0 ) ρa −hαaaγ0ρaθα,γ0

−hαaaγ0ρaθα,γ0

1
2 (h

α
aαaα + hαaαγ0aαγ0 ) ρaα

)

(68)

as a simple two dimensional matrix. In the particular case, whereωα(a) = ωα(aγ0), we have
thatha,aγ0 = ha,a = haγ0 ,aγ0 = hα(ωα(a)) and the syndromee(γ0) does not contribute so



18

that we have again that12

(

Êα
γ0
(a) + Êα

γ0
(aα)

)

= hα(ωα(a))ρa| −α
a )(−α

a |γ0 . When, how-

ever,ωα(a) 6= ωα(aγ0), we can find the bound

1

2

(

Êα
γ0
(a) + Êα

γ0
(aα)

)

=
1

4
(hαaa + hαaγaγ ) ρa| a)(a |γ0

+
1

4
(hαaαaα + hαaαγ0aαγ0 ) ρaα | aα)(aα |γ0

≥ 1

4
hαaaρa| a)(a |γ0 +

1

4
hαaαaαρaα | aα)(aα |γ0

≥ 1

4
hαaaρa| −α

a )(−α
a |γ0 . (69)

The first inequality is obtained by dropping the positive numbershαaγaγ andhαaαγaαγ . The
final inequality follows from the KMS condition sincehαaaρa = hαaαaαρaα and the trivial
bound| a)(a |γ0 + | aα)(aα |γ0 ≥ |−α

a )(−α
a |γ0 .

Thus, we have the following semi-definite inequality for theDirichlet matrix

Êγ0 ≥ Ê ′
γ0

≡
∑

α∈W1

∑

a

1

4
hα(ωα(a))ρa| −α

a )(−α
a |γ0 . (70)

It turns out that due to the very similar form of the matrices,it is in fact simpler to bound
the constantτ ′γ0

for the matrix pairÊ ′
γ0

and V̂γ0 . This bound is a natural upper bound to
τ ′γ0

≥ τγ0 , since we have that

0 ≤ τ ′γ0
Ê ′
γ0

− V̂γ0

= τ ′γ0
Êγ0 − V̂γ0 − τ ′γ0

(

Êγ0 − Ê ′
γ0

)

≤ τ ′γ0
Êγ0 − V̂γ0 . (71)

The last inequality follows from the previously derived fact that Êγ0 − Ê ′
γ0

≥ 0. We will

proceed to bound onlyτ ′γ0
for the matrix pairÊ ′

γ0
and V̂γ0 , sinceτ ′γ0

gives rise to a valid
lower bound to the spectral gap.

The matricesÊ ′
γ0

and V̂γ0 are now in an almost identical form. The central structural

difference is that the sum in̂E ′
γ0

is taken only over all single qubit Pauli operatorsα ∈ W1,

whereas for̂Vγ0 we need to sum over the full algebra. It is now tempting to identify an edge
with the transition of syndromesa → aα for every vector| −α

a )γ0 . However, recall that it
is necessary to keep track of the phasesθηt,γ0 = ±1 in proposition 9. To this end we seek
to construct a factorization that allows to distinguish thedifferent phases. We introduce an
additional sum over the full Pauli algebraϕ ∈ Z2N

2 , so that

Ê ′
γ0

=
1

4N

∑

a

Ê ′
γ0
(a) where, Ê ′

γ0
(a) =

∑

ϕ∈Z2N
2

∑

α∈W1

1

4
hα(ωα(aϕ))ρaϕ | −α

aϕ)(−α
aϕ |γ0 ,

V̂γ0 =
1

4N

∑

a

V̂γ0(a) where, V̂γ0(a) =
∑

ϕ,η∈Z2N
2

1

2N
ρaϕρaϕη | −η

aϕ)(−η
aϕ |γ0 . (72)

With this, we consider the boundτγ0 ≤ maxa τ
′
γ0
(a), whereτ ′γ0

(a)Ê ′
γ0
(a)− V̂γ0(a) ≥ 0. To

find upper bounds toτγ0(a), we construct a factorization as stated in lemma 5 and apply the
norm bound in lemma 6.

We introduce a new orthonormal auxiliary basis spanned by{|ϕ, µ)} with (ϕ, µ |β, κ ) =
δϕ,βδµ,κ, for every pairϕ, µ ∈ Z2N

2 .
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Lemma 12 For Ê ′
γ(a) and V̂γ(a) as above, we can find a factorization into the triple

[Aγ(a), Bγ(a),Wγ(a)], subject to a chosen set of canonical pathsΓ = {η̂a}. The matri-
ces are given by

Aγ0(a) =
∑

ϕ∈Z2N
2

∑

α∈W1

√

1

4
h(ωα(aϕ))ρaϕ | −α

aϕ)γ0(ϕ, ϕ⊕ α | (73)

Bγ0(a) =
∑

ϕ,η∈Z2N
2

√

1

2N
ρaϕηρaϕ | −η

aϕ)γ0(ϕ, ϕ⊕ η |

Wγ0(a) =
∑

ϕ,η∈Z2N
2

|η̂a|−1
∑

t=0

√

4ρaϕρaϕη

2Nh(ωαt+1(aϕηt))ρaϕηt

θηt,γ0 |ϕ⊕ ηt, ϕ⊕ ηt+1)(ϕ, ϕ⊕ η |,

where of courseηt+1 = ηt ⊕ αt+1.

PROOF: We immediately have by direct computation thatAγ0(a)Aγ0(a)
† = Ê ′

γ0
(a) and

Bγ0(a)Bγ0(a)
† = V̂γ0(a). Moreover, we have that

Aγ0(a)Wγ0 (a) =
∑

ϕ,η∈Z2N
2

|η̂a|−1
∑

t=0

√

1

2N
ρaϕρaϕη θηt,γ0 | −αt+1

aϕηt
)γ0(ϕ, ϕ⊕ η |

=
∑

ϕ,η∈Z2N
2

√

1

2N
ρaϕρaϕη





|η̂a|−1
∑

t=0

θηt,γ0 | −αt+1

aϕηt
)γ0



 (ϕ, ϕ⊕ η |

=
∑

ϕ,η∈Z2N
2

√

1

2N
ρaϕρaϕη | −η

aϕ)γ0(ϕ, ϕ⊕ η | = Bγ0(a). (74)

The final equality is due to the decomposition into canonicalpaths and proposition 9.

Let us now apply the norm bound of lemma 6 toWγ0(a) as given in lemma 12, in order to
obtain an upper bound toτγ0(a) To do so we must first compute the norm of the row vectors
ofWγ0(a). That is we need to fix the transition(ϕ⊕ ξ, ϕ⊕ ξ⊕α), for which we can read of
directly

|w(ϕ⊕ξ,ϕ⊕ξ⊕α)〉 =
2θξ,γ0

√

2Nh(ωα(aϕξ))ρaϕξ

′
∑

(ϕ→ϕ⊕η)∋ξ̂

√
ρaϕρaϕη |ϕ, ϕ⊕ η). (75)

The constrained sum over pairs(ϕ → ϕ ⊕ η) ∋ ξ̂ , is taken to read, that there exists a Pauli
pathηt, which transformsϕ into ϕ ⊕ η so that the list of Pauli operators that are traversed
contains the two subsequent Pauli configurationsϕ⊕ ξ, ϕ⊕ ξ⊕α. It is now easy to compute
the norm bound simply by squaring the individual summands.

‖|w(ϕ⊕ξ,ϕ⊕ξ⊕α)〉‖22 =
4

2Nh(ωα(aϕξ))ρaϕξ

′
∑

(ϕ→ϕ⊕η)∋ξ̂

ρaϕρaϕη . (76)

If we apply the norm bound in lemma 6, we have that the conditionWk,m 6= 0 in the sum
means that we have to sum the norms‖|w(ϕ⊕ξ,ϕ⊕ξ⊕α)〉‖22 over all transitions that are crossed
when transitioning from a initial Pauliϕ to ϕ ⊕ µ, in the Pauli pathµ that maximizes this
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expression. It is of course also possible to relabel these sums in terms of the edges and dressed
Pauli Paths as defined in definition 10. So that we write

‖Wγ0(a)‖2 ≤ max
(ϕ,ϕ⊕µ)

∑

ξ̂∈µ̂a

‖|w(ϕ⊕ξ,ϕ⊕ξ⊕α)〉‖22

= max
(ϕ,ϕ⊕µ)

∑

ξ̂∈µ̂aϕ

4

2Nh(ωα(aϕξ))ρϕξ
a

∑

η̂aϕ∈Γ(ξ̂)

ρaϕρaϕη . (77)

Now, we furthermore have thatτ ′γ0
≤ maxa ‖Wγ0(a)‖2 and we observe that the only depen-

dence on the initial Pauli matrixϕ is through the syndromeaϕ, we can drop the dependence
and consider any path starting from the identityϕ = 0. Hence, we just absorb the maximiza-
tion overa and consider now only dressed Pauli paths. We observe, that the boundτγ0 does
not depend on the coset, so that for any coset[γ0] we have thatτ ≤ τγ0 so that we are left
with the final bound as stated in the theorem.

IV. THE SPECTRAL GAP AND THE ENERGY BARRIER

In Theorem 11 we have worked towards finding a bound onτ that is formally similar to
the bound obtained from the canonical paths lemma for classical Markov processes. This
allows us to follow an approach first pioneered by Jerrum and Sinclair [34] to evaluate this
lower bound. In the theorem, we have left the particular choice for the set of canonical paths
Γ = {η̂a}, c.f. definiton 10, we want to work with open. It turns out thatthe particular
choice of pathŝηa strongly depends on the stabilizer HamiltonianH we try to investigate.
The wrong choice of paths can lead to an exponentially worse lower bound when compared
to reasonable choice, c.f. section IV A.

A canonical path connects an initial syndromea to a syndromeaη = a ⊕ e(η), by con-
structing a Pauli operatorσ(η) from single qubit Pauli matricesσ(α), with α ∈ W1. Hence,
we need to agree on a path for every syndromea and any Pauliη. As we will see, the choice
of the decomposition ofη into single qubit PaulisW1 does not depend on the initial syn-
dromea and we will use the same decomposition ofη for different initial syndromesa. So
the construction reduces to finding good Pauli paths that connect the identityη0 = (0, 0)N to
the final Pauliη|η̂a| = η. That is, we only need to specify for everyη ∈ Z2N

2 a specific order
in which the single qubit Pauli’s are applied. An important constraint in the construction of
any patĥηa is that this path is free from loops, i.e. it does not contain the same edgêξ twice.
Note that we do not refer to geometric loops in the partially constructed Pauli operatorsηt,
but to loops on the Cayley graph associated with(Z2N

2 ,W1). It is always possible to find
paths that are free of loops by following the most trivial decomposition ofN -qubit Paulis
into their single qubit components. Moreover, as will become clear it is obvious that such
loops do not improve the bounds.

We are now in the position to define the central quantity that determines the lower bound
to the spectral gap for every commuting Pauli Hamiltonian. The generalized energy barrier
is very similar to the energy barrier for logical operators as defined in [16]. However, in our
definition we do not assume that we consider a stabilizer codewith logical operators. Any
commuting Pauli Hamiltonian can be analyzed this way.

Definition 13 Given a commuting Pauli HamiltonianH as in eqn. (1), with generator setG,
that can be used to define the excitationsek(η) for someη ∈ Z2N

2 , c.f. eqn (9), we define:
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1. For anyη with a Pauli pathηt = ⊕t
s=0αs theenergy costof the Pauliη as

ǫ(η) = min
{η}

max
t

M
∑

k=1

2|Jk|ek(ηt)ek(η). (78)

Hereek = ek ⊕ 1 denotes the conjugation of the bit value. In this sumek andek are
interpreted as integers. The minimum is taken over all possible choices of Pauli paths
for η.

2. Furthermore, we define thegeneralized energy barrier as the maximum over all
Pauli’s η of the energy cost

ǫ = max
η∈Z2N

2

ǫ(η). (79)

The definition of the generalized energy barrier differs from the energy barrier of a logical
Pauli operator as given in [16] in two aspects. First the energy cost differs by the factorsek(η)
in the summation (78). The essential effect of these factorsis to remove any contribution to
the barrier that originate from the final Pauli operatorη itself. Therefore the only summands
that contribute toǫ(η) come from violations of generatorsgi which are not already violated
by η by itself. That is we only care about the intermediate energyconfigurations in the
construction of this Pauli. The energy costǫ(η) is therefore a meaningful quantity even ifη
is not a logical operator. Furthermore, the generalized energy barrierǫ contains a maximum
over all Pauli operators, as opposed to a minimum over logical operators. This may be seen
as the origin of why the generalized energy barrier will tendto pick up on the largest energy
barrier of all the logical operator, as we will see in the example section IV A.

In essence it is this energy barrier that determines the choice of the canonical paths
Γ = {η̂a} through the minimum over all Pauli paths{η} in eqn 78. That is, we choose
Γ such that for everyη the energy cost is minimized. Since we have to do so for every
Pauli, this already fixesΓ. For practical purposes, however, we need to provide a concrete
instruction for generating the Pauli pathη in order to evaluateǫ. Any sub optimal choice,
will only lead to an upper boundǫ′ ≥ ǫ to the true generalized energy barrier. This will turn
out to only lower our bound on the spectral gap.

a. Convenient interpretation of the generalized energy barrier: A concrete example for
the evaluation is provided in section IV A. In general, we caninterpret the barrier as follows:
Suppose, we are given the set of commuting Pauli operatorsG = {gi}i=1,...,M that define
the HamiltonianH . If we want to evaluateǫ(η) for some particularη we consider a reduced
subset of generators

Gη =
{

g ∈ G
∣

∣

∣ [g, σ(η)] = 0
}

, (80)

which is obtained by removing all generatorsgi from the generating set that anti commute
with the Pauli operatorσ(η). If the original set generated a stabilizer groupS = 〈G〉, we
can now consider the reduced subgroupSη = 〈Gη〉, for which σ(η) behaves like a logical
operator, i.e. by constructionσ(η) ∈ C(Sη)\Sη. The energy costǫ(η) can then be interpreted
as the conventional energy barrier [16] of the logical operatorσ(η) of the new codeSη. This
of course immediately implies, that ifη was a logical operator for the original stabilizer
groupS, thenǫ(η) is just the conventional energy barrier for this particularlogical operator.
The conventional energy barrier for all the logical operators therefore always constitutes a
lower bound to the generalized energy barrier. Furthermore, when any local defect can be



22

grown into a logical operator of a stabilizer codeS by applying single qubit Pauli operators
and in turn any Pauli operator can be decomposed into a product of clusters of such excita-
tions,ǫ corresponds to the largest energy barrier of any of the canonical logical operators [49].

We proceed to give a bound onτ as stated in theorem 11. By applying a trick first pioneered
by Jerrum and Sinclair [34], we will see that the generalizedenergy barrier from definition
13 will assume the central role. Let us consider a single edgeξ̂ = [(aξ, ξ), (aξ⊕α, ξ ⊕ α)],
c.f. definition 10. We can define an injective map from the set of canonical pathsΓ(ξ) that
contain this edge into the full Pauli group.

Φξ : Γ(ξ) → Z

2N
2 . (81)

The action of the map is defined as follows. For a pathη̂a ∈ Γ(ξ), the resulting Pauli operator
Φξ(η̂a) is simply given by

Φξ(η̂a) = η ⊕ ξ (82)

One can see that this map is injective by constructing it’s inverse on the setΓ(ξ). To this end
it is important that every edge occurs only once in a canonical Path in order to avoid double
counting the same path. For every Pauli operator in the imageof the mapϕ = Φξ(η̂a) and the
information about the transition̂ξ, we can construct the tuple(a, η) of the canonical patĥηa.
Given(ξ̂, ϕ) find the Pauliη simply byη = ϕ ⊕ ξ. Moreover, given̂ξ we can immediately
reconstruct the syndromea from a = aξ ⊕ e(ξ). Every canonical path inΓ is uniquely
determined through the initial syndromea and the final Pauliη. This uniquely identifies the
canonical patĥηa ∈ Γ(ξ).

Proposition 14 For all pairs (a, η) and edgeŝξ = [(aξ, ξ), (aξ⊕α, ξ ⊕ α)] contained in the
canonical patĥηa, the following inequality holds:

ρaξρ
aΦξ(η̂a) ≥ e−β2ǫρaρaη . (83)

PROOF: For some edgêξ, we are able to relate the syndromesa in the initial configuration
andaξ at the edgêξ by a = aξ ⊕ e(ξ). Moreover, using the particular form of the mapΦξ,
from eqn. (82), we can relate the final Pauli operatorη of the path and the Pauli operator
at the edgeξ throughη ⊕ ξ = Φξ(η̂a). Recall that the Gibbs weight is simply given by
ρa = Z−1 exp(−βǫa) as was derived in Eqn. (14). For the inequality (83) to hold weneed
to find some constant , saym, so that for all pathŝηa ∈ Γ and traversed edgeŝξ we have that
exp(−β(ǫaξ + ǫ

aΦξ(η̂a)))eβ2m ≥ exp(−β(ǫa + ǫaη)). Comparing the exponents, we need to
find a constantm such that

2m ≥ ǫ
aΦξ(η̂a) + ǫaξ − ǫa − ǫaη . (84)

For any edgêξ and any canonical patĥηa that traverse it we can evaluateΦξ(η̂a) as discussed
in the previous paragraph so that we can write

ǫaη⊕ξ + ǫaξ − ǫa − ǫaη

=

M
∑

k=1

Jk(−1)ak

(

1 + (−1)ek(η) − (−1)ek(η⊕ξ)(−1)ek(ξ)
)

= 2

M
∑

k=1

2Jk(−1)ak
1

2

(

1− (−1)ek(ξ)
) 1

2

(

1 + (−1)ek(η)
)

. (85)
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We need to look for the assignment that maximizes this expression. We need to choose the
ak such that every summand is positive. Furthermore we simply have, that by interpreting
the syndromes as0, 1 valued integers that

1

2

(

1− (−1)ek(ξ)
)

= ek(ξ) and
1

2

(

1 + (−1)ek(η)
)

= ek(η). (86)

Since η̂a traverse the edgêξ, we have thatξ = ηt for some valuet. Also, recall that
this bound holds for any choice of Pauli paths{η} that traverse the edgeηt. Hence
minimizing over all possible choices of paths will yield an improved constant:ǫ(η) =

min{η} maxt
∑M

k=1 2|Jk|ek(ηt)ek(η). Moreover, we require this to hold for all edges and
all Pauli operators. We therefore need to choosem asm = ǫ = maxη ǫ(η), which results in
the bound as stated in the proposition.

This proposition provides the important inequality that relates the generalized energy bar-
rier to the bound from theorem 11 and thus in turn to the spectral gap of the Davies generator.
We will first consider an evaluation of the bound in theorem 11that is very close to the proof
of Ref. [34] and its exposition in Ref. [31].

Theorem 15 For any commuting Pauli HamiltonianH , eqn. (1), the spectral gapλ of the
Davies generatorLβ , c.f. eqn (15), with weight one Pauli couplingsW1 is bounded by

λ ≥ h∗

4η∗
exp(−2β ǫ), (87)

whereǫ, denotes the generalized energy barrier defined in (79). Here η∗ denotes the length
of the largest path in Pauli space andh∗ = minωα(a) h

α(ωα(a)) is the smallest transition
rate (18).

PROOF: We proceed to evaluate the bound in theorem 11 forτ . Observe that we can bound
the first sum in the theorem as follows:

τ ≤



max
(a,µ)

∑

ξ̂∈µ̂a



max
ξ̂

4

2Nh(ωα(aξ))ρaξ

∑

η̂a∈Γ(ξ̂)

ρaρaη (88)

by choosing the largest possible edgeξ̂ for any canonical path. Moreover, we trivially have
thatmax(a,µ)

∑

ξ̂∈µ̂a
≤ η∗, whereη∗ denotes the length of the largest canonical path, so that

τ ≤ max
ξ̂

4η∗

2Nh(ωα(aξ))ρaξ

∑

η̂a∈Γ(ξ̂)

ρaρaη . (89)

If we defineh∗ as given in the theorem and use eqn. (83), so that we have for all paths that
use this edge thateβ2ǫh∗−1ρ

aΦξ(η̂a) ≥ ρaρaη (h(ωα(aξ))ρaξ)−1, we can bound

τ ≤ 4
η∗

h∗
eβ2ǫ max

ξ̂

∑

η̂a∈Γ(ξ̂)

1

2N
ρ
aΦξ(η̂a) . (90)

Furthermore, the mapΦξ is injective for every edgêξ, thus the sum over all canonical paths
passing through edgêξ can at most be

∑

η̂b∈Γ(ξ̂)

1

2N
ρ
bΦξ(η̂b) ≤

∑

η∈Z2N
2

1

2N
ρbη . (91)
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Given the Gibbs stateρ =
∑

a ρaP (a), we have that the sum
∑

η∈Z2N
2

1

2N
ρaη = 1, (92)

evaluates to unity for all syndromesa. This follows from the trace identitytr [ρ]1 =
2−N

∑

η∈Z2N
2
σ(η)ρσ(η). Sincetr [ρ] = 1, we have that

1 =
1

2N

∑

η

σ(η)ρσ(η) =
∑

a,η

1

2N
ρaηP (a). (93)

Now since we sum overη in the full Pauli group, any error syndromea can be attained.
Hence one can choose someη̃ with Eη̃ = a and shift the index accordingly to obtain

1 =

(

∑

η

1

2N
ρaη

)

∑

a

P (a). (94)

Since we have that
∑

a P (a) = 1, we are left with Eqn. (92). Therefore we can always upper
bound the maximum by unity and obtain the final bound, so that

τ ≤ 4
η∗

h∗
exp(β2ǫ). (95)

Recall that the support number is related to the spectral gapasτ = λ−1 which yields the
lower bound as stated in the theorem.

The three constants which need to be evaluated for the bound are the maximal path length
η∗, the smallest transition rateh∗ and most importantly the generalized energy barrierǫ. The
maximal path length will depend on the choice ofΓ but behaves in general asη∗ = O(N).
The smallest transition rateh∗ = minωα(a) h

α(ωα(a)) is dependent on the bath the system
Hamiltonian couples to. In our analysis, however, we only need a few properties of the
transition rates to derive the bound. First, we need that these functions satisfy the KMS
condition (18). Second, we need that the lowest rate is a positive, system size independent,
constanth∗ > 0. We will assume thath∗ ∼ e−β∆, where∆ denotes the largest eigenvalue
difference ofH that can be generated by a weight one Pauli, to evaluate the bound. For
all local models∆ is bounded by a constant. The bound on the gap therefore scales like
λ ≥ O(N−1e2βǫ) in the system sizeN . So if ǫ is a constant in the system size, this lower
bound decays asN−1. Recall that the mixing time bound we can obtain from the trace
norm bound in theorem 1 already scales astmix ≤ O(Nλ−1) the additional factorN does
not appear to be significant for the qualitative behavior. Hence, together with theorem 15
the final bound on the mixing time istmix ≤ O

(

N2e2βǫ
)

. Note that in this bound, the
only Hamiltonian dependent quantity is the generalized energy barrierǫ. Moreover, we see
that this bound is very similar to the phenomenological Arrhenius lawtmem ∼ eβEB . It is
therefore the generalized energy barrier that determines whether the systems thermalizes
rapidly. That is whether the thermalization time scales as alow degree polynomial in the
system size, as opposed to a slow thermalization which is indicated by an exponential (or
possibly a very high degree polynomial) scaling in the system size.

1. A system size independent lower bound to the spectral gap:

It turns out that under particular circumstances, it is possible to remove theO(N−1)
dependence in the lower bound of theorem 11 altogether. Thisleads to a constant lower
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bound on the spectral gap of the Davies generator, whenever the generalized energy barrierǫ
is constant. In fact, we are convinced that theN−1 prefactor is an artifact of how the lower
bound was evaluated for the general bound in theorem 15. Considering the limitβ → 0, we
observe that the bound (87) always decays asλ ≥ O(N−1) for all H . However, we know
[50] that the spectral gap ofLβ has to be constant in the infinite temperature limit for all
commuting Hamilonians. The origin of this mild dependence onN becomes clear, when we
take a closer look at eqn. (88). There, every summand in the original bound was bounded by
the largest weight over all edgesξ̂. If this step is not performed we obtain a slightly different
bound.

Let us apply the boundeβ2ǫh∗−1ρ
aΦξ(η̂a) ≥ ρaρaη (h(ωα(aξ))ρaξ)−1, which follows from

eqn. (83), directly to eqn. (87) in theorem 15. We then have

τ ≤ max
(a,µ)

∑

ξ̂∈µ̂a

4 e2βǫ

2N h∗

∑

η̂a∈Γ(ξ)

ρ
aφξ(η̂a) . (96)

Recall, that the generalized energy barrierǫ was defined as the maximum over all edges, so
it is a model dependent constant and can be taken out of the sum. Let us define the parameter

C(β) ≡ max
(a,µ)

∑

ξ̂∈µ̂a

1

2N

∑

η̂a∈Γ(ξ)

ρ
aφξ(η̂a) . (97)

If one can show, that this parameter is in fact system size independent, we obtain a lower
bound to the spectral gap that only depends on the system sizethroughǫ. For all Hamiltonians
H , we can always state a lower bound to the spectral gap that is given by

λ ≥ h∗

4 C(β)
e−2βǫ. (98)

To obtain a constant bound onλ, one not only needs to check the value ofǫ, but also has to
evaluateC(β). Note, thatC(β) depends on both, the Hamiltonian thoughρa and the choice
of canonical pathsΓ due to the sum over̂ηa ∈ Γ(ξ).

In the limit β → 0 the parameterC(β) is easy to evaluate, because we have thate2βǫ = 1
and allρa = 2−N . We can therefore choose a set of canonical pathsΓ that is oblivious to the
excitations of the HamiltonianH and follows a particularly simple protocol:

Assign a fixed order to all the qubits in the HamiltonianH , and apply for all Pauli
operatorsη, the single qubit operatorsα ∈ W1 following this fixed order. Any Pauli is
build in t = 1, . . . , N steps, and at the edgêξ = [(aµt−1 , µt−1), (a

µt , µt)] we have that
t - single qubit Pauli’s are determined already byµt. We can therefore trivially bound
2−N

∑

η̂a∈Γ(ξ) ρaφξ(η̂a) ≤ 4−t, sinceρ
aφξ(η̂a) = 2−N and we only have at most4N−t

undetermined Pauli matrices. HenceC(0) ≤ ∑N
t=1 4

−t ≤ 1/3 is bounded by a simple
geometric series for all(a, µ) so that eqn. (98) reduces to the constantλ ≥ 3/4 h∗. This
bound is consistent with constant gap bound obtained in [50]and holds for all commuting
Pauli Hamiltonians.

In light of theorem 15, it is clear that we always have that0 < C(β) ≤ η∗, because for
every edge we can bound the the summand by unity. If we are, however able to bound every
summand by some exponential, we have that the sum over all links inC(β) can be bounded by
a constant. In the proof of theorem 15 we have shown thatZ = 2−N

∑

η∈Z2N
2

exp(−βǫaη).
The evaluation ofC(β) bears some resemblance to the evaluation of the expectationvalues
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in Peierls argument [51]. If we writeC(β) = maxa,µ
∑

ξ̂∈µ̂a
Cξ̂, and we can estimate in

analogy to Peierls argument

Cξ̂ =
1

2N

∑

η̂a∈Γ(ξ)

ρ
aφξ(η̂a) ≤ c

|ξ|
0 e−βc1|ξ| with c0e

−βc1 < 1, (99)

the argument made in the previous paragraph for the limitβ → 0 generalizes. This property,
however, depends both on the HamiltonianH and the set of canonical pathsΓ and one would
assume that it has to be checked for everyH on a case by case basis.

If we are allowed to make some assumptions on the form of the canonical paths, more
general results can be proved, and we can improve the bound from theorem 15 so that it
only depends onǫ. We consider a set of canonical pathsΓ1, with the property that for all
η̂a ∈ Γ1 every qubit is addressed only once, i.e. we find for everyη ∈ Z2N

2 a decomposition
η = ⊕i∈Λαi whereΛ is a labeling of all qubits.

Note that the restriction onΓ1 may in many cases lead to a very poor bound onǫ as can be
seen in the toric code example provided in the next section??, where Pauli paths are needed
that can be of length2N and traverse every single site twice in order to obtain a constant
energy barrier.

Theorem 16 For any commuting Pauli HamiltonianH , eqn. (1), for which the generalized
energy barrierǫ, defined in (79), can be evaluated with canonical pathsΓ1, that address
every qubit only once, the spectral gap of the Davies generator is bounded by

λ ≥ h∗

4
exp(−2β ǫ). (100)

PROOF: The argument is based on a simple extension of he proof givenin theorem 15. As
was shown in the previous paragraph, we can apply eqn. (83), directly to eqn. (87) in theorem
15, so that

τ ≤ C(β)
4

h∗
e−2βǫ with, C(β) = max

(a,µ)

∑

ξ̂∈µ̂a

1

2N

∑

η̂a∈Γ(ξ)

ρ
aφξ(η̂a) . (101)

Now, recall that we can write the partial trace over a subsetX ⊂ supp(H) as trX [A] =
2−|X |

∑

η∈supp(X ) σ(η)Aσ(η). For anyA we naturally have thattrX [A] = AX c ⊗ 1X .
Furthermore, ifA ≥ 0 is positive semi - definite, we have the inequalitytr [A]1 ≥ A as an
operator inequality. Since we have thattr [A]1 = trX c ◦ trX [A], we can state the inequality
Z1 = tr [exp(−βH)]1 ≥ trX [exp(−βH)]. Both matrices are diagonal in the same basis,
given by the projectorsP (a), and we have for all eigenvalues labeled bya the inequality

Z =
1

2N

∑

η∈Z2N
2

e−βeaη ≥ 1

2|X |

∑

η∈supp(X )

e−βeaη . (102)

This implies in particular, that for some chosen subset of qubitsX , we have that

1

2N

∑

η∈supp(X )

ρaη ≤ 1

2N−|X |
. (103)

Now, we consider the canonical pathsΓ as defined in the theorem, where every qubit is only
addressed only once in each canonical path. We observe, thatfor every patĥηa ∈ Γ(ξ) that
uses the edgêξ = [(aξ, ξ), (aξ⊕α, ξ ⊕ α)], the single Pauli operator supported on supp(ξ⊕α)
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are already determined by the edge. Hence, all paths can onlydiffer on the remaining qubits.
We can therefore bound

1

2N

∑

η̂a∈Γ(ξ)

ρ
aφξ(η̂a) ≤ 1

2N

∑

η∈supp(ξ⊕α)c

ρaη ≤ 2−|supp(ξ⊕α)|. (104)

We are therefore again left with a geometric series forC(β) =
∑N

t=1 2
−t ≤ 1. Hence, from

this and eqn. (101) the inequality (100) follows.

A. Examples

We consider two simple examples, for which bounds on the spectral gap have been ob-
tained previously [11, 50]. These examples are chosen to illustrate how the constants in both
theorem 15 and theorem 16 can be evaluated.

1. The toric code

To illustrate the bound, let us consider the toric code Hamiltonian [15] on a square lattice
with periodic boundary conditions. For an illustration consider Fig. 1 (a). Every link of the
square lattice is fitted with a spin-1/2 degree of freedom with Hilbert spaceHi = C

2. The
Hamiltonian can be expressed as a sum over plaquettes{p} and a sum over the vertices of the
lattice{v}.

H = −J
∑

p

∏

i∈p

Xi − J
∑

v

∏

i∈v

Zi (105)

The plaquette terms, marked as (grey) rhombi in Fig. 1 (a), are given as the product of four
X operators

∏

i∈pXi. Whereas the vertex terms indicated by (blue) crosses are given by the
product of

∏

i∈v Zi. These multi qubit Pauli operators comprise the generatingsetG.

FIG. 1: (color online) Figure (a) depicts the toric code lattice, where the horizontal (white) qubits as
well as the vertical (black) qubits reside on the edges of thelattice. Periodic boundary conditions are
assumed. The plaquette term labeled byp are depicted by (grey) rhombi, whereas the vertex operators
are depicted by (blue) crosses labeled byv. A (red) Pauli operator comprising of localX,Y, Z operators
can be decomposed according to theirZ, c.f. figure (b), andX contribution, figure (c). A PauliY
contributes to bothX andZ.

Let us now discuss of how to evaluate the bound stated in theorem 15. We first discuss
the estimation ofǫ(η) as given in eqn. (78) for an example Pauli operator as shown in(red)
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letters on the lattice in Fig. 1(a). It will then become clearthat the obtained bound onǫ(η)
has to hold in fact for allη.

We need to find a suitable set of canonical pathsΓ to evaluate the bound. As discussed
in section IV, we only need to construct the Pauli paths that start from identity, since the
construction of̂ηa is independent of the initial syndromea. This corresponds to choosing
a particular order in which single qubit Pauli operators areapplied for everyN -qubit Pauli.
Note, that the bound is stated in terms of the optimal choice of paths. Any other set of
paths will also lead to a valid bound. However, this sub optimal choice ofΓ will naturally
yield a looser bound on the spectral gap. Given the definitionof ǫ(η) in (78), we need to
sum the syndromes, i.e. number of generators inG that anti commute withη. This sum is
modified by factorsek(η), which sets the contributions to zero at whichη already generated
an excitation. As discussed in section IV paragraph (a), we therefore need to remove the
generators fromG in the sum that are already violated byη. This is illustrated in Fig 1
by the removed (highlighted) rhombi in figure (b) and the dashed (grey) vertices in figure
(c). The remaining plaquette and vertex terms comprise the reduced generating setGη.
A simple interpretation is now thatη behaves as a ’logical’ operator for the modified codeSη.

Constructing the canonical pathsΓ: The toric code is a CSS code, which means that the
PauliX andZ contributions occur only in different summands. Since theX-type stabilizers
only anti commute with theZ contribution of the Pauliη and conversely theZ-type stabilizers
only anti commute with theX contribution, we will split up theX andZ factors in the
construction of the paths inΓ. That is, we write for anyη = ηx ⊕ ηz and build upZ factors
according to Fig. 1 (b) first before building up anyX factors, c.f. Fig. 1(c). Naturally we only
have to evaluate theZ-Paulis on theX-stabilizer and vice versa . A local PauliYi is depicted
as first applyingXi and then applyingZi in accordance with(1, 1)i = (1, 0)i ⊕ (0, 1)i. We
thus have to cover the lattice twice, but each subset of stabilizers can be treated independently.
Moreover, we can decompose any general Pauli error of eitherX-type orZ-type into products
one dimensional strings. We will now discuss the form of these strings.

We consider the example Pauli operator in Fig. 1. Let us first only focus on theZ -
contribution of the Pauli, c.f. Fig 1(b). We can first traverse all horizontal lines only using the
white qubits and the vertical lines addressing only the black qubits. For theX - contribution
in Fig 1(a) the role of black and white qubits is reversed. This way plaquette violation are
only generated at the end of the string, and these violationsvanish, or do not contribute
(sinceek(η) = 0), once the string is complete. We observe, that these strings correspond to
minimal error paths of logical Pauli operators [16], and canbe seen as a pair of excitations,
that once wrapped around the lattice with periodic boundaryconditions constitute a logical
operator.

In general, one can interpret every violation of the generators at the end of a string like
operator as an excitation of the toric code and all these individual strings of connectedZ-
operators as ’unfinished’ logical operators. The general Pauli operator is then a product of
trajectories of these individual excitations. It is well known [2], that excitations in the toric
code can be moved without additional energy and the only contribution is at then end of each
string. The largest contribution toǫ(η) comes from a string that commutes with the stabilizer
group, i.e. is a logical operator, because both ends need to be considered. It is therefore at
most2J . Following this procedure we see that this bound has to hold in fact for anyη, since
at every step only a single one dimensional trajectory is build up. Hence, we are left with a
bound given byǫ(η) ≤ 2J . for all η.

Now, recall that we have to traverse the lattice twice with this construction, once for theX
Contribution and once for theZ Contribution. We therefore have that the longest canonical
paths with our choice ofΓ has lengthη∗ = 2N . This leads according to theorem 15 to the
following lower boundλ ≥ h∗

8N e
−β4J .
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Remark: In the construction of the Pauli operators, we have traced the trajectories of
individual excitations by applying single qubit Pauli operators. Alternatively we could have
generated many excitations by traversing say all plaquetteterms horizontally on only a single
white qubit before correcting the error in a second run. Thisway we would have generated
a syndrome that would contribute in the order of2L to the energy barrierǫ, since we do not
correct for the local excitations which we have created. Here we assume, that the length of the
lattice isL. This would have lead to an exponentially worse lower bound that would behave
asλ ≥ O

(

L−2e−4βL
)

. This indicates, that a good choice ofΓ is important. Our choice of
canonical paths traverses the lattice twice for Pauli operators that containY contributions.
Hence, we can not apply theorem 16 to obtain the bound. We therefore stick to the more
conservative estimate of theorem 15.

2. Commuting Pauli spin chain Hamiltonians

We consider commuting Pauli Hamiltonains defined on a graphΛ that is one-dimensional,
i.e. a circle (PBC) or a line (OBC), c.f. Fig. 2. Examples for such system are for in-
stance the one-dimensional Ising model on a lengthN spin chain given by the Hamiltonian
HI = −J

∑N−1
i=1 ZiZi+1, or the one-dimensional cluster state Hamiltonian , also for N

spin -1/2 particlesHC = −J∑N−1
i=2 Zi−1XiZi+1 arranged on a line. For both the Ising

model [11] and the cluster State Hamiltonian [42], the Davies generator has been derived
and lower bounds to the spectral gap were provided. Both bounds are independent of the
system size. In Ref [50] a relationship between the constantgap of the Davies generator for
all one-dimensional commuting Hamiltonians and the clustering of correlations in the Gibbs
state was established.

wdG

FIG. 2: (color online) Sketch of a one dimensional commutingPauli Hamiltonian on a lineΛ. The
one- to four- local interaction terms are given by the dottedline on top of the one dimensional graph
Λ. The picture shows a Pauli operatorη in red. The bold Pauli operators correspond to an intermediate
Pauliη

t
that violateswdG = 3 interaction terms in the Hamiltonian, whereas the light Pauli operators

correspond to the remaining terms that need to be constructed for η.

We now show, that a constant gap lower bound for one-dimensional models can also be
derived directly from theorem 16 with a suitable choice of canonical pathsΓ. The choice for
Γ in a one dimensional system is trivial. We choose to decompose every Pauli operatorη into
single qubit Paulisα ∈ W1 and apply these single site operators in a fixed order, which is the
same for every Pauli and canonical for a one-dimensional latticeΛ ( we address every qubit
once going from left to right ). That is we chooseη = ⊕i∈Λαi and constructηt = ⊕t

i=1αi.
From the Pauli pathsη the canonical pathŝηa follow immediately. This means that for all
canonical pathŝηa ∈ Γ, every qubit is addressed only once, and the maximal path length is
η∗ = N . Hence, we are meeting all the requirements of theorem 16, sothat we can apply the
lower boundλ ≥ h∗4−1e−2βǫ.
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Let us define thewidth of the generating setG onΛ as

wdG = max
(i,i+1)∈Λ

#{g ∈ G|(i, i+ 1) ∈ supp(g)}, (106)

where the maximum is taken over all edges in the one dimensional interaction graphΛ. That
is we define the width as the largest number of generators thatare jointly supported on a
single edge of the line, c.f. Fig. 2.

For open boundary conditions we have for any Pauli operatorη with the previously
discussed choice ofΓ that ǫ(η) ≤ maxt∈Λ 2

∑

k |Jk|ek(ηt)ek(η) ≤ 2J∗
wdG , where

J∗ = maxk |Jk|. For all i ≤ t the Pauli’sηt andη coincide, and for alli > t, we have
thatηt acts as the identity. Hence, allgk ∈ G that are fully supported on either{1, . . . , t}
or {t + 1, . . . , N}, the syndrome complimentek(η) or the syndrome itselfek(ηt) vanishes.
Hence only the generators that are supported on both intervals simultaneously can contribute.
Hence, these operators need to be supported over the edge(t, t + 1) ∈ Λ. This number is of
course bounded bywdG . For closed boundary conditions, this scenario occurs at two points
along the chain, so that one can see easily that we have thatǫ(η) ≤ 4J∗

wdG . Since these
bounds are independent of the Pauliη we have an upper bound onǫ. We can state therefore
the following bound for all one-dimensional systems

λOBC ≥ h∗

4
e−4βJ∗

wdG and λPBC ≥ h∗

4
e−8βJ∗

wdG . (107)

We obtain the spectral gap for the one-dimensional Ising model fromwdI = 1 and for the
cluster state Hamiltonian fromwdC = 2.

V. DISCUSSION

We have derived a universal lower bound to the spectral gap ofthe Davies generator for a
commuting Pauli Hamiltonian that is weakly coupled to a thermal heat bath. The bound on
the spectral gap establishes a connection between the frequently considered energy barrier for
stabilizer codes [16] and the thermalization time of the system. This result can be interpreted
as a proof of the phenomenological Arrhenius law, and shows that this law serves in essence
as upper bound to the memory time. The bound on the gap as stated in this paper and the
naive life time estimateτ ∼ λ−1 as assumed by the Arrhenius law differ by a factor ofN ,
when no further assumptions about the model can be made. To obtain a constant lower bound
to λ, more details about the model are needed. In light of the fact, that the mixing time bound
obtained from theorem 1, already scales astmix ∼ O(Nλ−1), this additional factorN seems
insignificant. The crucial conclusion remains unaltered:Although the existence of an energy
barrier is not sufficient to establish thermal stability of the memory, it is certainly necessary.

It is important to point out, that given the spectral gap and the associated mixing time
bound we can only make statements about the system’s abilityto store classical information.
This means that the system’s ability to reliably store a qubit may have been lost much before
thermalization occurs. The bound is only able to estimate the thermalization time of the
system. A good example for this is the toric code in three dimension. A careful analysis of
the generalized energy barrierǫ yields for this model a lower bound to the gap that scales as
λ ≥ O(L−3e−4βL), when theN qubits are arranged on aN = L×L×L lattice. We see that
this bound predicts a mixing time bond which is exponential in the system size. However,one
can see, c.f. Ref.[5], that the three dimensional toric codeis not a stable quantum memory.
The exponential mixing time bound given, however, agrees with the observation that the toric
code in three dimension can serve as a stable classical memory.

For the types of models considered here, one expects a phase transition at some finiteβc,
at which the gap should become independent of the system size. It is an interesting open
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problem to find a lower bound that is in fact able to reproduce this behavior and indicate a
phase transition at some finite temperature.

The presented approach to bounding the spectral gap of the considered quantum mechan-
ical semi-group is very specific to both the Davies generatorand the assumption that the
system is described by a stabilizer Hamiltonian. Lower bounds to the spectral gap of more
general Davies generators can only be derived under strict assumptions on the Hamiltonians
spectrum [26]. It is never the less conceivable that the approach presented here can be ex-
tended to more complicated systems, such as for instance to the Davies generator of quantum
double models [15] or other semi-groups with an interestinggroup structure.
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