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We prove a general lower bound to the spectral gap of the Baygéaerator for Hamiltonians that can be
written as the sum of commuting Pauli operators. These Hanins, defined on the Hilbert spacerdfqubits,
serve as one of the most frequently considered candidatessiif-correcting quantum memory. A spectral gap
bound on the Davies generator establishes an upper limhelfife time of such a quantum memory and can
be used to estimate the time until the system relaxes to #iexquilibrium when brought into contact with a
thermal heat bath. The bound can be shown to behaxea€) (N ~! exp(—23€)), wheree is a generalization
of the well known energy barrier for logical operators. Raittrly in the low temperature regime we expect
this bound to provide the correct asymptotic scaling of tap with the system size up to a factor & .
Furthermore, we discuss conditions and provide scenarf@enthis factor can be removed and a constant
lower bound can be proven.

I. INTRODUCTION

A fundamental challenge in quantum information sciencehés firotection of quantum
information from decoherence. A proposed solution|[1, 2hts problem has been to encode
the quantum information into a many-body entangled statepaatect it this way from the
action of local noise. This proposal lead to a new researdth, fieferred to as quantum
error correction [3,/4]. It has turned out that many ideasfguantum error correction have
become increasingly useful in the theory of condensed mpltgsics [5], as they help to
understand new phases of quantum maltier [6]. One of theadepiestions in this field is that
of thermal stability|[2, [7=11]. Thermal stability plays dedn both the understanding of the
behavior of topologically ordered systems at finite tempeea as well as in the estimation
of the life time of self-correcting quantum memories. A stard approach to self-correcting
guantum memories is to encode the quantum information h@@tound state, or any other
suitable, subspace of a Hamiltonian. The Hamiltonian shbale the property of shielding
this subspace from thermal excitations. An important, aisd &equently studied, class
of models are so-called stabilizer Hamiltonians. These iHanians are directly related
to stabilizer quantum codes [4] and are given by the sum ofneotimg multi-qubit Pauli
operators.

In this paper, we will derive thermalization time boundsgatalled mixing time bounds,
for the Davies generators [12,/13] of these Hamiltonianszi€agenerators are given in the
form of a Lindblad equation [14] and are known to convergéntoGibbs distribution of the
particular Hamiltonian for which they are derived.

The first rigorous upper bound on the memory time of a stasilizamiltonian was derived
for the two dimensional toric code model [15] in [11]. The ket first proved a constant
lower bound for the spectral gap of the Davies generatorevbtie dimensional Ising model.
This bound could then be related to the spectral gap of théeBayenerator of the toric
code through a suitable partitioning of the two dimensidatiice. Other no-go results for
stabilizer quantum memories [16+18] in lower dimensiohg oa the absence of an energy
barrier that separates two logical states in the code sfgaeeargument proceeds to connect
the energy barrier to the memory’s life time through the mheanological Arrhenius law
tmem ~ €°FB whereFEp is the energy barrier of the code [16, 19]. It has been an open
qguestion, whether there is in fact a rigorous connectiowben the energy barrigtz and
thermalization time of the quantum system. Recent res2lts22] indicate that this law can
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only serve as an upper bound to the life time of the quantumangm

The main result of this paper is a rigorous upper bound onhbenalization time of a
qubit stabilizer Hamiltonian in terms of a quantity that das seen as a generalization of
the energy barrieE/z. The result is stated in theordm] 15 in secfion IV. We estintlade
thermalization time by finding lower bounds on the specteg gf the Davies generators.
The lower bounds on the spectral gap can be related to esdméthe trace-norm distance
between any initial state and the thermal state of the &abiHamiltonian. We show that
the spectral gap can always be lower bounded by O(N ~!e=25¢), whereN denotes the
number of qubits in the stabilizer Hamiltonian ands the generalized energy barrier that
will be defined in eqn.[{79). Furthermore, we show that in sveases the pre factd¥ —!
can be removed, and we provide conditions addmitting andrgment of the lower bound
to A > O(e~25%). We believe this to be the correct scaling of the spectraligape low
- temperature limit, and are convinced that the prefadfor, present in the general case,
is an artifact of the method used to derive the generic bourdillustrate the evaluation
of this bound for a particular quantum memory we discuss dihie tode, as well as one -
dimensional models as a examples in sedfion IV A. We obséafethe generalized energy
barrier essentially corresponds to the largest energyebaof the logical operators. The
bound proves that although the existence of an energy b&nmt sufficient|[20, 21], it is
certainly necessary.

The paper is organized as follows: First, in the remaindéhisfsection we state the nec-
essary background for Hamiltonians comprised of commuRiagli operators and briefly in-
troduce Davies generators for these Hamiltonians. Theadtia{1l we provide an overview
of the convergence analysis of Lindblad generators. Theddwund to the spectral gap
for stabilizer Davies generators is derived in the sedfiiT his section contains the central
technical contributions and states the lower bound in terfragyuantity which is very similar
to the classical canonical paths bound derived by Jerrunsardair. The final result which
relates the spectral gap to the generalized energy bapeesented in sectignlV. The reader
only interested in the main result may skip to this sectioherg an intuitive description of
the generalized energy barrier and examples are provided.

A. Preliminaries

Before we discuss the bounds on the equilibration times, eeg o establish some back-
ground and notation. The Pauli group on the Hilbert spac& efjubitsHy = @, C?
is defined as the group that results from tNefold tensor product of the Pauli matrices
1,0% 0% 0% so thatPy = (il,X4,71,...,XnN,Zn). HereX; denotes the action aof*
on thei’'th qubit and identity on the remaininy — 1. Note, we will refer to the set of
weight one Pauli operators &7 = {X;,Y;, Z;};=1,..~n. By weight one we refer to all
Pauli operators that act non-trivially on only a single quiWe consider Hamiltonian&/
on Hy that can be written as the sum of a set of Hermitian, commugagli operators
G ={91,---,9m} C Pn, with [g;, g;] = 0 for all 4, j. Together with the number, € R
we can write the commuting Pauli Hamiltonian as

M
H==>"Jigx. (1)
k=1

The setg is the generating set for the commuting subgréup: (g1, ..., ga) Of Pxn. This
subgroup is referred to as the stabilizer group if it doescootain—1. The stabilizer group



encodes logical qubits in states that are stabilized,s|.@.) = | ), by all s € S, whenS
is a strict subset of the centralizép,, (S) of the stabilizer group. Pauli matrices that are
contained in the set differendd,, (S)\S are called logical operators and act non-trivially
on the stabilized code space. The interested reader isedftr [4] for a good introduction
into stabilizer quantum codes. It is important to point dhgt we do not assume that the
setG generates a stabilizer code in order to derive the theratadiz time bound forH .
Although we will use the notation of stabilizer codes, thsuteholds for any commuting
Pauli Hamiltonian.

There is a natural way of identifying every element of thelRgnoup P with an element
in Z3 x Z3N , where two bits irZ3 are needed to encode the phase information [4]. As we will
be working with the Pauli algebi@[P] we only associate vectors over the finite figlgf’
with Pauli operators and drop the phase dependence from noWwtas means, we consider
for a € Z3N, with a = (a®, o*) the projective representation: Z3" — Py, given by

o(a) = ez (@"a0z X zo® 2)

where we have defined the operat&r$” = Xlaf ®...® XJO\‘;V and for the PaulF operators

respectivelyZ®™ = fo ®...0 Z]"fv. Note, that we will denote the addition modan

Zs by @ to distinguish it from the addition iC. We have thatX; corresponds to a vector
(1,0);, wheread; = (1,1); andZ; = (0, 1), respectively. Furthermore, we have that for the
product ofo (), o () the following holds

o(a)o(B) = eFP@Pz 5(q @ p) ©)
o(a)o(B) = Oapo(B)o(a) with 6,5 =e™P@Az, (4)

where we define the symplectic product o#Zebetweeny ands as

spta e = (o o) () 1) (57)- ©

The parametef, 3 = =+1, depending on whether(a) and o(8) commute or anti-
commute. The Pauli algebr@[Py] is defined via the span of the vectot§Py]| =
spar{| )}, ezzv . For convenience we will use the representatiphe C[Pn] ~ Hn@Hn
given by

2N 1

)=o) @U0), with [0)= 12 S K)ok, ©
k=0

Recall that the Pauli matrices form a complete orthonornaslishof the matrix algebra
M~ (€) with respect to the Hilbert-Schmidt scalar product. Thiglies immediately, that
the vectors[(6) form an orthonormal basis and the Pauli atgistnothing buiM,~ (C).

It is convenient to introduce the binary matdk: Z2! — 73"V to encode the generating
setG. This matrix is of the form

G = <g‘§>, where GX,GZGMNxM(ZQ).



This binary matrix defines the elements of the generating sktough it's column space.
Since all elements i commute, we can identify every element S by anM dimensional
bit stringx € Z3!, throughs = Hf‘il g;*. This allows us to write any € S in terms of the
matrix G by simply observing that

M
s:Hgfi:a(Gx). @)
i=1

When G generates a stabilizer code, this matrix is often referoedst the code matrix.
Quantum codes can for instance be obtained by chod@siagthe direct sum of two classical
code matrices encoding tBé andZ part independently [23]. We note that the generating set
G does not need to be independent, i.e. there mayexigt zo € Zé” suchthatGz; = Gus.

This language allows for a very efficient representatiomefdpectrum of the Hamiltonian
H. To every matrixG we associate a matrik : Z3N — 7! referred to as parity check
matrix that can be obtained fro through the identificatiol? = (G%,G%). SinceG
encodes a commuting set, we have that = 0. This matrix has the property that with the
symplectic product as defined above we have foramyZ3}! and anya € 73V that

eiﬂ'Sp(a,Gm)z _ eiﬂ(EOﬁ,I>. (8)

Here, we denote b{u, b) the canonical inner product ovér* and treat the vecto®«, x
as belonging to this space. The parity check ma#iylays an important role in coding
theory, and allows for the detection of errors in a code. Tinege ofF will be referred to as
the syndrome space and can be associated to the space afiersibf the Hamiltoniar .
In essence given a Pauli matrix labeledhythe parity check matrix indicates the generators
that anti-commute with this Pauli. These generators are thferred to as supporting an
excitation. We will refer to the vector

e(y) = By € Zy". 9)

as the syndrome of the Payli We denote by (y) = [e(7)]x the k'th component of the
syndrome vector.

The Pauli matricesg, have eigenvaluestl. The local projectorsliy(a;) =
271 (14 €™ g;), project onto the positive, = 0 or negativea;, = 1 eigen space of
the Pauli matrixg. Since allg, commute we can furthermore consider the product of all the
local projectorsP(a) = Iy (a1) ... Has(an), for anya € Z3%. Note that this projector can
easily be expressed in terms o.a Fourier transform over the elementsSrthrough

P(a) = % > emeno(G). (10)

zeZ)!

The inverse is naturally given by(Gz) = 3, €% P(a) and one can immediately
verify that)~ P(a) = 1. Since we have already stated that the Gé$ not necessarily
independent, we also observe that there may be arZ’ for which P(a) = 0. Thea for
which P(a) does not vanish coincides with the image of the parity cheakimFE and will
be referred to as being in the syndrome spaag. dfhe projectors”(a) satisfy an important
identity when conjugated by Pauli operators. It can be \etifiy making use of the identity
in egn. [8) and the Fourier expansion edn] (10), that theeptojs satisfy



o(a)P(a)o(a) = Pla® Ea). (11)

Since this additiom & F« of syndromes will appear frequently we will write as shorttla
notation

a® =a®ea). (12)
The projectors’(a) can now be used to diagonalize the Hamiltonian so that we c&a w

H= Z e P(a) with eigenvalues ¢, = — ZJk(—l)“’f. (13)

a€z K

From this particular form, it is straight forward to compuke Gibbs distributiorp =
Z~!exp(—BH) and we obtain that

p=7 e P@) = Y puPla). (14)

B. Davies generator

We will describe the thermalization of the system in termsddavies generator. This
generator has assumed the role of a bona fide standard matiel description of thermal-
ization in quantum memories. The Lindblad master equatidses from the weak coupling
limit of the system to a thermal heat bath. For a microscopiivdtion, the reader is re-
ferred to [12, 13| 24, 25]. We will consider the generator & and will not focus on
its derivation. The physical picture is the following: Wesame that the system and bath
evolve together under the Hamiltoni&h,, = H + Hg + Hy, whereH denotes the bath
Hamiltonian, which we will not specify here. The Bath is in Bls state with respect iz
at some fixed temperatufe We assume a weak interaction between system and bath given
by Hr = ), S* ® B*. HereS“ is a Hermitian operator that acts only &, whereas
B“ is some Hermitian bath operator. After tracing out the bagrdes of freedom and
a complex sequence of approximations one is left with a Usdilmaster equation of the
form 0,0y = —i[Hesy, 0] + L‘;;(o—t). It can be shown, that the effective Hamiltonian term
[Hess,0.] does not contribute to the spectral gap [11, 26] and we tbhezefeglect this term
here. We will therefore only refer to the teriy as Davies generator for convenience. The
generator is given by

Ls(f)= Y Do h(w) (Sﬁ*fss -3 {Sfj*ss,f}) . (15)

aeW; w

For our model, we make the assumption that the system cotplibe bath via single
_____ ~. The second sum overis
a sum over all Bohr frequencies of the commuting Pauli Hami#in #. A Bohr frequency
w = €, — € IS an eigenvalue difference of the the Hamiltonian. The afpesS are obtained
from the coupling operators through the Fourier expansioexe (i Ht)S* exp(—iHt) =



>, S%e™t. Since we can diagonalize the Hamiltoniahand the individual summands
commute we can compute the time evolutior6fand read off the components

52 =Y 6w (a) —wlo(a)P(a), with 5@]:{ (1) f;s:eo (16)

We have defined®(a) = ¢, — €,o. Due to the particularly simple form of the eigenvalues,
the Bohr frequency can be evaluated as

M
w(a) = =2 Jrer(a)(—1). (17)
k=1

Note that we consider the binary variableg«) as 0,1 valued integers and use the
natural addition. The bath temperature is encoded intridvesition ratesh®(w). This
function is obtained from the Fourier transform of the aotoelation of the bath operator
B*(t) = exp(iHpt)B* exp(—iHpt) with respect to the bath’s Gibbs state at inverse tem-
perature3. The specific form of the transition rates depends of coungb@particular choice
of bath modell[27]. However, the only property which is reevfor our derivation is that
the transition rates satisfy the KMS condition|[28]

h(—w) = h(w)e P, (18)

to ensure detailed balance, c.f. definitidn 3. Moreover, ssime that the functions are
positive and bounded by< h*(w) < C, wherec, C > 0 are constants independent/®f In
particular we will assume that the lower bound behavesas:—#2, whereA is the gap of
the Hamiltonian[(lL). The coupling operatd$ € W; ensure thats has a unique full rank
stationary state > 0 for which £3(p) = 0, sinceWW; generates the full algebra [29,/30].
Furthermore, the detailed balance®f with respect to the Gibbs state Bf implies that the
unique fixed point of this map is given hy= Z~! exp(—3H). We therefore have thats
is a map that converges to the thermal state of the HamiltaHiaThe Davies generator can
therefore be seen as a physically motivated generalizafi@lauber dynamics to quantum
systems|[31, 32].

Il. THE POINCARE INEQUALITY AND CONVERGENCE BOUNDS

We are interested in the derivation of convergence time tstor the Davies generator
(I3) defined in the previous section. In order to analyze drwergence of density matrices
we will work with the trace norm)| A||;- = tr {\/ATA} to determine the distance from the
steady state. This norm is the natural non-commutativergéination of the total variation
distancel[33]. Let us denote the steady state of the Daviesrgtor byp. We will define the

convergence timeor so-calledmixing time ¢,,,;, (¢) as the time the semi-groufy needs to
bee-close to its stationary distribution for all initial state,.

tmiz(€) =minqt | t© >1 we have ez‘/ao —pller <€ Vogy-
i ! h L5t % (19)

The mixing time gives a valid estimate for the thermalizatione of the quantum system.
Moreover, this time also provides an upper bound to the timi@imation can be encoded



in the system. Once the system has become thermal it hadllosoamation of its initial
configuration. Note that the system’s ability to store quaminformation may be lost before
the Hamiltonian starts to thermalize. Hence, the mixingetibounds only what is referred
to as the classical memory time. This time is of course a ahtypper bound to the life
time of a quantum memory. To find appropriate upper boundsgartixing time, we take an
approach that was developediinl[34-36] and generalizedantgm mechanical semi-groups
in [37]. We need to have access to the spectral)gapthe generatof. Here, the spectrum
of the mapL is understood in terms of the matrix representatiorf afn the vector space
Mon (C) ~ ©2"*2" The spectral gap of £ will be introduced properly in lemmrid 4. In
[37] the following exponentially decaying bound, which tiefor anyL was proven.

Theorem 1 Let L : My — M, be a Liouvillian with stationary statg and spectral gap\
Then the following trace norm convergence bound holds:

low = plly < Vo e (20)

Here||p~!|| denotes the inverse of the smallest eigenvalue of the statistate, andr, =
et (o) for initial state o.

The convergence result of theor€in 1 provides a simple uppendon the mixing time.
Recall that we consider thermalizing semi-groups, for Wwhie fixed point is always given
by the Gibbs distribution for whicljip~!|| < exp(consBN). Let us now choose a fixed
e = e~ /2 for whicht,,i = tmiz(e~1/?). One can easily rearrange the upper bound to find
that we can choose

tmiz < O(BNATY). (21)

The bound on the mixing time derived from the spectral gapescat least linearly in
the the system siz&/, even when the spectral gap is a constant independenit oDther
approaches to bounding the mixing time exist, which candyl®unds that can scale as
O(log(N)). These bounds are based on logarithmic Sobolev inequf8e< 0] which are
more challenging to prove in general [41]} 42].

The spectral properties of the generalol (15) can best berstodd when working with
an inner product that is weighted with respect to some fulkneference state > 0. This
reference state is typically chosen as the fixed point of tbetillian, i.e. the Gibbs state.
We furthermore introduce the variance and the Dirichletrfowhich will play an important
role in the spectral analysis of the semi-group.

Definition 2 Given a full rank state and a Liovillian £, we define the following quadratic
forms onMyn (C):

1. Thep-weighted non-commutativener product for all f, g € My~ (C):
(f,9), =t [pfTg] . (22)
2. Thevarianceof f € My (C) with respect tq:
Var, (f, f) = tr [pf T f] = [t [pf] . (23)
3. TheDirichlet form of £ with respect tq:
EU ) ==L, = —tr [pfTL()] - (24)



These quantities give convenient access to the spectnaépies of the Davies generator.
Lindblad generators in general may have a complex spectunich makes it necessary to
be more careful in the definition of the spectral gap [37]. Paries generators, however,
this is not the case since this map becomes Hermitian witfert$o the previously defingd
weighted inner product. We will refer to this property asailed balance and give its formal
definition below.

Definition 3 We say a LiouvillianZ satisfiesdetailed balance (or is reversible) with respect
to the statep > 0, if

(f, L(9)), = (L(f):9), (25)
forall f,g € My~ (C).

It follows from the KMS condition discussed previously inned18) that the Davies gen-
erator is reversible [43] with respect to the Gibbs distitrw. This was already shown in the
seminal work by Davies [12, 13]. Detailed balance immedjyateplies two things: First, that
the spectrum of 5 is real. Second, as can be verified easily, reversibilityersthat the state
p = Z lexp(—BH) is a fixed point of the Liouvillianl[37]. Moreover, since wensider
the case where the system is coupled via all single qubits Pau= {X,,Y;, Z;}i=1,...~
operators to the bath, we automatically have that the Gildie s the unique fixed point
[29]. We are now ready to find a convenient variational exgicesfor the spectral gap of the
Davies generator. The following lemma was proved.in [37].

Lemma 4 Thespectral gap of a primitive LiouvillianL : My~ (C) — Mon (C) with sta-
tionary statep is given by the variational expression

= omin U S)
A B Var, (1. .

Note thatf € M~ (C) in the optimization can be chosen as a Hermitian matrix.

This lemma leads to a very useful inequality referred to adtiincare inequality It is
clear that the problem of finding good lower bounds to the spkegap can be rephrased as
the problem of finding a constaitso that the inequality

Ava'rp(fa f) Sg(fa f) (27)

is satisfied for all Hermitiarf. This inequality will be the starting point to prove spettra
gap lower bounds for the Davies generator.

Lower bounds to\ in the Poincare inequality can be found for instance by esging the
inequality for the two quadratic forms in terms of a matriequality. We make use of the
vectorization off through| f) = f ® 1| Q) as discussed in the previous secfiod | A. Both the
guadratic forms can be written as

Var,(f,f) = (f[VIf) and E(f,f) = (fIE| f). (28)

The matrices’ and£ will be explicitly given in sectiofi Tll. The Poincare ineditg (27) is
then trivially equivalent to a positive semi-definite matriequality, where we now want to
find the smallest € R such that the following holds,

T7E -V >0. (29)



It is clear that this optimat, which is often also referred to as support number, is rélaie
the spectral gap via = A~'. Any upper bound on will immediately constitute a lower
bound on the spectral gap Note, thatr is well defined even for singular matrices, as long
asker(&) C ker( ). This will be the case here, singeis ergodic so that both maps have the
same kernel given by the identity.

A very useful lemma to finding bounds enwas developed in [44, 45]. It is possible to
expressr as the constrained minimization over a certain matrix fiazédion. We therefore
have that any factorization that satisfies the constraintsgise to a valid upper bound on
the support number. This is expressed in a lemma first providi.

Lemma 5 Let&, V be positive semi—defipiteyvith a decompositfor: AAT andV = BBT.
then the minimat for which the matrixr& — V is positive semi-definite is given by

7 =min |[W|?* subjectto AW = B. (30)

Here, ||V || denotes the operator norm, i.e largest singular valuesyof

The direct evaluation of the operatpr|| norm does at first appear to be just as challenging
as the original problem. However, since we are only tryinfirtd upper bounds on suitable
norm inequalities will suffice. Once such a factorizatiorfaand, several different norm
bounds can be used to yield different lower bounds to thetsgdamap. One common choice
is for instance given by Schur’s bourid [46] on the operatammplV ||2 < [|[W || ||W |1,
where||W||; and ||W || denote the maximal row and column suml&frespectively. The
bound on the operator norm which will be most relevant to usbeen introduced in_[45],
since it does yield a lower bound to the spectral gap whictery gimilar to the canonical
paths bound for classical Markov chains givertin [34+36, 47]

Lemma6let W € Mg y(C) denote a complex rectangular matrixy’ =

Zszl Yo Wiom| k) (m | with row vectors| wy) = Z 1 Wi,m|m), then the operator
norm of W is bounded by

WP <max 3 w3 (31)
k: Wim#0

ProOF. We follow the proof in|[45]. Given the matri¥/, suppose we could find an isom-
etry S with ST = 1 and a matrixiv’ such thati’’ = SW, then we can boundiV'||?> <
||S||2]|W||> = ||W||?, since the operator norm 6fis bounded by unity. Moreover, if we can
finda =S5 S™  Wis| k) (m | such that it's columnsi,,) = 3=, Wim| k') are
orthogonal, we have that

IW1* < max || @)]13- (32)
Now, consider the matrix pair
M
S = k)(k|® (m| and
k=
B K M
W = ZZ [lwi)l|2(1 = 6[Wi,m])| k) @ [m)(m|. (33)
k=1m=1

One can easily see that the constraints $rand W are met so that||w@,,)|3 =
Dok Wi 20 |l wi)||3 and by [32) the bound as stated in the lemma holds.
(|
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In order to derive the spectral gap bound, we now proceedlag/f First we find suitable
matrix representations fa andV, then we try to find a factorization in terms of a matrix
triple [A, B, W] as given in lemmB]5. An upper bound on the constaistthen obtained by
applying the norm bound from lemrha 6.

Ill. LOWER BOUND TO THE SPECTRAL GAP

The central task is now to find a suitable upper bound on thpatipumber of the matrix
pair that stems from the Dirichlet form and the variance. \Wsalby first finding the matrices
that constitute the quadratic forms and then by expreskisgtatrix in a suitable basis. It
turns out, that the most natural operator basis to work vgithiven by the Pauli matrices
considered earlier. Since the stabilizer group acts as gulp in this algebra, we will find
that both the variance, as well as the Dirichlet form can hEessed efficiently.

A. Matrix Representations of the quadratic forms

As discussed in the previous section, we now proceed toal#ramatrices that give rise
to the quadratic form&(f, f) = (f |€] f) andVar,(f, f) = (f [V| f). We choose the Pauli
matrices as a basis 8#(,~ (C).

Recall thatS is a subgroup of the full Pauli groupy, we can therefore consider the right
cosets ofS in Py. For each coset we can define a suitable coset algebra, vehiziurally
a subspace oF[Py] ~ My~ (C). The full algebra can then be decomposed in terms of its
cosets. This is a decomposition which will turn out to be ubkef the following. Assume
we are given some representativey,) € Py, then the right cosefo (), for which we
will write [o] is spanned by the Pauli matrice§Gx)o (o) for z € Z). So that the coset
algebra is spanned by the vectors

Clyo] = span{| Gz @ ’Yo)}mezgf . (34)

Moreover, it will become important later to also considez ttual algebra of the coset
which is obtained by &2! Fourier transform. The dual algebra of each csgtgiven by

Co)” = spar{ | ), } (35)

acZ

is spanned by the vectors

1 ;. ;T
|a)qe = 717 Z im0 15 5P(GT0)| G @ g ). (36)

These vectors form an orthonormal basis. Recall that, dépgron the generating set
G, for somea the projection operator®(a) can vanish. This pathology carries over to
the vectord a).,. This however, is not relevant for our analysis here, sineecan always
interpret these: values as being omitted in the sum so that we sum only ovetirege
syndromes of;. We now consider the decomposition®&&nd) in terms of this basis.

Lemma 7 The matrix¢ is block diagonal over the right cosef¥~o] of the subgrougs with
representatives, € 73" in the full Pauli groupPy,

=P (37)

[70]
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where ever){iy0 is only supported of’[,]. Moreover, we can write each block as

£ =D D & (a), (38)

aeWr a

with
‘é‘%( )= (ha + hgvo g0 ) pal a) (a |’Yo — hgavo paeaﬂo| a)(a® |Vo~ (39)

Where we have that; , = h*(w*(a))d[w®(a) — w(b)].

PROOF. The Davies generator can be split into a sum over the indalidoupling opera-
tors asls(f) = > ,ew, £3(f)- The individualC5(f) are obtained from Eqn. [C{5) by
substitution 0fS2 as in given in Eqn.[(16). A summation over all valuesuahen yields

£ = Yonetw (selrse - 5 {seise o))

= Zh ( () fo(a)P(b) — %{P(a),fh). (40)

We want to find a matrix that represents the Dirichlet fag(if, /). This means that we
need to find a matri® for every summand € W; so that—tr [pﬁg(f)f} = (1€ f)
for any| f) € C[Pxy]. Note that we have made use of detailed balance here. Leetes th
fore consider the action of this map on some mafrie My~ (C) for which we can then

write £%(f) = —pL3(f). The Gibbs state can be written as= >, p.P(a), so a direct
substitution yields the result

5"‘(f):Z%(hi‘aJrh?b)paP(a)fP(b)—habpa (a)o(a)fo(a)P(b).  (41)

a,b

We will work in the Pauli basis, so that we need to understdmedaction ofE,, on
any 2~"/2¢ (). With the commutation relatiofi (IL1) between the project®(s) and any
Pauli we have thaP(a)o(v)P(b) = P(a)dq pee(y)0 (7). Furthermore we can write for any
o(a)o(y)o(a) = 0q~0(v), whered, , = £1 was introduced in eqnl}(3). We obtain

£%(o() = Z[ (h + ) po— B 9] Pa)o(7).

a

Recall, thatP(a) = Y, 27 Meima2) o(Gr), so that this substitution yields the double
sum

£(o(y)) = QMZ[ (h3a + W) = e,vhw} @) 5 (G)a ().

Since we now understand the action&sf on the Pauli matrices~"/?¢(7), we can ex-
press the matrix now in terms of the operator basis elementsThe multiplication rule for
the Pauli matrices was given il (3). Since all Paulis areagrtimal, we can write
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= o Z > [ (e, + h% o) = Oayhoy | pae™ @) e 55P(G2M)| Qo @ 4) (v ((42)

Yy ax

To simplify the notation in the following we write

Ei,'y( ) (ha +ha’Ya’Y) Pa and Egc,'y(a) :hlla'ypa' (43)

We observe that since both andh(w®(a)) only depend on elements of the syndrome
space, we have that both}, _ (a) and E?__ (a) only depend on the syndromeéx) and

e(y) and not on the specn‘|c Paulis, v themselves. Since we have tHa6 — 0 it can be
inferred that the syndromes of two Pauli operators ag(ee) = ¢(72), if the operators are

related by an element if. Hence the functionEé{ﬁ(a) are in fact constant iy over the
cosets. Moreover, we can decompose the full Pauli giBnpin terms of its right cosets
Pn = U;[vi]. Hence we can choose some representative Z3" /7 andy € Z3 so that
any Pauli can be written as= Gy & 0. We can therefore write

B ST () B @)

[vo] @ =y

Xeiﬁ(a,z)ei%Sp(Gz,Ger’yo)| G(w ® y) ® 70)(Gy ® o | (44)

We define the matrix the diagonal matrix

6 a,Yo Z o GI+V0| Gr ® ’70)(G$C © | (45)
Furthermore, we define two bit stringg = = ® y andxy = y, for which then
exp (im (x,a)) = exp (i (x1,a) —iw (x2,a)). Moreover, sinceSp(Gz,Gy) = 0,

which from the fact that all elements ifi commute, we have thap(Gz, Gy + v) =
Sp(Gz1,v0) — Sp(Gz2,70). We can write with with the dual basjs)., as defined in(36)

= Y S B (@la)al, - B2, (@)a)(al,Oa. (46)

[vo] @

Note that,| a)(a |4, is only supported oiC[y,]. Hence, we have that for evefyo] the

matrix can be decomposed into disjoined blocks and we cae ¥ai £ = Do) €S, » Where
the blocks are given by

Yo’

=2l @l (Bha (@) = B2, (@)04) (7)

Let us now look aéaﬂo, this map was originally diagonal in the Pauli basis. Howewe
the dual basia).,, we have that, due to the identify (8) and an application offfeFourier
transform, the matrix can be written as

Ou = oy Y _la)(a |y, (48)
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Applying this matrix to| a)(a |, in (47) and taking the sum over € W, yields the
decomposition of the matrig as stated in the lemma. O

Remark: In the derivation of the matri>€a0 we have made the choice of a par-
ticular representative, for the coset. Here we will see, that the matrices are in fact
independent of the representative. Any othgrin the same coset is related tp
by 1 = Gz* @ 7. If we consider the dual vectorsz),,, we can see that these
are related to the ones defined by by |a),, = exp(irm(a,z*))|a),. This follows
from expanding|a),, in the basis{|Gz + 1)} and using the identity[{8). ~Since
the vector only changes by a phase, the projectarga |, = |a)(al,, are in fact
identical. However, the matrix unit of the new represem&tchanges according to
la)(a® |y, = exp(im (z*e(a)))|a)(a™|,. This is nevertheless consistent with the phase
0a,~, inthe equation. Sincexp(imSp(a, Gz* + o)) = exp(im (e(a), z*) + Sp(a, v0)) we
have thatd, ,, = exp(im (z*,e(a)))fa,~, canceling the phase from the matrix unit. This
leads to the observation thatyf and~, are related as stated above, i.e. they belong to the
same coset, we have thég, = £ .

Furthermore it is easy to see that the magiixis Hermitian, which is a direct consequence
of the KMS conditionh(—w®(a)) = exp(—pw*(a))h(w*(a)). This condition ensures that
ng(a) = Eiﬁ(aa). One can therefore verify easily by simple Hermitian coajiign and

ituti i ba _ caf
a substitution of the labels accordingdo- o that&s = £ .

We now need to see whether it is in fact possible to find a deositipn of ) that is similar
to the one of. If the two matrices are not too different form each other,stand a good
chance to factor them according to lemiia 5 and bound therspeeip this way. Indeed,
it turns out that the matri%’ obeys the same block diagonal structure and is in many ways
rather similar tof.

Lemma 8 The matrixV is block diagonal over the left cos€ty] of the stabilizer groud
in the Pauli - groupPy . This matrix can be written as

V=V, (49)
[v0]
Here everW% is only supported of’[,] and can be written as
. 1 .
Ve = 55 O S puper (| a)(a |y — Oyrol a)(a |W). (50)
nezZiN a

PROOF. This matrix is related to the variance throughr(f, f) = (f |V| f). The definition
of the variance[(23), for Hermitiafi € My~ (C) was given by

Var,(f, f) = tr[pff]—tr[pf]*. (51)

Since we are taking a full sum over all group elements we Haatefor any matrixX defined
on M, the following identity holds

wX]1= o 3 ol)Xo). (52)

nez3N
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This identity is particularly helpful in finding a suitableatnix representation foy. We can
write the following:

1 = %Nzo(n)pa(n)

tr[pf] 1

o Z mpfoln (53)

Due to these identities, we can express the trace in thenearia terms of a full sum over all
elements irZ3" and we can write that

Var, (£, ) = 5% Ztr formprn)f) = 55 S wlfprmpfot)]. (64

In particular, if we defin&/ar,,(f, f) = >_, tr [fV"(f)], where for eacly we have that

VI(F) = 5 (pompotn)f — potipfotn) ). (55)

If we now substitute the decomposition of the Gibbs stateerms of the projectorg =
> u PaP(a), we obtain for the matrix

UF) = g 3 pern (P@o () PO)o(n)] — Pla)o(m)PO)folm) . (56)
a,b

We are now in the position to evaluate this matrix on the Paadiso (), in the identical
fashion as we have done for the Dirichlet matrix in the prasiproof by using identity{3).
We thus obtain

VIo () = g O (papan — pupanby ) Pla)o() 57)

Recall that we can now substituiga) = 2~ 3~ ¢ (@) 5(Gx), as we have done previ-
ously to obtain the following expression purely written fretbasis{| v)}.

1 im(x,a) i5 T
V= sz(papa" — ba,yPapan) € (ra) i3 5p(@ ’V)|G$@7)(7|- (58)

voaT

Note that this matrix is in its form very similar €. If we define the two functions
1
V) (a) = 3 Pabar and V? (a) =V, (a), (59)

which also only depend on the syndromi{g) and are in fact even independentoénd are
thus trivially constant over the cosets. We have that eqond®8) is now similar to[{42).
We only need to substitute the functiolis’?(a) for the EL/2(a) in Eqn. [@T). The proof
proceeds identically to the one for the D|r|chlet form. Tmdyadifference is that sum is taken
over alln € 7Z3" in the final step, which then leads to the decomposition @edia the
lemma. O

As we have seen, both matrices are block diagonal in the sasig, land we can moreover
write the Dirichlet matrix, as well as the variance matrixsas of two dimensional positive
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matrices in the basis dual to the coset algebra. Bo#dndé& are positive semi definite by
construction and share the same kernel given by the identtyix. Hence, the only matrix
pair (c‘f%, f)%) that is rank deficient corresponds to the coset that is giye biself. The
central structural difference between the two matricesvisrgby the fact that fo€ the sum
is only taken overy € W7, i.e. single qubit Pauli matrices, whereas fowe sum over the
full setn € Z3N. This means that there are transitions of the farm a” which occur iV,
that are missing ig.

B. Comparison Theorems

Since both matrices andV are block diagonal in the same basis, it suffices to bound the
support number.,, for each subspacdg[v,] separately, since

T = MaX Ty, . (60)
Yo

To obtain the bounds on,, we have to devise a strategy of factoring bét,t; andf/70 and
embedding each into the other as discussed in lelhima 5. Itmtoes convenient to consider
a set of vectors that facilitate the embedding. We definelf®aulis o, vo € Z2Y and for
all a € 73! in the syndrome space the vectors

1
=2 = 75 (1090 — famsl @ ). (61)

These are easily obtained for every cosets and only diffea IBlative phasé,, ., in each
coset. Moreover, th¢| —2),, } do not depend on the representative of the cggeDirect
calculation reveals thgt-¢).,, = |—%),, if the two representatives are related by =
Gx* @y, for somez* € 73M.

These vectors possess a convenient telescoping sum profséren some general Pauli

1 which can be expressed by a product of simpler Pauli operétgr, we can express the
vector associated to the former Pauli as a sum of the vecscemted to the;.

Proposition 9 Let{«; },—1....x denote a set of Pauli labels; € Z3" so that the binary sum
yieldsn = @*_, «;, then we have for all syndromes= 72! that

N
[u

Qi1

| _Z)vo = 6‘55,70| T a¥s )’Yo’ (62)

S

Il
=)

wherea, = ®¢_; o, so thatay, = 1.

PROOF. We prove the claim by induction. For the trivial case- 1 wheren = @, nothing is
to prove. Let us therefore consider the induction step. Rz by (3) and[(IR) we have that
e(a) @ e(B) = e(a @ B) so that(a®)” = a®®5. Moreover, the phasés, ., satisfy a simple
multiplication rule withf,, +,0a,,vo = 0ai@as,v Which follows from the bi-linearity of
Sp(«, v)z. With this it is easy to show that the proposition followsrfrinductionr — r + 1
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through

_ 1 _
| _gr®ar+1)’m = = (| a)’Yo - 957~7’Yo| aar)’m

V2
+ 95m’¥0| aar)’vo -0 E7~€50¢r+17’m| aar®ar+l)70)

= | _g_r)’m + 9f¥_m’¥0| _Z;_:‘rl)’m

r—1
== Z 0 Es,'yo| _Z;:rl)'yo + 0 Ot_m’yo| _Z;_:‘rl)’m
s=0

= Z 05, 70l _Z;:I)’m' (63)
5=0

O

It is our goal to stay conceptionally as close as possibleh# a@nalysis of classical
Markov chains|[47], so we can make use of the geometric mchat the classical approach
provides. We therefore proceed to introduce a set of sedakhnonical paths. Motivated
by propositior ®, the form of the canonical paths for thismuen problem becomes clear.
It is our goal to span a suitable linear combination of basiments| a)~, and|a"), with
appropriately chosen phases by a subset of the vefters),, },czas nezzv. A canonical
path then corresponds to a suitable choice of intermediatessthat connects the first
configuration given bya).,, to the final configurationa”)., .

It is important to differentiate between the different kénaf paths here. The small latin
lettersa € Z2!, label the syndromes that stem from the generatogs iwhereas the/, n €
73" label the Pauli operators that give rise to particular sgnuse(v), e(n). Since the
phased9, ., = 1 in propositiori 9 are needed we need to keep track of both thdreynes,
as well as the corresponding Pauli operator that genetatas tWe will therefore distinguish
between simple Pauli paths, which build up a particular Rau#rator by applying single
qubit Pauli operators and Pauli operators, which are ddesgh syndrome values.

Definition 10 We introduce new labels, 1), wherea € Z3! denotes a syndrome of the code
G andn € 732N a Pauli matrix. We define the following:

1. APauli path 7 is a sequence of single qubit Pauli operators labeleddy},—1.. .7 C
Wi, so thaty = @, o;. We denote by, = ®!_, o; the partially constructed Pauli
operator at steg € {0, 1,...,T} of the path. We defing = (0,0)".

2. Acanonical path or dressed Pauli path, frorfu, 0) — (a”, ) is constructed for every
syndrome: in G and any Paulip from a Pauli pathyj as the sequence of pairs
ﬁa = [(aa O)a (aﬁlaﬁl)a AR (aﬁTilaﬁT—l% (an’ n)} . (64)

The length of the canonical path is defined|hy] = T. The set of canonical paths
that uniquely connects all paired labgls, 0) — (a”, 1) is denoted by'.

3. Furthermore, a subsequent pair of labgls= [(a¢,¢), (a$®*, ¢ @ a)], which only

differs by a single qubit Pauli € W1 is called anedge We denote by (¢) C T, the
subset of canonical pathig, that contain the edgé.

Since, every Pauli matrix () can be decomposed into at m@étsingle qubit Pauli’s the
different «; can be determined easily. However, what is not directly obsiis the order
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by which the single qubit Pauli's are applied. It turns oufant, that this order matters in
the derivation of good bounds as we will see in the subseastion. This particular order
strongly depends on the particular code that is investibjaterder to obtain the best possible
bound admissible by our aproach. With these paths, we carstate/the upper bound on the
support number.

Theorem 11 The support number for the matrix palr( ) with a choice of canonical
pathsI' is bounded by

T < max Z N @™ (a8))pac Z PaPan - (65)

£€fia o €L(E)

The maximum is take over all syndrome - Pauli laljelst) and we denote bé € i, the
sum over all edges = [(af, €), (a*®“, ¢ @ )] that are crossed in the canonical path.

PrROOF Recall thatr = max,,| 7,,, due to the decompositiofi = @&, andV =
69[70])9%. We therefore only need to consider the support numbgefor every individual
coset of the paiffw 1970. The matricest70 andEA% can be broughtinto a particularly simple
form which bears some resemblance to that of a graph Lapl{¢d. The form is, however,
differentin that both matrices have positive as well as tiegaff diagonals which stem from
the phase$,, ., = +1 in both [39) and[(50). Nevertheless the matrices can beecklata
sum of rank one projectors. Consider first

])’Yo = 2N Z Z PaPan ( |’Yo - 9777'YO| a)(an |’Yo)
= 2_N Z Z Papar| =) (=2 lyos (66)
n a

which follows by direct calculation.

Theév0 can only be brought into this form for particular cosets,athare related to Pauli
operatorsy, that have a vanishing syndrome. These Paulis corresponpei@iors in the
centerCp,, (S). For these cosets we havéy,) = 0 so thatw®(a) = w*(a™) and the
matrices in[(3PB) simplify to

£ =D D (W (@)pal =2)(=5 hno- (67)

acWy a

This is not the case in general, however. When we considatedsr whiche(vyy) # 0,
we naturally have that there exist pairs of Bohr frequenfuesvhich w®(a) # w*(a™) so
thath%,~, = 0. However, it is still possible to bound these cosets at theelege of a factor
of four by the expressiofi (67). Consider the basis,,, | a®),, so that we can express the
symmetrization of eqn[{39),

1
1 ~ A 9 h +ha a )pa _hga panﬁ
2 (530 (a) + 530(aa)) _ 1= e X oo (68)
2 2 _haaWO paeaﬂ’o 2 (hgo‘a"‘ + hg"‘VO a0 ) Pa~

as a simple two dimensional matrix. In the particular casenew®(a) = w(a), we have
thathg g0 = hae = havo ,av = h*(w*(a)) and the syndrome(y,) does not contribute so
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that we have again that (é,?o (a) + 330 (ao‘)) = h*(w*(a))pal =5)(=< |1, When, how-
ever,w®(a) # w*(a?), we can find the bound

%(é’?o(a)'i'é?o(aa)) 1 (ha + hgrav) pal a)(a |y

1
+ 7 (Bage + hzamw) pan| a®)(a® |5,

1 a o
> Zhaapa|a)(a|'m + ha"‘a"‘pao‘|a )(CL |’YO
> haapa| _g)(_g |V0' (69)

The first inequality is obtained by dropping the positive memsh2, ,, andhlay oy The
final inequality follows from the KMS condition since’,p, = hia,«pe~ and the trivial

bound|a)(a |y, +|a®)(a® |5 = [ =5) (=G |-

Thus, we have the following semi-definite inequality for Dieichlet matrix

= > Z ~h*(w(@))pal —2) (=S |- (70)

acWy a

It turns out that due to the very similar form of the matriciéss in fact simpler to bound
the constant for the matrix pairf’ andV.,,. This bound is a natural upper bound to

, .
T = Tvo» SINCE We have that

OSTE’ — Vs

Yo "0
= T = Voo = 7, (€10 = &) S 760 = Vi (71)
The last inequality follows from the previously derived n‘zhktaté70 — é;o > 0. We will

proceed to bound only! for the matrix pairégo and f)%, sincer  gives rise to a valid
lower bound to the spectral gap.

The matriceséf;0 andV,, are now in an almost identical form. The central structural
difference is that the sum iﬁ’w is taken only over all single qubit Pauli operatars W1,

whereas fonA)W we need to sum over the full algebra. It is now tempting to fdgan edge
with the transition of syndromes — a“ for every vector] —%),,. However, recall that it
is necessary to keep track of the phaggs,, = +1 in propositior 9. To this end we seek
to construct a factorization that allows to distinguish dligerent phases. We introduce an
additional sum over the full Pauli algebgac 72", so that

N 1 A « a

€, = w2 &) where, & (a)= Y Y - 0 @ (@) | 5) (< b
a ¢€Z2N a€W1

N 1 N A 1

V’YO = 4—NZV,YO((L) Where, V’Yo(a): Z 2_Npa¢pa‘?”|_2¢)(_2¢ |v0- (72)
a o,n€LIN

With this, we consider the bound,, < max, 7 (a), wherer! (a )5’ (a ) =V, (a) > 0. To
find upper bounds te,, (), we construct a factorization as stated in IenEr}na 5 and apply t
norm bound in lemm@l 6.

We introduce a new orthonormal auxiliary basis spannef| by 1)} with (¢, 1| 8,k ) =
84,301, for every pairp, u € Z3N.



19

Lemma 12 For £’ (a) and V,(a) as above, we can find a factorization into the triple
[A,(a), By(a), W,(a)], subject to a chosen set of canonical paths= {7,}. The matri-
ces are given by

Ayla) = Y Z\/ (w*(a?))pas | =5 )v (P p @ | (73)

¢€Z2N aceW;

By(a) = Y \/2Npawpav| ) (0 @l

p,neZ3N

[fla| -1
4pa<ppaw _ —
W’Yo(a) = E E 2Nh (W1 (a7 )) paems eﬁt,w |90€B77t590@77t+1)(90590@77|5
pmez3N =0

where of course, , ; = 7; ® a41.

PROOF. We immediately have by direct computation théf, (a) A, (a)" = é;o (a) and
B,,(a)B,,(a)’ =V, (a). Moreover, we have that

\nal 1
Ay, (G)W’Yo (a) = \/ 2N 5N Pa¥ Paen 6‘77”% | Zt;j;tl o(p o ® 77|

wnéZzN t=0

[fa|—1
> /3 S Puspae O, 0 | —oi5 )0 | (220 @7

pnenmN t=0
= > /3 e PasPasn | =2 a9, 9 @ 1| = Boy(a). (74)
o,neL3N

The final equality is due to the decomposition into canonjedhs and propositidd 9. O

Let us now apply the norm bound of lemfra 61%4,, («) as given in lemm&a12, in order to
obtain an upper bound to,, (a) To do so we must first compute the norm of the row vectors
of W,, (a). That is we need to fix the transitigp & &, ¢ ® £ ® «), for which we can read of
directly

20 '
| W(ppt, w@f@a)> £00 Z V Pa¥ Paen | P, D 77)' (75)

2Nh a(q9€ © 3
\/ (W (a%%))pyee (p—®n)>E

The constrained sum over pais — ¢ 1) 2 ¢, is taken to read, that there exists a Pauli
path7,, which transformsp into ¢ & n so that the list of Pauli operators that are traversed
contains the two subsequent Pauli configuratipase, ¢ © £ @ «. It is now easy to compute
the norm bound simply by squaring the individual summands.

!/

4
2 _
||| w(w@-f-,w@f@a)”b - 2Nh(wa(a¢§))pa<p5 Z ) Pa¥ Paen - (76)
(p—p®n)>¢

If we apply the norm bound in lemnfa 6, we have that the comuliii@, ,, # 0 in the sum
means that we have to sum the nofh® ¢ wacaa))|3 Over all transitions that are crossed
when transitioning from a initial Paul to ¢ @ w, in the Pauli pathz that maximizes this
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expression. Itis of course also possible to relabel thess sduterms of the edges and dressed
Pauli Paths as defined in definition 10. So that we write

W..(a)]|*> < max w IE:
W@l < max 37 Nuoc oocon)l
56[14@
4
= max Pav Pasn - (77)
(p.9®n) Z IN h(we(a%€))pL® Z it
E€fqe Nae €L ()

Now, we furthermore have thaf < max, ||W,,(a)||* and we observe that the only depen-
dence on the initial Pauli matrix is through the syndrome”, we can drop the dependence
and consider any path starting from the identity= 0. Hence, we just absorb the maximiza-
tion overa and consider now only dressed Pauli paths. We observe hiadioundr,, does
not depend on the coset, so that for any cdsgtwe have thatr < 7, so that we are left
with the final bound as stated in the theorem. O

IV. THE SPECTRAL GAP AND THE ENERGY BARRIER

In TheoreniIllL we have worked towards finding a bound ahat is formally similar to
the bound obtained from the canonical paths lemma for dakMarkov processes. This
allows us to follow an approach first pioneered by Jerrum andl&r [34] to evaluate this
lower bound. In the theorem, we have left the particular chéar the set of canonical paths
' = {f,}, c.f. definiton[ID, we want to work with open. It turns out tlia¢ particular
choice of pathgj, strongly depends on the stabilizer HamiltoniEnwe try to investigate.
The wrong choice of paths can lead to an exponentially wanserd bound when compared
to reasonable choice, c.f. sectlon IV A.

A canonical path connects an initial syndromé a syndrome:” = a @ e(n), by con-
structing a Pauli operatat(n) from single qubit Pauli matrices(«), with a € W;. Hence,
we need to agree on a path for every syndranaed any Pauliy. As we will see, the choice
of the decomposition of) into single qubit Pauli§’; does not depend on the initial syn-
dromea and we will use the same decompositiorvdior different initial syndromes. So
the construction reduces to finding good Pauli paths thatectrthe identityj, = (0,0)" to
the final Paulij; | = n. Thatis, we only need to specify for eveyye 73N a specific order
in which the sing‘e qubit Pauli’'s are applied. An importaahstraint in the construction of
any pathy, is that this path is free from loops, i.e. it does not conthingame edgetwice.
Note that we do not refer to geometric loops in the partiatigstructed Pauli operators,
but to loops on the Cayley graph associated Wit§™ , ;). It is always possible to find
paths that are free of loops by following the most trivial dieposition of N-qubit Paulis
into their single qubit components. Moreover, as will beeottear it is obvious that such
loops do not improve the bounds.

We are now in the position to define the central quantity tledigmines the lower bound
to the spectral gap for every commuting Pauli Hamiltoniahe §eneralized energy barrier
is very similar to the energy barrier for logical operatosdafined inl[16]. However, in our
definition we do not assume that we consider a stabilizer @dttelogical operators. Any
commuting Pauli Hamiltonian can be analyzed this way.

Definition 13 Given a commuting Pauli HamiltoniaH as in eqn.[{ll), with generator sét
that can be used to define the excitatiep&;) for somen € Z2V, c.f. eqnl(®), we define:
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1. For anyn with a Pauli path, = &!_,a, theenergy costof the Paulin as

M

&(n) = minmax Y 2|Ji|ex (7, )ex(n). (78)
{my t 1

Heree;, = e; @ 1 denotes the conjugation of the bit value. In this syynande;, are
interpreted as integers. The minimum is taken over all fssihoices of Pauli paths
for 7.

2. Furthermore, we define thgeneralized energy barrier as the maximum over all
Pauli's n of the energy cost

€= nIélZa%)?V €(n). (79)

The definition of the generalized energy barrier differsrrine energy barrier of a logical
Pauli operator as given in [16] in two aspects. First thegyeost differs by the factos, ()
in the summation (48). The essential effect of these fadsois remove any contribution to
the barrier that originate from the final Pauli operajatself. Therefore the only summands
that contribute t&(n) come from violations of generatogs which are not already violated
by n by itself. That is we only care about the intermediate enagyfigurations in the
construction of this Pauli. The energy caéy) is therefore a meaningful quantity everif
is not a logical operator. Furthermore, the generalizedggnearriere contains a maximum
over all Pauli operators, as opposed to a minimum over lbgjgarators. This may be seen
as the origin of why the generalized energy barrier will tem@ick up on the largest energy
barrier of all the logical operator, as we will see in the epéasection IV A.

In essence it is this energy barrier that determines thecehof the canonical paths
I' = {#,} through the minimum over all Pauli patfg} in egn[Z8. That is, we choose
T" such that for every) the energy cost is minimized. Since we have to do so for every
Pauli, this already fixeF. For practical purposes, however, we need to provide a etecr
instruction for generating the Pauli paghin order to evaluaté. Any sub optimal choice,
will only lead to an upper bouri@ > € to the true generalized energy barrier. This will turn
out to only lower our bound on the spectral gap.

a. Convenientinterpretation of the generalized energyibar A concrete example for
the evaluation is provided in sectibn IV A. In general, we caarpret the barrier as follows:
Suppose, we are given the set of commuting Pauli opergtors{g;}.—1,.. v that define
the HamiltonianH . If we want to evaluaté(n) for some particulan we consider a reduced
subset of generators

G, ={9€9|lg.om1 =0}, (80)

which is obtained by removing all generatggsfrom the generating set that anti commute
with the Pauli operatos(n). If the original set generated a stabilizer grafip= (G), we
can now consider the reduced subgrdip= (G, ), for which o(n) behaves like a logical
operator, i.e. by constructian(n) € C(S,)\S,. The energy cost(n) can then be interpreted
as the conventional energy barrier/[16] of the logical opmera(n) of the new codes,,. This

of course immediately implies, that if was a logical operator for the original stabilizer
groupsS, thene(n) is just the conventional energy barrier for this particldeyical operator.
The conventional energy barrier for all the logical opersitierefore always constitutes a
lower bound to the generalized energy barrier. Furthermaehen any local defect can be
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grown into a logical operator of a stabilizer coféy applying single qubit Pauli operators
and in turn any Pauli operator can be decomposed into a proflatusters of such excita-
tions,e correspondsto the largest energy barrier of any of the dealdogical operators [49].

We proceed to give a bound eras stated in theoremIl 1. By applying a trick first pioneered
by Jerrum and Sinclait [34], we will see that the generaligedrgy barrier from definition

will assume the central role. Let us consider a single €dge|(a¢, ), (a$®*, ¢ & a)],
c.f. definition[I0. We can define an injective map from the $etamonical path§'(¢) that
contain this edge into the full Pauli group.

O : T(¢) — 72N, (81)

The action of the map is defined as follows. For a pgtke I'(¢), the resulting Pauli operator
¢ (1)q) is simply given by

(I)f (ﬁa) =nd¢ (82)

One can see that this map is injective by constructing ivelise on the sdt(¢). To this end
it is important that every edge occurs only once in a cand®ath in order to avoid double
counting the same path. For every Pauli operator in the imbthe mapy = ®¢(7,) and the
information about the transitiofy we can construct the tuple, n) of the canonical path,.
Given(f, ) find the Paulip simply byn = ¢ @ £. Moreover, giveré we can immediately
reconstruct the syndromefrom a = af @ e(£). Every canonical path il is uniquely
determined through the initial syndromend the final Paulij. This uniquely identifies the
canonical pathj, € I'(¢).

Proposition 14 For all pairs (a,7) and edges = [(a$, ), (a®*, ¢ & )] contained in the
canonical pathyj,, the following inequality holds:

PacP eia) = € P papan. (83)

PROOF. For some edgé, we are able to relate the syndrome the initial configuration
andat at the edge by a = af & e(€). Moreover, using the particular form of the mép,
from eqn. [B2), we can relate the final Pauli operataf the path and the Pauli operator
at the edge throughn @ ¢ = ®.(7,). Recall that the Gibbs weight is simply given by
pa = Z 1exp(—pe,) as was derived in Eqnl_(lL4). For the inequalifyl(83) to holdneed

to find some constant, say, so that for all pathg, € T" and traversed edgéswe have that
exp(—B(€ae + € 0c)))e?*™ > eap(—B(eq + €an)). Comparing the exponents, we need to
find a constant» such that

2m > €,¢(ha) T €q¢ — €a — €qn. (84)

For any edgé and any canonical patf that traverse it we can evaluabe (7, ) as discussed
in the previous paragraph so that we can write

€qn®e T €46 — € — €gn

M
= Z Jk(_l)ak (1 + (_1)6k(77) _ (_1)%@@5)(_1)%(5))
k=1

(1 - (_1)%(6)) (1 + (—1)6k<’7>) . (85)

N —
N —

M
=2 2 (-1)™
k=1
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We need to look for the assignment that maximizes this espesWe need to choose the
ay such that every summand is positive. Furthermore we simale hthat by interpreting
the syndromes & 1 valued integers that

% (1-(-1)+@) =ex(e) and % (1+ (1)) =2, (86)
Since#, traverse the edgé, we have that = 7, for some valuet. Also, recall that
this bound holds for any choice of Pauli patfig} that traverse the edge.. Hence
minimizing over all possible choices of paths will yield amgroved constante(n) =
min ) max; Zkle 2| Jx|ex (7, )er(n). Moreover, we require this to hold for all edges and
all Pauli operators. We therefore need to cho@sasm = € = max, €(n), which results in
the bound as stated in the proposition. O

This proposition provides the important inequality thdates the generalized energy bar-
rier to the bound from theorelm111 and thus in turn to the spkgép of the Davies generator.
We will first consider an evaluation of the bound in theofentt is very close to the proof
of Ref. [34] and its exposition in Ref. [31].

Theorem 15 For any commuting Pauli Hamiltonia#l, eqn. [[1), the spectral gap of the
Davies generatorL s, c.f. eqn[(Ib), with weight one Pauli coupling§ is bounded by

*

h
A2 g exp(~20), (87)

whereg, denotes the generalized energy barrier define@in (79) elerdenotes the length
of the largest path in Pauli space aid = min,«(q) h*(w*(a)) is the smallest transition

rate (I8).

PROOFR We proceed to evaluate the bound in theorei 1kfaDbserve that we can bound
the first sum in the theorem as follows:

T < I(I;%{ Inax —2Nh Z PaPan (88)

E€fq Waer(f)

by choosing the largest possible edgfor any canonical path. Moreover, we trivially have
thatmax, ) Zéeﬂa < n*, wheren* denotes the length of the largest canonical path, so that

T < m?X m Z PaPan- (89)
M. €T (E)

If we defineh* as given in the theorem and use edn.l (83), so that we have fuathk that
use this edge that’ > h* ' p o) > papar (B(w®(at))p.e) !, we can bound

T<4Z P max Z Np ®e(ia) - (90)
naer(ﬁ)

Furthermore, the mag, is injective for every edgé, thus the sum over all canonical paths
passing through edgecan at most be

1 1
Z o Prem) < Z N Lo (91)

iy €T (€) nezz™
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Given the Gibbs state = ), p,P(a), we have that the sum

1
Y. gxpar =1, (92)

nez3N

evaluates to unity for all syndromes This follows from the trace identityr [p] 1 =
2=N > nezz~ o(n)po(n). Sincetr [p] = 1, we have that

1= o S otpotn) = - spun Pla). (93)

a,n

Now since we sum ovey; in the full Pauli group, any error syndromecan be attained.
Hence one can choose somwith E7; = a and shift the index accordingly to obtain

1= (Z %pw) > P(a). (94)

Since we have thdt , P(a) = 1, we are left with Eqn.[(92). Therefore we can always upper
bound the maximum by unity and obtain the final bound, so that

*

7 < 4% exp(28). (95)
Recall that the support number is related to the spectrabbgap= A\~! which yields the
lower bound as stated in the theorem. O

The three constants which need to be evaluated for the baertiemaximal path length
n*, the smallest transition rate' and most importantly the generalized energy bagidihe
maximal path length will depend on the choicelbbut behaves in general @5 = O(N).
The smallest transition rate" = min,« ) h*(w*(a)) is dependent on the bath the system
Hamiltonian couples to. In our analysis, however, we onlgcha few properties of the
transition rates to derive the bound. First, we need thaetHanctions satisfy the KMS
condition [I8). Second, we need that the lowest rate is dip®ssystem size independent,
constant* > 0. We will assume thak* ~ e~#2, whereA denotes the largest eigenvalue
difference of H that can be generated by a weight one Pauli, to evaluate tinedboFor
all local modelsA is bounded by a constant. The bound on the gap thereforesddede
A > O(N~1e?5%) in the system sizéV. So if is a constant in the system size, this lower
bound decays a& —!. Recall that the mixing time bound we can obtain from thedrac
norm bound in theoref 1 already scaleg,as, < O(NA~1) the additional factorV does
not appear to be significant for the gualitative behaviorndte together with theorem115
the final bound on the mixing time i5,;, < O (N2¢**). Note that in this bound, the
only Hamiltonian dependent quantity is the generalizedgnbarrierée. Moreover, we see
that this bound is very similar to the phenomenological &nias lawt,,..,, ~ e?F5. It is
therefore the generalized energy barrier that determirtesther the systems thermalizes
rapidly. That is whether the thermalization time scales &snadegree polynomial in the
system size, as opposed to a slow thermalization which isatetl by an exponential (or
possibly a very high degree polynomial) scaling in the syst&ze.

1. A system size independent lower bound to the spectral gap:

It turns out that under particular circumstances, it is fldesto remove theO(N 1)
dependence in the lower bound of theorflem 11 altogether. [€hifs to a constant lower
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bound on the spectral gap of the Davies generator, wheneygeneralized energy barrier

is constant. In fact, we are convinced that fiie! prefactor is an artifact of how the lower
bound was evaluated for the general bound in thegrdm 15.iairgy the limit3 — 0, we
observe that the bound{87) always decays as O(N 1) for all H. However, we know
[50] that the spectral gap afs has to be constant in the infinite temperature limit for all
commuting Hamilonians. The origin of this mild dependeneé\bbecomes clear, when we
take a closer look at eqri_(88). There, every summand in igaat bound was bounded by
the largest weight over all edgésilf this step is not performed we obtain a slightly different
bound.

Let us apply the boune®1* ' p_s.(s0) > papan (h(w(af))pae) 1, which follows from
eqn. [88), directly to eqn[[{87) in theorém 15. We then have

4 62,82
T D X s =9
E€fia fa €L (E)
Recall, that the generalized energy bartievas defined as the maximum over all edges, so
it is a model dependent constant and can be taken out of thelstras define the parameter

C(B) = max Z Z Pooe(ia) - (97)

(@) ¢ £€fIq Na €T ()

If one can show, that this parameter is in fact system sizegaddent, we obtain a lower
bound to the spectral gap that only depends on the systerthsimeyhe. For all Hamiltonians
H, we can always state a lower bound to the spectral gap thatgs by

h* -
A > e 2, 98
REYeIr) 9
To obtain a constant bound oy one not only needs to check the valuepbut also has to

evaluateC'(3). Note, thatC'(3) depends on both, the Hamiltonian thoyghand the choice
of canonical path§' due to the sum ovej, € I'(¢).

In the limit 3 — 0 the paramete€(3) is easy to evaluate, because we have ¢iét = 1
and allp, = 2~V. We can therefore choose a set of canonical pEtist is oblivious to the
excitations of the Hamiltonia®/ and follows a particularly simple protocol:

Assign a fixed order to all the qubits in the Hamiltonidh and apply for all Pauli
operatorsy, the single qubit operators € W; following this fixed order. Any Pauli is
build in¢ = 1,..., N steps, and at the edge= [(a",7,_,), (a"*,T,)] we have that
t - single qubit Pauli's are determined already foy We can therefore trivially bound
27N Y er(e) Pasetiar < 47F, sincep o = 277 and we only have at most"

undetermined Pauli matrices. Hen€g0) < Zfllzrt < 1/3 is bounded by a simple
geometric series for alla, 1) so that eqn.[(38) reduces to the constant 3/4 h*. This
bound is consistent with constant gap bound obtained in §&d] holds for all commuting
Pauli Hamiltonians.

In light of theoren{Ib, it is clear that we always have that C(8) < n*, because for
every edge we can bound the the summand by unity. If we aresVmvable to bound every
summand by some exponential, we have that the sum overdliti” (5) can be bounded by
a constant. In the proof of theoréml 15 we have shownthat 2=~ Zneng exp(—SBean).

The evaluation of”(3) bears some resemblance to the evaluation of the expecteatioas
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in Peierls argument [51]. If we writ€’(5) = max, Zéeﬂa C¢, and we can estimate in
analogy to Peierls argument '

1 .
Cr=ox 3 pesccin <cple Pl with e <1, (99)
Na €L (E)

the argument made in the previous paragraph for the imit 0 generalizes. This property,
however, depends both on the Hamiltonfdrand the set of canonical pathsand one would
assume that it has to be checked for evBrgn a case by case basis.

If we are allowed to make some assumptions on the form of therdaal paths, more
general results can be proved, and we can improve the boonttfreorenti_I5 so that it
only depends om. We consider a set of canonical pafhg with the property that for all
fla € T'1 every qubit is addressed only once. we find for every) € Z3" a decomposition
n = ®ierq; WhereA is a labeling of all qubits.

Note that the restriction ofi; may in many cases lead to a very poor bound as can be
seen in the toric code example provided in the next se@®mhere Pauli paths are needed
that can be of lengtBN and traverse every single site twice in order to obtain a temos
energy barrier.

Theorem 16 For any commuting Pauli Hamiltonia#/, eqn. [(1), for which the generalized
energy barriere, defined in[(7B), can be evaluated with canonical pdthsthat address
every qubit only once, the spectral gap of the Davies genermbounded by

*

A > hz exp(—20 €). (100)

PrROOR The argument is based on a simple extension of he proof givéreoreni 1b. As
was shown in the previous paragraph, we can apply €gh. 88yl to eqn.[(8F7) in theorem
[15, so that

4 g 1
Tgcw)ﬁe—me with, C(8) =max Y — > pocoin. (101)

1) e © Aeel(©)

Now, recall that we can write the partial trace over a subiset supgH) astry [A] =
271137, csuppay o(m)Aa(n). For anyA we naturally have thattry [A] = Axe ® Lx.
Furthermore, ifA > 0 is positive semi - definite, we have the inequatity4] 1 > A as an
operator inequality. Since we have thafA] 1 = try. o try [A], we can state the inequality
Z1 = trexp(—BH)]1 > try [exp(—(BH)|. Both matrices are diagonal in the same basis,
given by the projector®(a), and we have for all eigenvalues labeleddihe inequality

1 1
_ = —Begn - —Bean
Z = 5N Z e > ST Z e . (102)
nezs™ neSUPRX)
This implies in particular, that for some chosen subset bitgut’, we have that

1 1
v D Pe < sy (103)
neSUppA)

Now, we consider the canonical pathas defined in the theorem, where every qubit is only
addressed only once in each canonical path. We observdottetery pathj, € I'(¢) that
uses the edge= [(a%, ¢), (a*®“, £ ® )], the single Pauli operator supported on sig@po)
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are already determined by the edge. Hence, all paths cardifdyon the remaining qubits.
We can therefore bound

1 1 _ .
¥ 2 Paocom Sy D, par <27 PURREGOL (104)
7a€D(€) nESUPPE®Q)®

We are therefore again left with a geometric series68) = > | 2-* < 1. Hence, from
this and eqn[(101) the inequalify (100) follows. O

A. Examples

We consider two simple examples, for which bounds on thetsgdegap have been ob-
tained previously [11, 50]. These examples are choserustifite how the constants in both
theoreni Ib and theordml16 can be evaluated.

1. The toric code

To illustrate the bound, let us consider the toric code Hamian [15] on a square lattice
with periodic boundary conditions. For an illustration saer Fig.[1 (a). Every link of the
square lattice is fitted with a spin/2 degree of freedom with Hilbert spaé¢, = C2. The
Hamiltonian can be expressed as a sum over plaqugt}eand a sum over the vertices of the

lattice {v}.
H=-7YT[x:-7>_[]% (105)

p i€p v 1€V

The plaquette terms, marked as (grey) rhombi in Elg. 1 (& garen as the product of four
X operatorsﬂiep X,;. Whereas the vertex terms indicated by (blue) crosses aee gy the
product of[ [, ., Z;. These multi qubit Pauli operators comprise the generating.
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FIG. 1: (color online) Figure (a) depicts the toric codeitatt where the horizontal (white) qubits as
well as the vertical (black) qubits reside on the edges ofatiee. Periodic boundary conditions are
assumed. The plaquette term labeledvtare depicted by (grey) rhombi, whereas the vertex operators
are depicted by (blue) crosses labeled by (red) Pauli operator comprising of local, Y, Z operators

can be decomposed according to th&irc.f. figure (b), andX contribution, figure (c). A Pauly’
contributes to bothX and Z.

Let us now discuss of how to evaluate the bound stated in ¢ned®. We first discuss
the estimation o(n) as given in eqn.[{48) for an example Pauli operator as shoyred)
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letters on the lattice in FidJ1(a). It will then become clézat the obtained bound @ifn)
has to hold in fact for ali.

We need to find a suitable set of canonical pdthe evaluate the bound. As discussed
in section TV, we only need to construct the Pauli paths tket $rom identity, since the
construction ofj, is independent of the initial syndrome This corresponds to choosing
a particular order in which single qubit Pauli operatorsapwplied for everyN-qubit Pauli.
Note, that the bound is stated in terms of the optimal chofcpaths. Any other set of
paths will also lead to a valid bound. However, this sub optiohoice ofl" will naturally
yield a looser bound on the spectral gap. Given the definitiog(n) in (78), we need to
sum the syndromes, i.e. number of generatorg that anti commute withy. This sum is
modified by factorg, (), which sets the contributions to zero at whighlready generated
an excitation. As discussed in sectlon IV paragraph (a), veeefore need to remove the
generators frong; in the sum that are already violated by This is illustrated in Fid11
by the removed (highlighted) rhombi in figure (b) and the @aklgrey) vertices in figure
(c). The remaining plaquette and vertex terms comprise ddeiaed generating S€t,.

A simple interpretation is now thagtbehaves as a 'logical’ operator for the modified cége

Constructing the canonical patis The toric code is a CSS code, which means that the
Pauli X andZ contributions occur only in different summands. Since Xh#ype stabilizers
only anti commute with theZ contribution of the Pauly and conversely thg-type stabilizers
only anti commute with theX contribution, we will split up theX and Z factors in the
construction of the paths in. That is, we write for any) = n* @ n* and build upZ factors
according to Fid.11 (b) first before building up aiyfactors, c.f. FigllL(c). Naturally we only
have to evaluate thB-Paulis on theX -stabilizer and vice versa . A local Patljis depicted
as first applyingX; and then applyingZ; in accordance witi1, 1); = (1,0); @ (0,1);. We
thus have to cover the lattice twice, but each subset ofiztels can be treated independently.
Moreover, we can decompose any general Pauli error of elfkigipe orZ-type into products
one dimensional strings. We will now discuss the form of ¢h&tsings.

We consider the example Pauli operator in [Elp. 1. Let us firdy focus on theZ -
contribution of the Pauli, c.f. Figl1(b). We can first travead| horizontal lines only using the
white qubits and the vertical lines addressing only thelbtpgits. For theX - contribution
in Fig[dl(a) the role of black and white qubits is reversed.shaay plaquette violation are
only generated at the end of the string, and these violatianssh, or do not contribute
(sincee(n) = 0), once the string is complete. We observe, that these stdagespond to
minimal error paths of logical Pauli operatorsi[16], and barseen as a pair of excitations,
that once wrapped around the lattice with periodic boundanditions constitute a logical
operator.

In general, one can interpret every violation of the gemesaat the end of a string like
operator as an excitation of the toric code and all thesevidhaial strings of connected-
operators as 'unfinished’ logical operators. The generali Baerator is then a product of
trajectories of these individual excitations. It is welldamn [2], that excitations in the toric
code can be moved without additional energy and the onlyritrtion is at then end of each
string. The largest contribution &) comes from a string that commutes with the stabilizer
group, i.e. is a logical operator, because both ends need totwsidered. It is therefore at
most2.J. Following this procedure we see that this bound has to mofddt for anyn, since
at every step only a single one dimensional trajectory itdhup. Hence, we are left with a
bound given b¥(n) < 2J. for all .

Now, recall that we have to traverse the lattice twice wiik tonstruction, once for th&
Contribution and once for thg Contribution. We therefore have that the longest canonical
paths with our choice df has length;* = 2N. This leads according to theorém] 15 to the
following lower bound\ > 2%e=A47,
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Remark: In the construction of the Pauli operators, we have tracedttdjectories of
individual excitations by applying single qubit Pauli optars. Alternatively we could have
generated many excitations by traversing say all plagtettes horizontally on only a single
white qubit before correcting the error in a second run. Tayg we would have generated
a syndrome that would contribute in the orderRdfto the energy barriet, since we do not
correct for the local excitations which we have created ebtex assume, that the length of the
lattice is L. This would have lead to an exponentially worse lower botnad would behave
as\ > O (L—%e~*PL). This indicates, that a good choicelis important. Our choice of
canonical paths traverses the lattice twice for Pauli dpesahat contairt” contributions.
Hence, we can not apply theoréml 16 to obtain the bound. Wefdrerstick to the more
conservative estimate of theoréni 15.

2. Commuting Pauli spin chain Hamiltonians

We consider commuting Pauli Hamiltonains defined on a grafitat is one-dimensional,
i.e. a circle (PBC) or a line (OBC), c.f. Fid] 2. Examples forck system are for in-
stance the one-dimensional Ising model on a lerdgthpin chain given by the Hamiltonian
H; = —J Zi\;l Z;Zi+1, or the one-dimensional cluster state Hamiltonian , alsoNo
spin -1/2 particlesHe = —J Zf.V:;l Z; 1X;Z;,1 arranged on a line. For both the Ising
model [11] and the cluster State Hamiltonian![42], the Dangenerator has been derived
and lower bounds to the spectral gap were provided. Both deare independent of the
system size. In Ref [50] a relationship between the congfapiof the Davies generator for
all one-dimensional commuting Hamiltonians and the chisteof correlations in the Gibbs
state was established.

XK O e Yo B G e o @ Ol
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FIG. 2: (color online) Sketch of a one dimensional commuffauli Hamiltonian on a liné\. The
one- to four- local interaction terms are given by the dotied on top of the one dimensional graph
A. The picture shows a Pauli operaipin red. The bold Pauli operators correspond to an interniedia
Pauli7, that violateswdg = 3 interaction terms in the Hamiltonian, whereas the lightlRzperators
correspond to the remaining terms that need to be constrémte.

We now show, that a constant gap lower bound for one-dimaakimodels can also be
derived directly from theorefn 16 with a suitable choice afaical pathg". The choice for
I"in a one dimensional system is trivial. We choose to decompusry Pauli operatayinto
single qubit Paulig« € TW/; and apply these single site operators in a fixed order, whitnel
same for every Pauli and canonical for a one-dimensionatéak ( we address every qubit
once going from left to right ). That is we chooge= &;cx«; and construcli, = ®!_; ;.
From the Pauli pathg the canonical pathg, follow immediately. This means that for all
canonical pathg, € T', every qubit is addressed only once, and the maximal patthea
n* = N. Hence, we are meeting all the requirements of thegrém ltBasave can apply the
lower bound\ > h*4~1e—26¢,



30

Let us define thevidth of the generating s&t on A as

wdg = max #{g € g|(i,i+ 1) € supfg)}, (106)
(iyi+1)eA
where the maximum is taken over all edges in the one dimeakioteraction grapt. That
is we define the width as the largest number of generatorsatieajointly supported on a
single edge of the line, c.f. Figl 2.

For open boundary conditions we have for any Pauli operatarith the previously
discussed choice of that e(n) < max;en2) ), |Jrlen(7)er(n) < 2J*wdg, where
J* = maxy |Ji|. Foralli < ¢ the Pauli’ss, andn coincide, and for alf > ¢, we have
that7, acts as the identity. Hence, agll € G that are fully supported on eithéi, ..., ¢}
or{t+1,..., N}, the syndrome complimea@i,(n) or the syndrome itself;,(7,) vanishes.
Hence only the generators that are supported on both itdéesivaultaneously can contribute.
Hence, these operators need to be supported over thgedgel) € A. This number is of
course bounded bwdg. For closed boundary conditions, this scenario occurs ajpwints
along the chain, so that one can see easily that we have(fflaK 4J*wdg. Since these
bounds are independent of the Papive have an upper bound @nWe can state therefore
the following bound for all one-dimensional systems

h* . h* .
AoBc > 1674’8‘] wdg  and ApBCc > 1678[5‘] wdg (107)
We obtain the spectral gap for the one-dimensional Isingehfsxdm wd; = 1 and for the
cluster state Hamiltonian frosvedo = 2.

V. DISCUSSION

We have derived a universal lower bound to the spectral gépeoDavies generator for a
commuting Pauli Hamiltonian that is weakly coupled to a tharheat bath. The bound on
the spectral gap establishes a connection between theefidgaonsidered energy barrier for
stabilizer codes [16] and the thermalization time of theesys This result can be interpreted
as a proof of the phenomenological Arrhenius law, and shbai#sthis law serves in essence
as upper bound to the memory time. The bound on the gap ad #tatieis paper and the
naive life time estimate ~ A~! as assumed by the Arrhenius law differ by a facton\gf
when no further assumptions about the model can be made.tdma@bconstant lower bound
to A, more details about the model are needed. In light of the flaat the mixing time bound
obtained from theorefd 1, already scales,as ~ O(N A1), this additional facto’v seems
insignificant. The crucial conclusion remains unalterglihough the existence of an energy
barrier is not sufficient to establish thermal stability betmemory, it is certainly necessary

It is important to point out, that given the spectral gap amel associated mixing time
bound we can only make statements about the system’s abilitipre classical information.
This means that the system’s ability to reliably store a tjmiaiy have been lost much before
thermalization occurs. The bound is only able to estimagettfermalization time of the
system. A good example for this is the toric code in three disian. A careful analysis of
the generalized energy barrieyields for this model a lower bound to the gap that scales as
A > O(L3e~*AL), when thelV qubits are arranged oné = L x L x L lattice. We see that
this bound predicts a mixing time bond which is exponentidhie system size. However,one
can see, c.f. Ref[5], that the three dimensional toric ded®t a stable quantum memaory.
The exponential mixing time bound given, however, agredis thie observation that the toric
code in three dimension can serve as a stable classical memor

For the types of models considered here, one expects a phaséibn at some finitg,,
at which the gap should become independent of the system Kiie an interesting open
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problem to find a lower bound that is in fact able to reprodinig behavior and indicate a
phase transition at some finite temperature.

The presented approach to bounding the spectral gap of tieédewed quantum mechan-
ical semi-group is very specific to both the Davies generatam the assumption that the
system is described by a stabilizer Hamiltonian. Lower litsuio the spectral gap of more
general Davies generators can only be derived under ssscinaptions on the Hamiltonians
spectrum|[26]. It is never the less conceivable that the @aagr presented here can be ex-
tended to more complicated systems, such as for instanhe @avies generator of quantum
double models [15] or other semi-groups with an interesgirogip structure.
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