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Abstract
This paper presents a new coordinate transformation method for controlling a large 
number of spacecraft moving in elliptical orbits. A new coordinate transformation 
method for phase synchronization of spacecraft in relative elliptical orbits is introduced 
to effectively maintain desired formation patterns. The proposed controller, which 
employs both the adaptive graph Laplacian matrix and the distance-based connectivity 
rule, synchronizes the relative motions of spacecraft with a guaranteed property of 
robustness. A complex time-varying network topology, constructed by the proposed 
controller, relaxes the standard requirement of consensus stability, even permitting 
stabilization on an arbitrary unbalanced graph. A challenging example of reconfiguring 
swarms of spacecraft shows the reliability of the coordinate transformation method and 
the effectiveness of the proposed phase synchronization controller. 

1. Introduction 

Spacecraft formation flying (SFF) has been extensively studied due to its potential 
applications in future space science missions such as stellar interferometry. Despite the 
benefits of SFF, there exist unique challenges in guidance, navigation, and control of 
SFF [1]. This paper focuses on a more challenging application of swarms of formation 
flying spacecraft [2]. The sheer number of spacecraft (1000s) involved in spacecraft 
swarms significantly complicates the formation control problem. 

The objective of this paper is to introduce a new coordinate transformation method as 
well as a novel formation controller for swarms of spacecraft. There have been a variety 
of studies on SFF. Surveys of SFF guidance and control are given by [3, 4]. Various 
architectures for SFF were introduced in [5]. A leader-follower system has been the 
most popular method [6], and several types of decentralized coordinate-based control 
have also been extensively studied [7, 8]. Various linear and nonlinear control methods 
have been proposed (e.g., integrator backstepping control [9], passivity-based control 
[10], output feedback [11], adaptive control [12]). Based on [13], a combined controller 
for attitude and orbital motions of SFF was introduced in [8], which utilizes phase 
synchronization in circular motions. Exact nonlinear dynamics and cooperative control 
for SFF based on the adaptive Graph Laplacians and distance-based connectivity were 
introduced in [14] under the assumption that each spacecraft knows its desired 
trajectory explicitly. 
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We can summarize the main contributions of the paper as follows. First, the proposed 
coordinate transformation method and the phase angle shift method facilitate phase 
angle shifts in any elliptical orbits in three-dimensional (3D) space so that the motions of 
spacecraft in elliptical orbits can be described by the combination of circular and 
sinusoidal motions in a new coordinate system. 
 
Second, the proposed phase synchronization controller, which is proven to be 
exponentially stabilizing the spacecraft trajectories, actively attempts to find time-varying 
tracking and diffusive coupling gains by means of the adaptive graph Laplacians and 
the distance-based connectivity method [14]. This way, a large number of spacecraft in 
a swarm of spacecraft can be effectively synchronized. The phase synchronization 
controller eliminates the need for having a balanced graph (i.e., the number of inputs for 
coupling is the same as that of outputs) for synchronization [15].  
 
We investigate the effectiveness of the proposed methods by using a swarm of 
spacecraft rotating and reconfiguring in multiple concentric relative orbits. 
 
The organization of this paper is as follows: In Section 3, the problem statement is 
presented. In Section 4, the new coordinate transformation method and the phase angle 
shift method are introduced. The proposed phase synchronization control law is given in 
Section 5. In Section 6, results of simulation are discussed. Finally, concluding remarks 
are given in Section 7. 
 
3. Problem Statement 
 

Suppose that there is a swarm of spacecraft consisting of   spacecraft whose individual 
dynamic model ( th agent (     )) is given by the Euler-Lagrangian (EL) formulation  
 

( ) ( , ) ( ) ( , )j j j j j j j j j j j j j   M q q C q q q G q τ D q q                            (1) 

 
where      ,            ,        ̇       ,          ,      , and        ̇   

   denote the states, the inertia matrix, the Coriolis/centrifugal forces, the gravitational 
force, the control input, and the non-conservative forces, respectively. Note that 

       ̇   is chosen such that  ̇ (  )          ̇   is skew-symmetric, which plays a 

critical role in stability proofs in this paper. 
Note that the exact nonlinear dynamic models for chief and deputy spacecraft which 
include 

2J  perturbation and atmospheric drag as disturbances can be found in [17]. 

 
We want to design a formation control and phase synchronization controller such that 
the spacecraft in a swarm can maintain their positions with bounded errors with respect 
to the desired trajectories in multiple concentric ellipses. In order to construct the 
desired trajectories, it is assumed that there is a pre-designated orbit leader spacecraft, 
which can be either a physical spacecraft or a virtual one. The orbit leader spacecraft is 
used for more systematic handling of the network (e.g., formation keeping, 
reconfiguration, etc.). Figure 1 shows two frames (the Earth Centered Inertial (ECI) and 



 

the Local Vertical and Local Horizontal (LVLH) frames) and a swarm of spacecraft 
moving in multiple concentric ellipses. 
 

 
 

Fig. 1  Coordinate systems and spacecraft swarm in multiple concentric orbits 

 
4. Periodic Relative Orbits (PROs)  
 
In this paper, we consider periodic motions for the desired trajectory. The periodic 
motions, specifically in the LVLH frame, are called PROs. The PROs can be obtained 
from the solutions of the HCW equation [16]: 
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where [ ]T

d d d dq x y z  denotes the relative motion of the desired trajectory and 0x , 0y , 

and 0z  denote the initial values of dx , dy , dz  that can be chosen arbitrarily. The time-

varying variable 3/n a  is the mean motion of the chief spacecraft. 

In this paper, we assume that PROs are concentric with (0, 0) , the center of the LVLH 

frame. Therefore, the conditions for PROs without a drift in the LVLH frame are                                                   

0 02y nx   and 0 0 / 2x ny . By substituting the two condtions into Eq. (3), the periodic 

solutions without a drift in the LVLH frame can be expressed in a compact form as 
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where 2 2
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0e e    , nt  , 

0

1

0 0 0tan ((3 2 ) / )e nx y x   , 2 2

max 0 0( / )z z z n  , 

0z z    , and 
0

1

0 0tan ( / )z nz z  , respectively.  

Note that the solutions describe elliptic orbits with the relative semimajor axis ( 2 ea ), 

which is twice longer than the relative semiminor axis (
ea ). The solutions in Eq. (5) will 

be used as desired trajectories of the orbit leader spacecraft. 



 

5. New Coordinate Transformation and Phase Angle Shift in Elliptical Orbits 
 
We discuss a method to derive desired trajectories for follower (deputy) spacecraft from 
a single pre-determined desired trajectory (i.e., an orbit leader spacecraft) in a particular 
elliptical orbit. We assume that the desired trajectory can be obtained by using 
communications among neighbors in the network. 

 

 
Fig. 2  Definition of     and the Relationship between the intermediate and the new frames 

 
5.1 Coordinate Transformation in Elliptical Orbits 
 
Although we have the desired trajectory in Eq. (4), the angle rotation using rotation 
matrices is difficult in ellipses. Therefore, by transforming the current frame to another, 
the elliptic orbit can be expressed by a combination of simple forms. In order to find the 
transformation matrix, we consider two consecutive coordinate transformations of the 
frame. The first transformation is to rotate the original frame to an intermediate frame 
such that the motion is expressed in a 2D motion, i.e., the orbit is located in the 
intermediate x - y  plane (see Fig. 2). In this case, we should find positions for the 

maximum and minimum distances from the origin. The distance between the origin and 
the agent can be expressed from Eq. (4) as 
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where ( )n t   with the time-varying angular rate ( )n t . 

Differentiating Eq. (5) with respect to   yields the extrema of the distance. 

 

                            

 
0 0

0 0 0 0

4 4 2 2

(2 2 ) max max (2( ))

1 2 2 2 2

(2 ) max (2 ) (2 ) max (2 )

d / d 9 6 / (2 )

0.5 tan (3 ) / ( 3 )

e z

e z e z

e e

e e

l s a z a z c l

a s z s a c z c

  

   

   



  

    

                      (6)  

 
Hence, ( )l   has extrema for     and 3 / 2   . That is, obtaining the positions of 

min ( )l l   and  
max (3 / 2 )l l   , which are the ˆNx  and ˆ Ny axes after the normalization, 

yields the first rotational matrix 
nfR  as: 

 



 

                                  
max ( ) max ( ) max max ( )

0 0 0

min ( ) min ( ) min max ( )
0 0 0

2
max ( ) max ( )

0 0 0 0

2

2nf

2 2min max

1 e ee e z

e ee e z

e e ee z e z

l a s l a c l z s

l a c l a s l z c

a z c a z s al l

  

  

   

  

  

 

 

  

 

 
 
 
 

R                              (7) 

 
The second rotation is related to finding an angle (

x ) with respect to the Nx  axis such 

that the motion in the new x - y  plane (i.e., 'x - 'y  plane) becomes circular. One can 

notice from Fig. 2 that 
minl  becomes a radius of the circle in the new frame. Therefore, 

     can be expressed as 
 

                                                                                                                          (8) 
 

Figure 2 illustrates the definition of    and the geometrical relationship between the two 
frames. The second transformation matrix is defined as 
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]                                           (9) 

 
Hence, the coordinate transformation from the original frame to the new frame can be 
found by combining Eqs. (7) and (9) as 
 

                                                                                                           (10) 
 
where ' [ ' ' ' ]T

d d d dx y zq   and [ ]T

d d d dx y zq . 

 
5.2 Phase Angle Shift Method in Elliptical Orbits 
 
The proposed phase angle shift method enables spacecraft to shift their positions in 

elliptical orbits in 3D space simultaneously with only one phase shift angle  . From the 

definition of an ellipse in Eq. (4), the direction of  ̇       is opposite to that of  ̇ if the 
follower spacecraft are assumed to follow their orbit leader spacecraft. With this 

information, we consider motions in the   -   plane in advance. The angle rotation for 
the   -   plane can be expressed as 
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For the phase angle shift in the z  axis, we define an auxiliary variable 

dZ   as 

max ( ):dZ z c 
   where 2 2

max max min 0z l l    . Then the angle rotation for 
dz  and 

dZ   can be 

defined as 
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Hence, combining Eqs. (11) and (12) yields the proposed phase angle shift for the  th 
agent as 
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where 20  is the 2 2  zero matrix and 
1 (( 1) )j j   T T  denotes the phase angle shift 

matrix with ( 1)j   from the leader agent in the new frame.  

The time derivative of the desired trajectory 
,''d jq  is used frequently in this paper: 

 
                                                        ̇           ̇                                                    (14) 

 
where '' [ ' ' ' ' ]T

d d d d dx y z Zq  with ' ' ' / 'd d d dZ z z Z  . 

Notice that the auxiliary variable 'dZ  in Eq. (13) is purely used to apply the phase angle 

shift to    . Thus, the auxiliary variable can be removed from the state vector after the 
rotation. 
 
6. Robust Formation Control for Phase Synchronization in Swarms of Spacecraft 
 
In this section, we introduce the adaptive phase synchronization controller. We begin 
with a transformation of the composite state variables with 

fR  and 
1jT . 

 
6.1 Modification of States and Composite Variables 
 

In Eqs. (10) and (13), we transformed the desired trajectory in the original frame (  ) to 
those in the new frame (   and     ). For the transformation of   ,    in Eq. (10) is used, 

i.e., 
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From Section 5.1, the value of    can be obtained, which plays an important role 

when finding the auxiliary ' jZ  in '' [ ' ' ' ' ] :[ ' ' ]T T T

j j j j j j jq x y z Z Z  q , which can be found as  
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where 
max, f ,3 ( )' /j jz R s   q  and f ,3R  is the third row vector of fR . 

From the definitions of 
,'d jq , 

,''d jq , ' jq , and '' jq  in Eqs. (10), (13), (15), (16), the modified 

composite variables ( ' js , '' js ) are obtained as well. The modified composite variable 

        is written as follows: 
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where          is a positive diagonal matrix, 
f'' [( ) ' ]T T

j j jq Z R q , and 

f'' [( '' ) ' ]T T

d d dZq R q . The phase angle shift matrix 
1jT  is defined in Eq. (13). The 

composite variable ' js  is directly obtained from the first three elements in '' js . 

 
6.2 Phase Synchronization Controller 
 
Given the dynamic models in Eq. (1) and the desired trajectories in Eq. (4), we should 
transform the original frame to the new frame by using the coordinate transformation 

fR  

in Eq. (10) such that we can use the phase angle shift method 
1jT  in Eq. (13). By left-

multiplying Eq. (1) by 
fR  and 

f f f 'T T

j j j q R R q R q , the dynamic models described in the 

new frame are written as 
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In order to construct the proposed phase synchronization controller, the active 
parameter adaptation is introduced for the dynamic model in Eq. (1) for the purpose of 
tuning the tracking and diffusive coupling gains. The proposed formation control and 
phase synchronization controller for Eq. (1) including the nominal communication with 

the l th and m th agents can be written as: 
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where 

1 22 0k k   for 3p  [13], 
1 2[ ]T

j j j jp  ρ , 
1 1 2 2'' { '' , '' , , '' }j j j p p  Ts T s T s T s , 
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,'' '' ''j j d j e q q . A constant 0   is a design parameter and 
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, , , , f ,' : [ ' ' ' ]T
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Detailed information for the gain adaptation (  ) and parameter estimation ( ̂ ) can be 

found in [17]. Furthermore, the nonlinear stability proofs are derived in [17], which also 
shows that the synchronization error is smaller than the tracking error. 
 
  



 

7. Numerical Validations 
 
In this section, we evaluate the effectiveness of the proposed adaptive phase 
synchronization controller by simulating a reconfiguration of a swarm of spacecraft 
(S/C). The center of the LVLH frame is the position of the chief S/C described by the 
Proposition 1 in [14]. We can describe the motions of all S/C in the swarm by using 
Proposition 2 in [14]. In the simulation, we want to control the motions of 18 S/C in two 
orbits which are concentric ellipses in the same orbital plane. The initial positions of the 
S/C are randomly chosen with a uniform distribution with a range of 

,0 ,00.5km , ,j jx y   

,0 0.5km, 1, ,18jz j  . No initial velocity is assigned to all of the S/C. It is assumed that 6 

S/C are placed in the inner orbit and the rest of them are in the outer orbit. 
 

For simulations, the physical parameters are chosen as follows: 100kgjm  , 
21mjA  , 

2.0DC  . The altitude of the chief S/C is 400km , and the initial classical orbital 

elements are 
0 0 0 0 0 0[ , , , , , ] [ 400, 0, 45deg, 30deg, 0deg, 10deg]Ea e i R    , where 

ER  denotes 

the radius of the Earth. The unmodeled disturbance distΔ  including system's 

uncertainties is set as 5 2

dist / 10 km/sjm Δ . 

 
The initial conditions of the desired trajectory for the orbit leader S/C are defined as: 

,0 1kmdx  , ,0 1kmdy  , ,0 0.5kmdz  , 
5

,0 10 km/sdz  . The values of ,0dx  and ,0dy  can be 

found by using the constraints in Eq. (4). For the controller in Eq.(20), the design 
parameters are set as follows: 

1 3k  , 
2 1k  , 1  , diag(0.1,0.1, ,0.1)j Λ . For the gain 

adaptation law [17], diag(10,10, ,10)j Σ , 
,max 1kc  , 1

j
c

. Initial values of the adaptive 

diffusive gains 
jc  are set to 0's. For the communication, no more than 5 connections 

with neighbors are allowed. The parameter estimation law is not used for simplicity and 
clarity of the performance of the proposed phase synchronization controller. 
 
Figure 3 shows the trajectory motions for the S/C in 3D space during 900 s controlled by 
the proposed phase synchronization controller. Note that after reaching their orbits, S/C 
follow their desired trajectories without a drift. The first figure in Fig. 4 shows the 

trajectories of the 18 S/C in the swarm. Note that only x  (i.e., the first axis in the new 

frame ( x - y - z )) was chosen because x , y , and z  have very similar results. In the 

figure, the trajectories are converging to each other regardless of their initial positions 
before approaching the desired trajectory individually. The contraction rate is obtained 
as 2 0.002  . The estimated value of the maximum state error is 0.5mj q‖ ‖  for 

individual S/C. The second figure in Fig. 4 shows the gains variations for the 7th S/C 
(the first one in the outer orbit) based on the gain adaptation law. The gains do not have 
values during 15 sec due to the zero initial conditions. Note that the 7th S/C has gains 
only for its neighbors in the same orbit (8th and 18th S/C) and those in the inner orbit 
(1st and 2nd S/C). 
 



 

In order to evaluate the performance, we compare the proposed synchronization 
controller and the nominal gain-based controller with properly tuned gains. For the 
simulations, it is assumed that all S/C are initially located at the origin. The first figure in 
Fig. 5 shows the convergent time with respect to the size of the orbits (the number 
denotes the ratio to the orbit defined previously in this section.) with the same amount of 
fuel for reconfigurations. As the orbit size gets bigger, the proposed synchronization 
controller makes the S/C converge faster, which is due to the gain adaptation law. On 
the other hand, based on the same convergent time, the proposed synchronization 
controller uses less fuel consumption ( V ) for the reconfiguration than the nominal gain-

based controller (the second figure in Fig. 5). 
 
Through the simulation results, we showed that the proposed phase synchronization 
controller more efficiently synchronized the motions of the spacecraft during the 
reconfigurations of the swarm. 
 

   
Fig. 3  Trajectories of the 18 S/C for 

900s 

 

Fig. 4  Trajectories 
jx after transforming 

them to the position of 
dx  (upper figure) 

and adapted diffusive gains for the 7th S/C 

Fig. 5  Comparison of the performance: 

convergent time (upper figure) and fuel 

consumption (lower figure) 

          
8. Conclusions 
 
We presented a novel coordinate transformation method and a new phase 
synchronization control strategy for swarms of spacecraft constructed by the networked 
Euler-Lagrangian (EL) systems moving in elliptical orbits. The proposed coordinate 
transformation method and phase angle shift method facilitate the phase angle rotation 
in ellipses, thereby playing a crucial role in the phase synchronization control law. The 
proposed phase synchronization controller, which guarantees smaller error bound, 
robustly synchronize the motions of spacecraft with relaxed sensing topology for 
synchronization stability in the swarm. 
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