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Abstract— This paper investigates exact nonlinear dynamics
and cooperative control for spacecraft formation flying with
Earth oblateness (J2 perturbation) and atmospheric drag ef-
fects. The nonlinear dynamics for chief and deputy motions
are derived by using Gauss’ variational equation and the Euler-
Lagrangian formulation, respectively. The proposed cooperative
control employs adaptive time-varying Laplacian gains. The
tracking and diffusive coupling gains are adapted by the syn-
chronization/tracking errors and distance-based connectivity,
thereby defining a time-varying network topology. Moreover,
the proposed method relaxes the network structure requirement
and permits an unbalanced graph. Nonlinear stability is proven
by contraction analysis and incremental input-to-state stability.
Numerical examples show the effectiveness of the proposed
method.

I. INTRODUCTION

Spacecraft formation flying has been extensively studied due
to its potential applications to many future space science
missions such as stellar interferometry. [1]. For spacecraft
formation flying, control and modeling of the relative states
between the chief (or reference) spacecraft and a deputy
spacecraft are core research areas. A number of linearized
relative dynamic models exist in the literature. The most pop-
ular relative dynamic model is the Hill-Clohessy-Wiltshire
(HCW) equation [2], which assumes a circular reference
orbit. Tschauner and Hempel derived a new relative dynamic
model with elliptic reference orbits [3]. Later, Schweighart
and Sedwick [4] and Ross [5] suggested linearized relative
dynamics including the J2 perturbation for formation flying.
A new description of the relative dynamics by the state
transition matrix was derived by Gim and Alfriend [6]. If
initial states of the relative dynamics are known, we can find
the states at any given time. However, the state transition
matrix has a somewhat complex and cumbersome form.
Unfortunately, all of the models mentioned so far are approx-
imations based on linearization, and so have significant errors
away from the linearization point. With relative dynamics,
this means that linearized models can typically not be used
if the spacecraft are separated by more than a kilometer. This
motivates the use of exact, nonlinear models.

A nonlinear model for the relative dynamics with the
J2 perturbation and atmospheric drag was presented by
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Kechichian [7]. However, some components of the J2 pertur-
bation were not considered. A new exact nonlinear reference
model and a relative orbital dynamic model with the J2
perturbation were suggested by Xu and Wang [8]. However,
since the model uses hybrid states (position/velocity and
some orbital elements) to describe the dynamics, to use the
model in practice requires additional calculation. Moreover,
orbital elements are more intuitive than position and velocity
to determine orbit shapes. In the present paper, we extend this
work by providing exact nonlinear dynamics for reference
and relative motion with the J2 perturbation and atmospheric
drag, and without the need for hybrid states. We derive these
dynamics using Gauss’ variational equation and the Euler-
Lagrangian formulation.

In addition to spacecraft formation flying, there have been
a variety of studies of cooperative control in robots and
UAVs [9], [10]. However, unlike the studies in other fields,
the dynamics of spacecraft are very complicated and highly
nonlinear so that more sophisticated control methods are
needed. A more detailed review of spacecraft formation
flying guidance and control can be found in [11], [12].
In particular, various architectures for spacecraft formation
flying were introduced in [13]. A leader-follower system has
been most popular [14], various types of the decentralized
coordinate-based control also have been extensively studied
[15], [16]. For control, various linear and nonlinear control
methods such as LQR, feedback linearized control, sliding
model control, adaptive control, to name a few [17], [14],
[18]. Recently, Chung et al. suggested an exponentially stable
tracking control law for the attitude and position dynamics of
formation flying [16]. Note that the most prior studies assume
that the reference orbits are circular or elliptic, and are not
perturbed by any disturbances. However, as the altitude of
the orbit gets lower, the effect of the perturbations becomes
noticeable.

In this paper, we introduce a new cooperative control
approach, based on active adaptation of tracking/diffusive
coupling gains and a distance-based connectivity condition.
This strengthens results in [19]. In [19], the authors de-
veloped a new cooperative control, which is inspired by
the knowledge feedback control [20]. The method actively
tries to find tracking and diffusive coupling gains so that
the formation system can be synchronized effectively in the
sense of fuel consumption and time of convergence. In this
study, we generalize this approach to network structures that
are directed and unbalanced, i.e. where the number of inputs
for coupling is not necessarily the same as that of outputs
for any given spacecraft. We also introduce a connectivity



condition, where the gains reduce as the distance between
spacecraft increases. This concept is similar to the Cucker-
Smale method [21], which is a synchronization method based
on the relative distance between agents in formation. More-
over, the method has been extended to spacecraft formation
flying [22]. However the approach places specific conditions
for synchronization while the proposed synchronization law
provides more flexible topology without any requirements.
It should be noted that the proposed adaptive synchroniza-
tion law with the connectivity will eliminate the need for
a balanced graph topology and can derive a stabilizing
synchronization Laplacian on an unbalanced communication
topology.

The organization of this paper is as follows: In Section II,
the nonlinear dynamics of the reference and relative orbital
motions are derived. In Section III, our mathematical tools
are briefly introduced. The proposed cooperative control
law is suggested in Section IV with stability analysis. In
Section V, numerical validation is presented to compare the
results with other control methods. Finally, in Section VI,
concluding remarks are stated.

II. DERIVATION OF EXACT DYNAMICS

In this section, the exact nonlinear dynamic models for
the reference orbit and the relative orbit are derived. The
coordinates are shown in Fig. 1. For disturbance sources, the
second zonal harmonic effect (J2) and atmospheric drag are
taken into account, which are the major disturbances in LEO.
Prior to the derivation of the dynamics, some disturbance
models are needed. First, the gradient of the gravitational
potential with the J2 perturbation (in Local Vertical Local
Horizontal (LVLH) frame) is written as [8]:
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ŵ

(1)
where µ, a, i, and θ denote gravitational parameter, semi-
major axis, inclination, and argument of latitude, respec-
tively. Moreover, kJ2 = 3

2J2µR
2
e , where Re is the radius

of the Earth. Abbreviations s(·), c(·) stand for sin(·), cos(·),
respectively.

The effect of the atmospheric drag can be described by
the corresponding acceleration (in a frame relative to rotating
atmosphere) as [23]:

adrag = −1

2

CDA

m
ρvrVr =: −CdnvrVr (2)

where CD is coefficient of drag, A is the cross-sectional area,
vr := ∥Vr∥, and ρ is the air density, which can be described
as ρ = ρoe

[ho−h]/H where h0, h, and H are the reference
altitude, the actual altitude, and the scale height, respectively.
Note that Vr is a velocity of the reference orbit relative to
the rotating atmosphere, described in Earth Centered Inertial
(ECI) frame, defined by

Vr = ṙECI − ωE × rECI =
[
Ẋ + ωeY Ẏ − ωeX Ż

]T

Fig. 1. Coordinates: ECI (Î, Ĵ , K̂) and LVLH (r̂, ŝ, ŵ)

where ωE = [0 0 ωe]
T and rECI = [X Y Z]T denote the

rate of rotation of the Earth and a position of spacecraft in
ECI frame, respectively.

Because ECI and LVLH are different frames, a rotation
matrix is needed. For convenience, the 3-1-3 Euler rotation
matrix (R(θ, i, Ω) := ROT3(θ)ROT1(i)ROT3(Ω), [LVLH]
= R[ECI], where Ω is right ascension of ascending node.)
is used in this paper.

R =

R1

R2

R3
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 .

A. Nonlinear Dynamics for Reference Orbit under the J2
Perturbation and Atmospheric Drag

The exact nonlinear dynamics for reference orbit with J2 and
atmospheric drag effects are obtained here.

Proposition 1: Consider the Earth which has non-
spherical gravity due to the J2 perturbation and atmospheric
drag. Then the motion of spacecraft is governed by the
following system of equations:
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where e, ω, ν, n denote orbital elements: eccentricity,
argument of periapsis, true anomaly, and mean motion,
respectively. Moreover, q1 and q2 are defined as q1 =
esω, q2 = ecω, respectively [24]. Note that κ = (1− e2)1/2,
χ = 1 + ecν , ε = kJ2χ

3/na5κ7, and E = κCdnvr/naχ.
Proof: Given Gauss’ variational equations [23], the

system of equations for orbital elements with the J2 per-
turbation can be obtained. Substituting the acceleration due
to atmospheric drag (2) and the rotational matrix R into
Gauss’ variational equation, (3) can be derived. The detailed
procedure is omitted.

One useful equation is n :=
√
µ/a3. The time derivative

of the mean motion can be expressed as follows: ṅ =
−3nȧ/2a.

Remark 1: If the effect of atmospheric drag is omitted
from (3), the equations describe the motion of spacecraft
under the J2 perturbation, which was derived in [8]. Equa-
tions for Ω, i, θ(= ω + ν) can be obtained readily and the
other equations also can be found by simple substitution.
The reason to use the states in (3) is intuitive and easily
obtained from position and velocity information while those
in [8] need additional calculation because there is no direct
transformation method from position and velocity.

Remark 2: The effect of the Earth rotation was considered
in (3), which has not been taken into account in previ-
ous studies. Moreover, some prior studies used linearized
atmospheric drag models and the velocity of the reference
orbit. However, the velocity term should be relative to the
air because the air on the Earth is not fixed to the Earth.

Remark 3: There is no singularity problem at e = 0 or
i = 0 in (3). Note that there are si in the denominators in
(3). However, the first and second elements in R3 have si.
Moreover, Ż = 0 at i = 0. Therefore, the terms that contain
si in their denominators are bounded.

B. Nonlinear Dynamics for Relative Orbits under the J2
Perturbation and Atmospheric Drag

The exact nonlinear relative dynamics under the second zonal
harmonic effect and atmospheric drag is derived.

Proposition 2: The relative motion of spacecraft with
respect to the reference trajectory given in (3) follows the
equations as:

ẍj = −ẋjCdn,jvjr + 2ẏjωz − xj(η
2
j − ω2

z) + yj(αz
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−Cdn,jvjrR1Vr + Fjr (4)
ÿj = −2ẋjωz − ẏjCdn,jvjr + 2żjωx − xj(αz + Cdn,jvjrωz)

−yj(η
2
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×ωx)− zj(η
2
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where ηj , η describe angular velocities, ζj , ζ angular
accelerations of the jth and the chief spacecraft and αx =
ω̇x, αz = ω̇z the elements of the time derivative of the

angular velocity of the LVLH frame ωI = [ωx ωy ωz]
T ,

respectively. Definitions of the variables can be found in [8].
Moreover, Fj := [Fjr Fjs Fjw]

T denotes a control input
vector for the jth spacecraft and vjr = ∥Vjr∥, where Vjr is
the relative velocity of the jth spacecraft with respect to the
rotating Earth atmosphere.

Proof: The system of equations can be derived using
the Lagrangian formulation d

dt

(
∂Lj

∂q̇j

)
− ∂Lj

∂qj
= Fj , where

Lj := UK,j − UP,j denotes the Lagrangian, UK,j the kinetic
energy, and UP,j the potential energy for the jth spacecraft,
respectively. The kinetic and potential energies of the jth
spacecraft can be derived easily. Note that since Vjr is
described in the LVLH frame, it can be expressed as:

Vjr =l̇j +RVr = (ẋj − yjωz +R1Vr)r̂ + (ẏj + xjωz

− zjωx +R2Vr)ŝ+ (żj + yjωx +R3Vrr)ŵ (5)

where lj := [xj yj zj ]
T is the relative position of the jth

spacecraft in LVLH.
Substituting (2) for the jth spacecraft and (5) into the
Lagrangian formulation with Lj , the exact nonlinear relative
motion with J2 and atmospheric drag effects can be derived.
Note that the exact nonlinear relative dynamic models in-
cluding the J2 perturbation can be found in [8]. The detailed
procedure is omitted.

III. MATHEMATICAL TOOLS AND STABILITY ANALYSIS

Prior to developing a cooperative control law for spacecraft
formation flying, necessary mathematical models are needed.
We briefly review an important nonlinear stability tool and
dynamic modeling of general spacecraft trajectory motion by
using Lagrange’s equation. Note that Lagrange’s equation
can also be applied to the spacecraft attitude dynamics.
The equations of motion for spacecraft trajectories in LVLH
frame with multiple degrees of freedom (qj ∈ Rn) can be
written as:

Mj(qj)q̈j +Cj(œ)q̇j −Gj(qj ,œ) +Dj(qj , q̇j ,œ) = τ j

(6)
where j (1 ≤ j ≤ p) and p denote the index of the dynamic
systems in a formation and the total number of individual
spacecraft, respectively. Here, Mj , Gj , and Dj describe
the mass-inertia matrix, the force related to J2 perturbation,
and the force caused by the atmospheric drag, respectively.
Parameters œ = [a e i Ω ω ν]T and τ j describe the orbital
elements obtained by (3), and a generalized force acting on
the jth system, respectively. Note that Cj(qj , q̇j) is defined
such that (Ṁj − 2Cj) is skew-symmetric [25], and this
property plays a central role in the stability analysis using
contraction theory [26]. Note that the Lagrangian dynamics
in (6) is usually used for the dynamics for spacecraft attitude
and translational motion. Based on the relative dynamic
models in (4), Mj and Cj(œ) can be written as:

Mj =

1 0 0
0 1 0
0 0 1

 , Cj =

 0 −2ωz 0
2ωz 0 −2ωx

0 2ωx 0

 .



The vector Dj contains air drag terms and Gj can be found
by the rest of the terms in (4).

We use the contraction analysis for stability analysis (see
[26] for more details) . The contraction analysis has more
general and intuitive combination properties (e.g., hierar-
chies) than the passivity method and Lyapunov theory, since
it involves a state-space rather than an input-output method.
Moreover, a stronger form of stability can be proven, i.e.,
globally exponential or globally asymptotic stability (for a
semi-contracting system).

Consider a deterministic and smooth nonlinear system

ẋ(t) = f(x(t),u(x, t), t) (7)

where x(t) ∈ Rn, and f : Rn × Rm × R+ → Rn. A virtual
displacement, δx is defined as an infinitesimal displacement
at fixed time.

Lemma 3: For the system in (7), if there exists a positive
λ and a uniformly positive definite metric, M(x, t) =
Θ(x, t)TΘ(x, t), where Θ is some smooth coordinate trans-
formation of the virtual displacement, δz = Θδx, such that
the associated generalized Jacobian, F is expressed as

F =

(
Θ̇(x, t) +Θ(x, t)

∂f

∂x

)
Θ(x, t)

−1 ≤ −λI, (8)

then all system trajectories converge globally exponentially
fast to a single trajectory regardless of the initial conditions,
with a global exponential convergence rate of the largest
eigenvalues of the symmetric part of F.

Such a system is said to be contracting. The proof can
be found in [26]. Equivalently, the system is contracting if
∃λ > 0 such that

Ṁ+

(
∂f

∂x

)T

M+M
∂f

∂x
≤ −2λM. (9)

Note that (9) is useful for the stability proof of a Lagrangian
system, since the inertia matrix Mj in (6) can be chosen as
the metric M in (9).

In the next section, we derive a new synchronization
control law for spacecraft formation flying.

IV. NONLINEAR COOPERATIVE CONTROL FOR
FORMATION FLYING UNDER DISTURBANCES

In this section, we present a main adaptive synchroniza-
tion control law for spacecraft formation flying. Here, the
adaptation law updates tracking and diffusive coupling gains
based on the formation shape. In this paper, we define
the tracking control and the diffusive coupling gains as
cjj and cjk (j ̸= k), respectively. As shall be seen later,
the gains are used in the form of cjjsj + cjksk. It can
be reformulated as (cjj + cjk)sj + cjk(sk − sj), which
shows that the two diffusive couplings are the same. Note
that changing the gains would modify the Laplacian matrix
thereby affecting the stability of the formation. However, the
proposed method permits the adaptability of the Laplacian
matrix without sacrificing the stability of the cooperative
control of the formation flying system, which we call the
adaptive Laplacian matrix. This matrix has control gains as
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Fig. 2. Variation of connectivity with different rc (β = 0.25, upper figure)
and different β (rc = 10, lower figure)

its elements and the gains are found by using the adaptive
synchronization law. Using the adaptive Laplacian matrix,
balanced graphs, which are important conditions in synchro-
nization, can be relaxed for the formation, which is one of the
main results in the current paper. In this paper, we further
extend the cooperative control with the adaptation law to
directed graphs (digraph) and unbalanced graphs. A new
connectivity, based on relative distances among spacecraft, is
introduced for effective synchronization. We start the design
of the synchronization law with the connectivity method.

A. Distance-Based Connectivity

A new type of connectivity is introduced. The special
connectivity, depending on the relative distance between the
jth and kth spacecraft, is defined as

if d ≤ dlimit ϱjk(d) =
(
1 + eβ(d

2−r2c)
)−1

(10)

otherwise ϱjk(d) = 0

where d := ∥rj − rk∥, rc is a critical boundary, and β
determines an inclination of ϱjk at d = rc, respectively. In
addition, dlimit is defined by some small ϱlimit := ϱjk(dlimit) >
0 such that ϱjk(d) < ϱlimit then ϱjk(d) = 0 ∀d > dlimit. The
effects of the rc and β can be seen in Fig. 2. In essence, by
changing the two variables, we can control the number of
connections among spacecraft in formation.
The connectivity has special characteristics as follow:

• ϱjk ≈ constant around the center and slowly decreases
as d approaches rc from d = 0.

• ϱjk = 0.5 at d = rc
• ϱjk decreases fast near d = rc depending on β and has

lower values as d(> rc) increases.
The connectivity shows that the any spacecraft can commu-
nicate each other and consider the other spacecraft motion
if the relative distance between them is less than dlimit. Oth-
erwise, the connectivity becomes zero as d goes to infinity.
If the connectivity is applied to spacecraft communication
with adaptive control gains, we can expect flexible range of
boundary for connection and intensity of the control gains



(a) Communication and diffusive couplings in forma-
tion by the proposed cooperative control

(b) connectivity for agents 2-3-8-7 in the upper figure

Fig. 3. Effects of the connectivity in (10). Only when spacecraft are located
within dlimit, they can consider the diffusive coupling between them.

for the synchronization as in Fig. 3(a). That is, all spacecraft
communicate with adjacent spacecraft within a range (dlimit,
the dashed circles). The dotted circles with rc denotes the
critical boundary, which means that the connectivity becomes
weak if d > rc and zero if d > dlimit. All communications
are assumed to be directed with coupling gains. The different
thicknesses of the arrows show the different coupling gains.
The dashed arrows denotes negative values of cjk. These
phenomena for cjk can be obtained by the proposed adaptive
cooperative control. Fig. 3(b) shows how spacecraft in for-
mation can be connected by using the connectivity method.

Remark 4: This is similar to the Cucker-Smale method
for synchronization [21] in the sense that they are distance-
based method. However, as shall be seen in the main control
law, the proposed connectivity does not affect the stability
condition of the proposed synchronization law. Moreover,
connection between spacecraft can be more flexible with
different β and rc.

B. Active Robust Adaptive Synchronization Control Law
The active parameter adaptation is introduced. It is applied

to tuning the tracking control gains and diffusive coupling
gains. For this purpose, the proposed synchronization law
can be written as:

τ j = M̂jq̈j,r + Ĉj(œ)q̇j,r + D̂j(qj,r, q̇j,r,œ)− kjsj

−Wj(s,ϱj)cj (11)

= Yj(qj,r, q̇j,r, q̈j,r,œ)b̂j − kjsj −Wj(s,ϱj)cj

where sj := q̇j−q̇j,r = q̇j−q̇d+Λ(qj−qd) is a composite
variable, qd(t) a time-varying desired trajectory, Λ an l × l
positive diagonal matrix, and ϱj = [ϱj1 ϱj2 · · · ϱjp]

T ,
respectively. Moreover, the l × 1 vector b̂j has l uncertain
parameters related to atmospheric drag in the dynamic mod-
els for its elements. The n × l matrix Yj can be found
from Yjbj := Mjq̈j,r + Cjq̇j,r + Dj , where bj is the
real value of b̂j . In this paper, all parameters related to
the atmospheric drag are assumed to be unknown with
boundaries in the jth spacecraft (1 ≤ j ≤ p). A positive
constant kj is a tracking control gain for the jth spacecraft.
The n × p matrix Wj and the p × 1 vector cj are defined
as Wj := [ϱj1s1 · · · ϱjj−1sj−1 sj ϱjj+1sj+1 · · · ϱjpsp]
and cj := [cj1 · · · cj2 · · · cjp]

T , respectively. Note that
cj is a vector whose elements are tracking control and
diffusive coupling gains for the jth spacecraft, updated by
the adaptation law described below. In this control law, Gj

is not considered because most terms in Gj are differential
J2 perturbations, which imply that the magnitude of Gj is
relatively smaller than other terms. Hence, Gj is regarded
as a disturbance in this paper.

We introduce the adaptation law for the synchronization.
Note that the variables in parentheses are omitted for simplic-
ity from here. The individual dynamics of the formation are
adaptive in the sense that their tracking control and diffusive
coupling gains, denoted by cj , now adapt according to the
adaptation law

ċj = ΣjW
T
j sj −ΣjScjcj (12)

where the p × p matrix Σj = diag(σj1, σj2, · · · , σjp)
is a positive diagonal matrix for the jth spacecraft. The
p × p diagonal matrix Scj = diag(ℓ1 ℓ2 · · · ℓk · · · ℓp)
has elements ℓk (1 ≤ k ≤ p) with conditions: ℓk =
(|cj,k| − ck,max)/ck,max if |cj,k| > cj,kmax, otherwise ℓk = 0,
where ck,max is defined as a component of cmax, representing
a maximum or boundary value of kth component |cj,k|.
These conditions are needed for the boundedness of b̂j [25].
It should be noted that Wj includes the connectivity, defined
in (10). For instance, if the relative distance between the
jth and kth spacecraft is greater than dlimt, the kth element
in Wj has smaller values, which implies that the relative
information will be considered less for the adaptation of the
control gains.

In addition to the adaptation of the synchronization gains,
a different type of adaptive control is needed to deal with the
parameter uncertainties in (6). For this work, the estimation
law is defined as

˙̂
bj = −ΓjY

T
j sj − ΓjSb̂j

(
b̂j + sgn(b̂j)bmax

)
(13)

where Γj = diag(γj1, γj2, · · · , γjl) is a positive diagonal
matrix for the jth spacecraft. The l× l diagonal matrix Sb̂j

consists of elements ςi (1 ≤ i ≤ l) with conditions: ςi =
0.5(|b̂j,i| − bi,max)/bi,max if |b̂j,i| > bi,max, otherwise ςi = 0.
In addition, bmax is an l×1 vector whose component bi,max is
greater than the corresponding elements |bj,i| in bj (1 ≤ j ≤
p). The vector will be used for boundaries of the parameters



in bj for the parameter estimation b̂j . Moreover, sgn(b̂j) is
an l × l diagonal matrix whose elements are sign functions
[25] with respect to the corresponding elements in b̂j .

We want to show the stability condition of the proposed
synchronization law.

Theorem 4: The adaptive synchronization law in (11)
globally asymptotically synchronizes the states of multiple
adaptive dynamics in formation in the presence of distur-
bances.

Proof: Suppose that there are p spacecraft in formation.
Then from (6) and (11), the closed-loop dynamics for the jth
spacecraft can be expressed as

Mj ṡj +Cjsj + kjsj −Yjb̃j +Wjcj = Gj

where the variables in parentheses were omitted for simplic-
ity. Note that Gj is regarded as non-vanishing disturbance
and b̃j := b̂j − bj and bj is assumed to be constant or
slowly varying. Therefore, ˙̃

bj =
˙̂
bj − ḃj =

˙̂
bj .

This system follows the adaptation law described in (12).
Therefore, the closed-loop system for the formation, the
parameter adaptation law, and the parameter estimation com-
prised of p adaptive systems can be written as

[M]ẋ+ [C]x+ [K]x+ [W]{c} − [Y]{b̃} = {G}
{ċ} = [Σ][W]Tx− [Σ][Sc]{c}

{ ˙̃b} = −[Γ][Y]Tx− [Γ][Sb̂]
(
{b̂}+ [sgn({b̂})]{bmax}

)
or, in a matrix form as[M] 0 0

0 [Σ−1] 0

0 0 [Γ−1]

 ẋ
{ċ}
{ ˙̃b}

+

[C] 0 0
0 0 0
0 0 0

 x
{c}
{b̃}

 (14)

+

 [K] [W] −[Y]
−[W]T [Sc] 0
[Y]T 0 [Sb̂]

 x
{c}
{b̃}

 =

 {G}
0

−[Sb̂]{br}


where [M] = diag(M1, M2, · · · , Mp),
[C] = diag(C1, C2, · · · , Cp), x =
[sT1 , sT2 · · · sTp ]

T , [Σ−1] = diag(Σ−1
1 , Σ−1

2 , · · · ,Σ−1
p ),

[Γ−1] = diag(Γ−1
1 , Γ−1

2 , · · · ,Γ−1
p ), and [K] =

diag(k1Ip k2Ip · · · kpIp) where Ip is a p × p identity
matrix, respectively. The vector {br} is defined as
{br} = {b}+ [sgn({b̂})]{bmax}.
Because of the non-vanishing disturbance {G}, the adapted
control gains, and the estimated parameters in the dynamics,
we prove the stability under the condition of the convergence
of the control gains and the parameters. First, suppose
that the control gains and the parameters are outside the
boundaries at time t0, i.e., |b̂j,i| > bi,max and |cj,k| > ck,max
(1 ≤ j, k ≤ p, 1 ≤ i ≤ l). Then we define a squared virtual
length to prove the stability by using the contraction analysis
as

Vout :=

 δx
δ{c}
δ{b̃}

T [M] 0 0
0 [Σ−1] 0
0 0 [Γ−1]

 δx
δ{c}
δ{b̃}

 . (15)

Differentiating (15) with respect to time with {G} = 0, the
virtual length analysis shows the condition as below:

V̇out = −2

 δx
δ{c}
δ{b̃}

T [K] 0 0
0 [Sc] 0
0 0 [Sb̂]

 δx
δ{c}
δ{b̃}


−2δ{b̃}T [Sb̂]δ{br}. (16)

Note that the last term in the right hand side is positive
for all {b̂} because of the relationship among b̂j , bj , and
bmax. Therefore, by the incremental input-to-state stability
(ISS) [27] and the contraction analysis, (14) is contracting
by the negative definite Jacobian. Hence, we conclude that
the system is incrementally input-to-state stable as long as
∥x∥ > ∥{G}∥, |b̂j,i| > bi,max, and |cj,k| > ck,max for all
i, j, k (1 ≤ j, k ≤ p, 1 ≤ i ≤ l).

Suppose that some components in the control gains or
the parameters are inside the boundaries, i.e., |b̂j,i| < bi,max
or |cj,k| < ck,max for some i, k (1 ≤ i ≤ l, 1 ≤ k ≤
p). By the definition, Sb̂j ,i

= 0 and Scj ,k = 0 if |b̂j,i| <
bi,max and |cj,k| < ck,max, respectively. Note that because of
(12) and (13), {b̂} and {c} converge to the some values
inside their boundaries in finite time. Therefore without loss
of generality, we suppose |b̂j,i| < bi,max and |cj,k| < ck,max
for all i, j, k (1 ≤ j, k ≤ p, 1 ≤ i ≤ l). Then, a squared
virtual length can be defined as

Vin := δxT [M]δx. (17)

Due to the boundedness of b̂j , cj , Yj , and ϱj , [Y]{b̃} and
[W]{c} can be regarded as bounded disturbances like {G}
for the condition above. The time derivative of the virtual
length without {G}, {b̂}, and {c} shows that

V̇in = −2δxT [K]δx < 0. (18)

Therefore, the system is contracting with the negative definite
Jacobian as long as ∥x∥ > ∆

(
{G}, {b̃}, {c}

)
where ∆ is

defined as ∆ := sup{G},{b̃},{c} ∥{G}+[Y]{b̃}− [W]{c}∥,
which is bounded. From the results above, we conclude
that the system is incrementally input-to-state stable, which
implies that the multiple system is globally asymptotically
synchronized with ∥x∥ > ∆.

Remark 5: It is noted that the synchronization law in (11)
suggests a flexible control design for complex formation
systems since control designers do not need to consider
the exact values of the coupling gains depending on a
particular graph topology of the formation. The gains (cjk)
are automatically calculated based on both the adaptation
law (12), the synchronization, the tracking errors, and the
connectivity condition.

Remark 6: In [19], the authors suggested a flexible topol-
ogy design method. However, the current paper requires
a relaxed condition: we eliminated the constraints that the
topology should be a balanced graph. The topology can be
further extended to any unbalanced graph structure based
on the connectivity in (10). The proposed method designs
the topology based on the state errors, adaptation laws, and
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Fig. 4. Initial positions (left) and desired trajectories (right) of the
spacecraft

hardware specification (i.e., possible number of connection,
based on the connectivity condition). Note that the proposed
synchronization law can be extended to heterogeneous sys-
tems.

V. NUMERICAL VALIDATION

In this section, results of numerical simulation are presented
to validate the proposed adaptive synchronization law. A
desired trajectory, defined relative to the reference trajectory,
is needed for simulation. We chose a periodic solution of
the HCW equation [2]: ẏ0 = −2nx0 and y0 = 2ẋ0/n.
Note that a projected circular orbit with 26.565 deg between
the cross-track and radial directions can be considered with
additional conditions: z0 = ±2x0 and ż0 = ±ẋ0. Therefore,
any projected circular orbit can be obtained with x0 and
ẋ0. However, because of the linearization in HCW equation
and disturbances, this condition does not hold as x0 and
ẋ0 increase (i.e., the orbits will drift.). Therefore, proper
controllers are needed for the formation keeping and recon-
figuration.

For the simulation, the initial conditions for reference
and relative orbits are needed: a = 6878.137 km, e = 0,
i = 45 deg, Ω = 30 deg, ω = 0 deg, and ν = 0 deg for the
initial reference orbit, x0 = 0.3, 0.5 km and ẋ0 = 0 km/s
for the initial relative orbits (two periodic relative orbits),
respectively. It is assumed that there are 8 spacecraft in
formation: 3 spacecraft are located in the inner orbits and
the other 5 spacecraft are in the outer orbits. Fig. 4 shows
the initial position (left) and the desired trajectories (right) of
the spacecraft in the formation. The mass for the spacecraft
is m = 100 kg and the effective cross-sectional area of each
spacecraft is A = 1 m2 (a sphere shape, i.e., CD = 2.0 [23]),
respectively. For fixed coupling gains, kj = 0.01 was chosen
for all spacecraft. All values for initial cjk were set to zeros.

The initial positions of the 8 spacecraft were randomly
chosen by the Gaussian distribution with σ = 0.1 km for
all three directions. The initial velocities of the spacecraft
were assumed to be zero. The gain Σj for the adaptation
law is set to σjj = 0.003 and σjk = 0.001 (j = 1, 2, · · · , 8),
respectively. For the estimation of the parameters, we will
use composite variable b̂j := Ĉj =

ĈD ρ̂jÂj

2m̂j
.

A. Performance of the Distance-Based Connectivity ϱ

We evaluate the distance-based connectivity in (10). Note
that it calculates the intensities (ϱjk) based on the relative
distances. For simulation, β = 20 and rc = 1.2 km for the
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Fig. 5. Simulation results for the connectivity and the associated control
gains, obtained by the proposed adaptive synchronization control law. In
(b), the numbers indicate the diffusive coupling gains (×10−3).

inner orbits and β = 15 and rc = 1.5 km for the outer
orbits were used. The upper figure in Fig. 5(a) shows the
variations of the connectivity ϱjk during 1500 sec. Since
spacecraft were initially located in a small area (See Fig. 4.),
each connectivity has a large value at the initial stage.
However, because of the desired trajectories, positions of the
spacecraft were expanded. At this time, the relative distances
get increased, which affect the connectivity (30–70 sec).
Finally, only some ϱjk have values based on the final relative
distances among the neighbors. Note that since the desired
orbits are ellipses, the values of the connectivity can be
changed.

The connectivity also influences the coupling gains as
can be seen in the lower figure in Fig. 5(a): the coupling
gains are obtained by ϱjkcjk. That is, smaller ϱjk makes
less coupling gains (from the initial time to 50 sec). In
other words, the communication gets weaker as the distance
between spacecraft increases. Note that if there is no connec-
tivity method, all cjk will have values regardless of relative
distances, which is neither possible nor economical due to
the communication load. On the other hand, if we use the



connectivity, unnecessary long-distance communication can
be eliminated.

B. Performance of Proposed Adaptive Synchronization Law

The proposed adaptive synchronization law in (11) includes
the distance-based connectivity and the adaptation law. The
adaptation law calculates tracking control and diffusive cou-
pling gains based on the information of the state errors and
connectivity. Therefore, not all spacecraft have to keep the
same coupling gains for the synchronization. Fig. 5(b) shows
the different control gains obtained from the simulation. It
should be noted that some control gains have negative values,
which implies that negative control gains can make the
formation synchronized with fewer control inputs. Moreover,
the overall connection in the formation is not balanced, while
the system is well synchronized.

From the simulation, we could see how the connectivity
method affects the communication/control gains for syn-
chronization and the proposed adaptive synchronization law
generates control inputs for synchronization. In addition, we
could evaluate the performance of the synchronization law
controlled by the proposed law. The robust stability of the
proposed method due to the parameter uncertainties was also
verified from the results of the simulation.

VI. CONCLUSIONS

In this paper, we investigated a new cooperative control
strategy for spacecraft formation flying. The exact nonlinear
dynamic models of reference and relative orbital motions,
which include J2 and atmospheric drag effects as distur-
bances, were derived by using Gauss’ variational equation
and the Lagrangian formulation, respectively. The robust
stability was proven by using the contraction analysis and the
incremental input-to-state stability. The main contribution of
the paper is the relaxation of the requirement of a network
topology. That is, the proposed cooperative control law
automatically computes suitable coupling gains based on the
synchronization law, the state errors, and the relative distance
between spacecraft in formation. Moreover, the connectivity
based adaptation method exploits the relative distance infor-
mation, thereby ensuring the stability of a complex network
comprised of a large number of spacecraft. The proposed
synchronization can be applied to more generalized robotic
networks comprised of complex Lagrangian dynamics. By
using results of the simulation, we demonstrated the effec-
tiveness of the proposed synchronization method.
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