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1 Introduction

The recent discovery of metastable vacua in supersymmetric QCD [1] has led to renewed

interest in the subject of supersymmetry breaking. Since then, metastable vacua have been

found in a variety of supersymmetric theories, and it has become increasingly clear that they

are ubiquitous in the space of supersymmetric field theories (See [2] and reference therein).

It has also been realized that theoretical constraints on supersymmetry breaking mechanisms

can be circumvented if one accepts metastability and that it gives a greater flexibility in model

building [3–9]. Furthermore, a number of these vacua have been successfully realized in string

theory [5,10–21], where both the breaking of supersymmetry and the achievement of stability

are described geometrically.

One particularly simple way to engineer metastable vacua is to start with N = 2 super-

symmetric gauge theory and deform it by a suitable superpotential [22,23]1. It has long been

known that one can easily create non-supersymmetric critical points of the effective potential

in this manner but stabilizing them requires more care. A key observation of [22] is that if

one constructs the superpotential from a linear combination of Kähler normal coordinates [26]

associated to a point u0 of the Coulomb branch, then not only does u0 become a critical point

but stability is guaranteed in a generic case 2. In general, however, Kähler normal coordi-

nates are given by an infinite series expansion in deviations away from u0 [27] and they are

not globally defined in the moduli space. In [22], it was shown that one can truncate the series

expansion to define a superpotential expressed as a finite-degree polynomial of the adjoint

scalar fields in the N = 2 vector multiplet, which is globally defined and can still achieve

stability.

Such a truncation may not seem to impact the physics to a great degree. Nevertheless, we

will demonstrate in this note that if one deforms the theory by a superpotential built from

exact Kähler normal coordinates then the supersymmetry-breaking vacuum at u0 becomes

instead a supersymmetry-preserving one. On the other hand, if the superpotential is truncated

to a finite-degree polynomial, the supersymmetry is genuinely broken at u0; the particle

spectrum at u0 is still supersymmetric but interactions break supersymmetry. In this case,

supersymmetry can be restored at a point where a massless dyon appears and the Coulomb

branch metric becomes singular.

We will show that the superpotential given as a linear combination of exact Kähler normal

coordinates is identical to a specific combination of electric and magnetic Fayet-Iliopoulos

(FI) terms, ai and aD j , of the low energy Abelian gauge theory. As such, what we land

1See also [24, 25] for meta-stable supersymmetry breaking vacua in Seiberg-Witten theories.
2At nongeneric points there may be a flat direction (see [22]).
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on is actually a classic model of partial supersymmetry breaking [28, 29]. This observation

gives a fresh perspective on the supersymmetry-breaking vacua of [22] along with a natural

understanding of their stability. It also demonstrates quite explicitly why the Kähler normal

coordinates fail to be globally well-defined. They simply inherit the nontrivial monodromies

of ai and aD j as one encircles singular points of the moduli space.

The fact that the vacuum at u0 turns out to be supersymmetric does not preclude the exis-

tence of non-supersymmetric vacua elsewhere on the moduli space. The full vacuum structure

of theories with electric and magnetic FI terms has not been completely understood, though,

so one must embark on a more detailed analysis to establish the existence of metastable

supersymmetry-breaking vacua in these models.

In the second part of this paper, we take some initial steps toward doing precisely this by

establishing a formalism for engineering nontrivial critical points in the perturbative regime

of N = 2 theories deformed by electric and magnetic FI terms. In the simple example of

a rank two gauge group, we are also able to directly address the problem of stability and

demonstrate that stable non-supersymmetric vacua can be engineered in suitable parts of the

perturbative regime.

While our focus in this paper is on deformed Seiberg-Witten theory, the structure con-

sidered makes a natural appearance in flux compactifications of type II superstring the-

ory [30–32]. In fact, it appears as a geometric engineering limit of such a compactification,

where the coefficients (ei, m
i) of FI terms W =

∑

i eia
i+miaDi are identified with the amounts

of fluxes. The scalar potential constructed from the superpotential W is invariant under the

monodromy transformation of (ai, aDi) provided the fluxes (ei, m
i) are also transformed ap-

propriately. Thus, the potential is single-valued if we consider it as a function on the space

of fluxes as well as on the Calabi-Yau moduli space. By contrast, in the field theory limit,

the fluxes are frozen and become non-dynamical parameters, and the potential is multivalued

in the Coulomb branch moduli space. This is caused since the field theory limit defined at

a generic point in the Coulomb branch breaks down at massless dyon points because of the

appearance of extra light particles at these points. It is exactly around each of these singular

points where W is multivalued in the field theory limit.

Because of this connection, the results in this paper can be used to classify non-supersymmetric

critical points and study their stability in flux compactifications on local Calabi-Yau mani-

folds. In particular, there is a connection with recent studies of geometrically-induced stringy

metastable vacua [33–39]. Indeed, it was our interest in the system of [33] and its potential

relationship to the vacua of [22] that formed the primary motivation for this work at the

outset. A new feature of the class of models discussed in this paper is that supersymmetry
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breaking is taking place entirely in the field theory context.

The organization of this note is as follows. In section 2, we will demonstrate the connection

between exact Kähler normal coordinates and FI parameters. In section 3, we briefly review

the structure of supersymmetry-preserving vacua in models with FI terms and their relation

to the vacua of [22]. In section 4, we consider the problem of engineering supersymmetry-

breaking vacua in these models and explicitly demonstrate that this can indeed be done in

the perturbative regime for the simple example of a gauge group with rank two. In section

5, we comment on the relation to flux compactifications and recent work on supersymmetry-

breaking in that context. Appendix A contains some N = 2 superspace conventions and

reviews the manner in which N = 2 supersymmetry is realized in the theories under study.

2 Kähler Normal Coordinates and Fayet-Iliopoulos Terms

In this paper, we shall devote our attention to generic points along the Coulomb branch of

SU(N) Seiberg-Witten theory [40, 41] where the IR physics is described by N = 2 U(1)N−1

supersymmetric gauge theory with Seiberg-Witten prepotential F . The Lagrangian of this

theory can be written in N = 1 superspace as

L =
1

2
Im

[
∫

d4θFi(Ak)Ā
i +

1

2

∫

d2θFij(Ak)W
i
αW

α j

]

(2.1)

where i = 1 . . .N − 1 and Fi1i2... = ∂i1∂i2 . . .F(ai). As usual, we often denote Fij by τij , the

period matrix of the Seiberg-Witten curve, and construct from this a Kähler metric on the

Coulomb branch

gij̄ = Im τij . (2.2)

To this theory, let us consider adding a superpotential of the form

W = kiz
i, (2.3)

where the zi are a set of Kähler normal coordinates associated to a fixed point ai
0. As

demonstrated in [22], a study of the scalar potential of this theory in the vicinity of ai
0 reveals

that ai
0 is (almost always) a stable critical point where the manifest N = 1 supersymmetry

of the Lagrangian (2.1) plus superpotential is broken.

In general, the zi can be written in terms of special coordinates ai along the moduli space

as [26, 27]

zi = ∆ai + gij̄(a0)

∞
∑

n=2

1

n!
∂i3 . . . ∂inΓj̄i1i2(a0)∆a

i1∆ai2 . . .∆ain (2.4)
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where

∆ai ≡ ai − ai
0. (2.5)

Because only the first few terms of (2.4) are needed to establish stability at ai
0, one can

follow [22] and truncate the series when constructing the superpotential (2.3). In this manner,

it is possible to engineer long-lived metastable supersymmetry-breaking vacua by introducing

an appropriate polynomial superpotential of finite degree.

In special coordinates, the connections Γj̄i1i2 take a particularly simple form

Γj̄i1i2 =
1

2i
Fji1i2 =

1

2i
∂i2τji1 =

1

2i
∂i1∂i2aD j , (2.6)

where aD i = ∂iF . This allows us to recognize the infinite series in (2.4) as a Taylor expansion

of aD j about the point ai
0. In fact, we can easily sum the series and write the exact Kähler

normal coordinates zi as

zi = ∆ai +

(

1

τ0 − τ̄0

)ij ∞
∑

n=2

1

n!

∂naD j(a0)

∂ai1 · · ·∂ain
∆ai1∆ai2 . . .∆ain

= ∆ai +

(

1

τ0 − τ̄0

)ij
(

aD j(a) − aD j(a0) − τ0 jk∆a
k
)

=

(

1

τ0 − τ̄0

)ij
(

aD j(a) − τ̄0 jka
k
)

+ const, (2.7)

where τ0 ij = τij(a0). This means that, up to irrelevant constant terms that we shall hereafter

drop, the superpotential (2.3) is a specific linear combination of electric and magnetic FI

terms

W = eia
i +miaD i, (2.8)

where

ei = −kj

(

1

τ0 − τ̄0

)jk

τ̄0 ki, mi = kj

(

1

τ0 − τ̄0

)ji

(2.9)

In particular the FI parameters satisfy

ei +mj τ̄0 ij = 0 (2.10)

We are therefore able to identify the theory with superpotential (2.3) as the classic model

of partial supersymmetry breaking first introduced by Antoniadis et al [28]3. As we shall

now review, the vacua at ai
0 actually preserve an N = 1 supersymmetry, providing a natural

explanation for their stability.

3For local supersymmtric theories, see [29].
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3 Review of Supersymmetry-Preserving Vacua of N = 2 Abelian

Theory with FI Terms

In this section, we review the N = 2 formalism of the Abelian gauge theory (2.1) with

superpotential (2.8) and the conditions for having supersymmetry-preserving vacua. This

will allow us to see explicitly that the theory with superpotential (2.3) preserves the full

N = 2 supersymmetry in an appropriate sense. It will also make clear that the vacua at

ai
0 break the N = 1 supersymmetry which is manifest in the superpotential formalism while

preserving the “hidden” half. The results of this section are well-known and included only for

completeness4.

3.1 FI Terms and N = 2 Supersymmetry

To clearly discuss how the non-manifest supercharges act, let us rewrite the action using

N = 2 superspace. For this, we introduce a second set of superspace coordinates θ̃ and

consider two types of N = 2 chiral superfields: a generic N = 2 chiral superfield A and a

“reduced” N = 2 chiral superfield AD which satisfies the constraint

(

Da αDb
α

)

AD =
(

D
a

α̇D
b α̇
)

A†
D (3.1)

This constraint ensures that the “reduced” superfield AD contains only the component fields

of the off-shell N = 1 chiral and vector multiplets. The superfield A, on the other hand,

is unconstrained and hence contains several additional auxiliary fields. For example, if we

denote the θ2 component of AD by FD, the θ̃2 component is simply the complex conjugate

F̄D. By contrast, the θ̃2 component of A, which we denote by F̃ , has no a priori relation

to the θ2 component, F . A more detailed review of our N = 2 superspace and superfield

conventions and notation can be found in Appendix A.

To write FI terms, we introduce vectors of auxiliary components for both A and AD

Y =







i
(

F − F̃
)

F + F̃√
2D






YD =





i
(

FD − F̄D

)

FD + F̄D√
2DD



 (3.2)

where D and DD are the usual θθ̃ coefficients of A and AD, respectively. The action for the

theory (2.1) with superpotential (2.8) can now be written as

S ∼ 1

2
Im

[∫

d4x d2θ d2θ̃
(

F(Ai) −AiAD i

)

]

+
1

2
Re

∫

d4x
(

EiY
i +M iYD i

)

(3.3)

4We use the notation of Antoniadis et al [28]. See [42] for an SU(2)-covariant approach that is equivalent.
This formalism has also been recently reviewed in [33].
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with5

Ei =





Im ei

Re ei

0



 M i =





Immi

Remi

0



 (3.4)

To recover the N = 1 version of the action, we note that integrating out AD imposes the

reducing constraint on A, up to a subtlety involving mj that we will address later.

The first term of (3.3) is manifestly invariant under the full N = 2 supersymmetry while

the terms involving Y and YD also look invariant because we are used to F - and D-terms

transforming into total derivatives under supersymmetry transformations. However, as ex-

plained in Appendix A, the fact that A is not a reduced N = 2 superfield means that the

supersymmetry transformations of Y instead involve some of the extra auxiliary fields. More

specifically, the presence of eiF
i in the Lagrangian breaks the supercharge Q̃α associated to

the θ̃ coordinates while the presence of ēiF̃
i breaks the supercharge Qα associated to the θ

coordinates.

Because the first term of (3.3) has a piece that is linear in both A and AD, we can try to

remove this breaking by absorbing the F j and F̃ j parts of Y j through an appropriate shift of

AD. Written in component form, the relevant part of the action is

S = . . .− 1

2
Im

∫

d4x d2θ d2θ̃AiAD i +
1

2
Re

∫

d4x
(

EiY
i +M iYD i

)

= . . .+
1

2
Re

∫

d4x
[

iFD j

(

F̃ j − F̄ j
)

+ ēj

(

F̃ j + F̄ j
)

+ 2mjFD j

]

(3.5)

From this, we see that it is possible to absorb the F̃ j terms, and hence restore invariance

with respect to Qα, by shifting FD j → FD j + iēj . Alternatively, we can absorb the F j

terms, restoring invariance with respect to Q̃α, by shifting FD j → FD j − iēj . Note that it

is impossible to simultaneously absorb both sets of terms, so we cannot realize simultaneous

invariance with respect to both Qα and Q̃α in a standard manner6.

Nevertheless, as discussed in more detail in Appendix A, it is possible to realize both

supercharges if we modify the action of one of them to include possible inhomogeneous terms

in the transformation laws of fields. To see this, let us adopt for clarity the standard shift

FD j → FD j + iēj , which restores Qα-invariance and effectively sets

Re

∫

d4xEiY
i → Re

∫

d4x ejF
j (3.6)

5Note that we only consider electric and magnetic F terms here, setting the coefficients of all D terms to
zero. This choice explicitly breaks the SU(2)R invariance of the theory.

6The inability to do so can ultimately be traced to the reducing constraint for AD j which, among other

things, is responsible for the fact that its θ2 and θ̃2 components, FD j and F̄D j respectively, are indeed complex
conjugates of one another.
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Under Q̃α, this term transforms into the θ̃θ2 auxiliary component of the unreduced superfield

A. We can cancel this using the transformation of AiAD i, though, if we add an inhomogeneous

term proportional to θ̃ to the action of Q̃α̇ on AD [42]. In this manner, we are able to

demonstrate that the action (3.3) is in fact invariant under a full N = 2 supersymmetry,

though we can linearly realize at most half of it7. That such a nonlinear realization of a

subset of supercharges is possible despite the general arguments of [46] was first pointed out

in [47].

3.2 Conditions for Supersymmetry-Preserving Vacua

To study the conditions for a given vacuum to preserve some fraction of the N = 2 su-

persymmetry, it is sufficient to look at the transformation laws of the fermions in (3.3).

Grouping the supercharges Q, Q̃ and fermions ψj, λj into SU(2)R doublets QI = (Q, Q̃)T and

Ψj
I = (ψj , λj)T , we can write these simply as

ǫα KQα KΨj
β I ∼ ǫIJ

(

M(j)
)J

K
ǫKβ (3.7)

where8

(

M(j)
)J

K
=

(

0 F̃ j

F j 0

)

(3.8)

Consequently, we see that a vacuum preserves the Q (Q̃) supercharges when the expectation

values of the F j (F̃ j) vanish for all j. To compute these expectation values, we start by

integrating out AD. All of the terms required for this are written in (3.5) so it is easy to see

that the result is simply to set

F̃ j = F̄ j + 2imj (3.9)

The expectation value of F j is then obtained by studying the F -term potential

1

2
Im
(

F̃ jτjkF
k
)

+
1

2
Re
(

ēj(F̃
j + F̄ j)

)

(3.10)

and concluding that

F̄ j = −
(

Im τ−1
)jk (

ek +mℓτℓk
)

F̃ j = −
(

Im τ−1
)jk (

ek +mℓτ̄ℓk
)

(3.11)

Consequently, we see that vacua for which (e+ τm)j = 0 preserve the Q supercharges while

vacua for which (e+ τ̄m) = 0 preserve the Q̃ supercharges.

7Similar structure also appears in the Abelian N = 2 Born-Infeld theories of [43], which admit a nonlinear
realization of an additional N = 2 supersymmetry. Requiring such a nonlinear realization to exist also provides
a guiding principle for constructing suitable non-Abelian extensions [44]. For a review, see [45].

8In general, M(j) will take the form

(

Dj F̃ j

F j −Dj

)

but we have set Dj = 0 because we only consider adding

electric and magnetic F -terms to the theory.
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3.3 SUSY or non-SUSY at ai
0

Returning to the theory of section 2, if we recall that the combination of electric and magnetic

FI terms that arose had coefficients ei and mj satisfying (e + τ̄0m)j = 0, it immediately

follows that the vacuum at ai
0 is a supersymmetric one which preserves the non-manifest Q̃

supercharges. When the superpotential is truncated as in [22], however, we break invariance

under Q̃ at the level of the action and the ai
0 then become supersymmetry-breaking vacua.

At first glance this might seem strange because the higher order terms of (2.4) that we

neglect when truncating do not affect the value of the scalar potential at τ0, which is given

by

V = k̄i

(

Im τ−1
0

)ij
kj = (ei +mjτ0 ki)

(

Im τ−1
0

)ij (

ej +mℓτ0 ℓj

)

(3.12)

Because this quantity is manifestly positive9, our intuition suggests that ai
0 should be a

supersymmetry-breaking vacuum.

It is important to note, however, that having positive energy (3.12) is not sufficient for a

vacuum to be supersymmetry-breaking because we are in principle free to shift our definition

of energy by a constant amount. It is the specific quantity that appears in the supersymmetry

algebra which matters and to determine this may require a bit more work. In the truncated

theory, the situation is actually pretty simple because there are vacua at the singular points

in moduli space which preserve the manifest N = 1 supersymmetry. Setting the energy of

these vacua to zero fixes any ambiguity and leaves us with the result (3.12).

The theory with full superpotential (2.3), on the other hand, exhibits no such vacua. The

reason for this is that the superpotential is singular at the degeneration points. In fact, the

full superpotential is actually multivalued on the moduli space with branch points where the

supersymmetric vacua of the truncated theory would otherwise be. It was already noted in [22]

that the Kähler normal coordinates might not be globally defined and our connection to FI

terms makes this explicit. This change in the global structure of the theory suggests that we

have to re-examine our definition of energy. To do so, let us start with the N = 2 formulation

(3.3). In the conventional approach, where the Qα supercharges are linearly realized, we shift

FD j → FD j + iēj in the action (3.3) which effectively removes the F̃ j from the second term

of (3.10). In this case, the scalar potential is easily seen to be

V = (ei +mjτki)
(

Im τ−1
)ij (

ej +mℓτℓj
)

(3.13)

in accordance with our result for the energy (3.12) of the ai
0 vacuum above. That this quantity

fails to vanish at ai
0 simply means that the N = 1 supersymmetry generated by the Qα is

broken there.
9The combination of ei + mkτ̄0 ki = 0 and Im τ0 > 0 imply that ei + mkτ0 ki 6= 0.
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On the other hand, to linearly realize the Q̃α supercharges, we saw before that it is

necessary to instead shift FD j → FD j − iēj in (3.3). This effectively removes the F̄ j from the

second term of (3.10), leading to the scalar potential

Ṽ = (ei +mkτ̄ki)
(

Im τ−1
)ij (

ej +mℓτ̄ℓj
)

= V + 4Im
(

ēim
i
)

(3.14)

In other words, if we choose to linearly realize the N = 1 supersymmetry preserved by the

vacuum at ai
0, the definition of energy (3.14) appropriate for that choice differs from (3.13)

by a constant shift10. As expected, this suitably-defined energy vanishes at ai
0.

3.4 Inclusion of D-terms

To this point, we have only considered the addition of F -terms to the theory. The motiva-

tion for such a restriction is that the superpotential (2.3) constructed from Kähler normal

coordinates generates only these. Nevertheless, one can also consider the addition of D terms

to the story. We digress for a moment to consider this case and argue that generically all

supersymmetry is broken. This situation has recently been discussed by [39] in the context

of IIB constructions and is included here only for completeness.

In general, FI-terms are characterized by the 2(N − 1) 3-vectors ~Ej and ~Y j of (3.4)

which transform under SU(2)R. With our choice of basis, non-vanishing D-terms correspond

to ~Ej and/or ~Yj having nonzero third components11. Let us now suppose, for a moment,

that a supersymmetric vacuum exists. Using an SU(2)R rotation, we can change the original

supercharges Q1 andQ2 into another set of supercharges Q′
1 andQ′

2 such that theQ′
1 annihilate

the vacuum. Generalizing (3.8) along with (3.11), the transformation matrix M is now given

by
(

M(j)
)J

K
= −

(

Im τ−1
)jk

(

ξk + ξl
Dτ̄lk ek +mlτ̄lk

ēk + m̄lτ̄lk −ξk − ξl
Dτ̄lk

)

. (3.15)

where ξk and ξl
D are real and generically nonzero. Since we assume that Q′

1 annihilates the

vacuum, the vector

(

1
0

)

should be annihilated by
(

M(j)
)J

K
for all j. To that end, we want

ξk + ξl
Dτ̄lk = 0 and ek +mlτlk = 0 for all k . (3.16)

The first condition cannot be satisfied, though, unless ξk = ξk
D = 0 for all k since Im τlk is

positive definite. Therefore, in N = 2 supersymmetric language, a necessary condition to

10From the analysis of section 3.2, we also see that it is the vanishing of Ṽ that is required for preservation
the corresponding N = 1 supersymmetry.

11In general, we will have nonzero D-terms for all choices of basis if ~Ei and ~Y j are not all coplanar.
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have a supersymmetric vacuum is that the 2(N − 1) vectors ~Ej and ~M j lie on a common

plane. For SU(2) gauge theory, this is always possible since there are only two vectors, but

for higher gauge groups, generic FI terms necessarily break all of the supersymmetry.

4 Critical Points, Stability, and Non-supersymmetric Vacua

It should now be clear that the theory obtained by adding a superpotential (2.3) constructed

from exact Kähler normal coordinates is significantly different from that obtained by trun-

cating the series (2.4). This also suggests that the vacuum structure away from ai
0 may be

fundamentally different as well.

This opens up a new problem, though, namely to understand the full vacuum structure

of theories of the form (2.1) in the presence of superpotentials

W = eia
i +miaD i (4.1)

for generic choices of ei and mj . In this section, we will take some initial steps along these

lines. More specifically, we classify non-supersymmetric critical points, study the conditions

for stabilizing them, and demonstrate that, in the simple example of a rank two gauge group,

one can engineer stable vacua which break the full N = 2 supersymmetry in part of the

perturbative regime by choosing the ei and mj appropriately.

4.1 Stability Conditions and Supersymmetric Vacua

The principal object that controls the vacuum structure is the scalar potential constructed

from (4.1). To start, let us write it in a covariant manner with respect to the Kähler metric

gij̄ of the Coulomb branch

V =
(

∇īW
)

g īj (∇jW ) (4.2)

Critical points of this potential satisfy

∇kV =
(

∇īW
)

g īj (∇k∇jW ) = 0 (4.3)

while stability is determined by studying the second partials

∇ℓ̄∇kV =
(

∇ℓ̄∇īW
)

g īj (∇k∇jW ) +
(

∇īW
)

g ījRm
jℓ̄k (∇mW )

∇ℓ∇kV =
(

∇īW
)

g īj (∇ℓ∇k∇jW ) .
(4.4)

From this, we see that the easiest way to find critical points is to impose either ∇iW = 0

or ∇k∇jW = 0. For the former, it immediately follows from (4.4) that the resulting critical
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points are stable. For the latter, the same is also true at generic points provided ∇ℓ∇k∇jW

also vanishes because the Rm
jℓ̄k

term of (4.4) is positive (semi-)definite.

These two types of vacua are in fact nothing other than the supersymmetric ones we have

studied thus far. To see this, we simply evaluate ∇iW and ∇j∇kW in special coordinates,

for which gij̄ = Im τij . Because the only nonvanishing Christoffel connections are

Γi
jk = −gkℓ̄∂jg

iℓ̄ (4.5)

and their conjugates, this is particularly simple and results in

∇iW = ei + τijm
j

∇i∇jW = − 1

2i
Fijn (Im τ)nk (ek + τ̄ksm

s)
(4.6)

The supersymmetric vacuum that preserves Q is simply the ∇iW = 0 case while the super-

symmetric vacuum that preserves Q̃ corresponds to ∇i∇jW = 0. Note that there is no issue

with stability of the latter because ∇k∇i∇jW = 0 when (e+ τ̄m)j = 0 12.

4.2 Non-supersymmetric Vacua

While it is comforting to see the supersymmetric vacua and their stability emerging naturally

from this framework, it is at the same time disappointing that the simplest ways to realize

critical points of the potential fail to yield anything new.

In principle, the mechanism by which new critical points of the potential can be found is

quite simple. We need a mixture of sorts of the supersymmetric and hidden supersymmetric

cases where g īj∇īW and ∇k∇jW are both nonzero but, in a suitable basis, have complemen-

tary components vanishing so that the contraction in (4.3) is zero. Unfortunately, there is

no apparent reduction in complexity of (4.4) in this case so it is difficult to spell out simple

conditions for a vacuum constructed in such a manner to be stable.

To describe the idea more precisely, let us drop the covariant notation of (4.3) and (4.4)

and instead re-express the various derivatives of V in special coordinates as

∂qV = − 1

2i
F fFqfeF̃

e (4.7)

and

∂p∂qV = − 1

2i
F f

(

Fpqfe −
1

2i

[

Fpfm

(

Im τ−1
)mn Fqne + (p↔ q)

]

)

F̃ e

∂̄p̄∂qV =
1

4

[

¯̃
F aFpam

(

Im τ−1
)mn FqnbF̃

b + F aFqam

(

Im τ−1
)mn FpnbF̄

b
]

(4.8)

12Even though this second order analysis only guarantees stability when the positive semi-definite term
involving Rm

jℓ̄k
does not have any flat directions, we know from the fact that the (e + τ̄m)j = 0 vacua

preserve an N = 1 supersymmetry that the higher order analysis required when this condition fails must lead
to stability.
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where F a and F̃ b are the auxiliary field expectation values of (3.11).

In general, rather than looking for stable vacua at fixed ei and mj , we will find it easier to

reverse our thinking and approach the problem in a manner analogous to [22]. So, we instead

specify a point u0 along the Coulomb branch at which we would like to engineer a stable

critical point and develop an algorithm for obtaining values ei and mj that do the job, if such

exist.

To aid in this task, let’s first use (4.7) and (4.8) to study the general structure of

supersymmetry-breaking vacua. The first thing to note is that the vectors F a and F̃ a at

such a vacuum can never be parallel. The reason for this is that a critical point for which

they are parallel satisfies F̄ p̄∂̄p̄∂qV F
q = 0 from (4.7) and (4.8) and

(

eiφF p e−iφF̄ p̄
)

(

∂p∂̄q̄V ∂p∂qV

∂̄p̄∂̄q̄V ∂q∂̄p̄V

)(

e−iφF̄ q̄

eiφF q

)

= 2Re (e2iφF p∂p∂qV F
q) , (4.9)

where φ is a real phase. There is always a choice of φ for which this is negative so we see that

such a critical point can never be stable. Incidentally, this means that for real ei and mj ,

achieving a metastable supersymmetry-breaking vacuum is impossible since F a = F̃ a in this

case. Since neither ei + τijm
j = 0 nor ei + τ̄ijm

j = 0 is not attainable either, the only possible

minimum occurs when the metric is singular. That is, when we have a dyon condensation

point and the dyon charge is proportional to (ei, m
j), the effective potential vanishes at that

point and we have a supersymmetric vacuum there.

Let us now consider a coordinate transformation matrix Qi
i′ under which Fqfe transforms

as

Fqfe → F ′
q′f ′e′ = FqfeQ

q
q′Q

f
f ′Q

e
e′ (4.10)

Because F a and F̃ a are not parallel, we can always perform a coordinate transformation Qi
i′

so that the only non-vanishing component of F a (F̃ a) is the first (second) one. In this basis,

Fq12 = 0 for all q.

It should now clear how to engineer a critical point at u0 that can potentially be stabilized.

Given F , we use a coordinate transformation (4.10) so that Fq12 = 0 for all q. Such a

coordinate transformation should generically exist because we have (N−1)2 degrees of freedom

in Q to satisfy only N − 1 conditions. With such a Q, we then choose values of F a and F̃ a as

F = Q











ζ

0
0
...











F̃ = Q











0
ξ

0
...











(4.11)

Once such a choice is made, we can generically solve (4.11) for the corresponding values of ei

and mj because this is a system of 2(N − 1) linear equations in 2(N − 1) variables.

12



Now that we have constructed critical points, we must turn to the question of their stabil-

ity. Given that we can actually engineer families of critical points parametrized by ζ and ξ,

one might hope that there is enough freedom left over to achieve stability as well. Studying

this issue is very complicated in practice, though, so to demonstrate the principle in action

we focus on the most basic example we can find. It is clear that vacua of this sort cannot be

generated when the gauge group has rank 1, so we turn instead to the rank 2 case of SU(3)

Seiberg-Witten theory.

4.3 An SU(3) Example

In what follows, we shall work exclusively in the perturbative regime ai ≫ Λ, where the

Seiberg-Witten prepotential F appearing in (2.1) takes the approximate form [48]

F(ai) =
i

4π

3
∑

i<j

(ai − aj)
2 ln

[

(ai − aj)
2

Λ2

]

(4.12)

We will henceforth set Λ = 1 and use the coordinate basis

x = a2 − a1 y = a3 − a2 (4.13)

In terms of these, the prepotential is given by a simple expression

F =
i

4π

(

x2 lnx2 + y2 ln y2 + (x+ y)2 ln(x+ y)2
)

(4.14)

The various derivatives we shall need when studying (4.7) and (4.8) are now easily evaluated.

We start with the period matrix

τ =
i

2π

(

6 + lnx2 + ln(x+ y)2 3 + ln(x+ y)2

3 + ln(x+ y)2 6 + ln y2 + ln(x+ y)2

)

(4.15)

and proceed to its derivatives

∂xτij = Fxij =
i

π(x+ y)

(

2 + y

x
1

1 1

)

∂yτij = Fyij =
i

π(x+ y)

(

1 1
1 2 + x

y

)

(4.16)

and second derivatives

Fxxij =
1

iπ(x+ y)2

(

2 + 2
(

y

x

)

+
(

y

x

)2
1

1 1

)

Fxyij =
1

iπ(x+ y)2

(

1 1
1 1

)

Fyyij =
1

iπ(x+ y)2

(

1 1

1 2 + 2
(

x
y

)

+
(

x
y

)2

)

(4.17)
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In this simple example, we can set Fq12 = 0 using a transformation of the form (4.10) with

Q given by

Q =

(

−x x+ y +
√

(x+ y)2 − xy

x+ y +
√

(x+ y)2 − xy −y

)

(4.18)

To find a choice of ei, m
j for which the potential has a critical point at (x0, y0), we turn then

to the equations

F = Q

(

ζ

0

)

F̃ = Q

(

0
ξ

)

(4.19)

where here ζ and ξ are nonzero constants that we are free to choose, Q is as in (4.18), and

F, F̃ are given in terms of ei, m
j , τkℓ as in (3.11). Given our result (4.18) for Q, (4.19) is

equivalent to the requirement

F = −ζ
( −x
x+ y +

√

(x+ y)2 − xy

)

, F̃ = −ξ
(

x+ y +
√

(x+ y)2 − xy

−y

)

(4.20)

As mentioned before, we generically expect that it is possible to choose ei, m
j for any

nonzero choice of ζ and ξ such that (4.20) is satisfied at a fixed point (x0, y0). From this point

onward, we will assume that the situation is indeed generic and take the existence of such a

solution for granted.

4.3.1 Stability

Engineering a critical point is one matter but achieving stability is the real challenge. However,

as we will now demonstrate through a simple scaling argument, it is possible to take advantage

of the freedom to adjust ζ and ξ to choose FI terms that engineer stable supersymmetry-

breaking vacua in part of the perturbative regime.

In particular, let us consider the regime y ≫ x≫ 1. We will now show that if we choose ζ

and ξ to be of order 1, the critical point constructed by solving (4.19) is always locally stable.

Expanding the Hessian

H =

(

∂p∂̄q̄V ∂p∂qV

∂̄p̄∂̄q̄V ∂q∂̄p̄V

)

(4.21)

at the critical point, it is straightforward to check whether the eigenvalues λ1 · · ·λ4 of H are

all positive. In the limit mentioned above, H scales near infinite y as follows:

H =









h11y
2 h12y h13y h14

h21y h22 h14
h24

y

h31y h41 h11y
2 h21y

h41
h42

y
h12y h22









(4.22)
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where the hij depend logarithmically on y (and on x, ξ, ζ). To leading order in y, the four

eigenvalues are

h11y
2 and

h11h22 − h12h21

h11

, (4.23)

with multiplicity two for each. Since the matrix ∂p∂̄q̄V is positive definite from (4.4) , the

critical point is locally stable.

To illustrate potential subtleties that can arise when studying stability, let us also consider

a second regime, namely x ∼ y ≫ 1. If we use r to denote the scale of x and y, the quantities

appearing in (4.8) behave at large r as

τij ∼ ln r

Fijk ∼ r−1

Fijkℓ ∼ r−2

F ∼ ζr

F̃ ∼ ξr

(4.24)

This means that ∂p∂qV ∼ ζξ while ∂̄p̄∂qV ∼ ζ2(ln r)−1 +ξ2(ln r)−1 at large r. If we take ζ and

ξ to be of order 1 in this case, then the ∂p∂qV terms dominate and the Hessian necessarily

has at least one negative eigenvalue.

Given the above scalings, though, one might naively think that stability can be achieved

by taking ζ to be very large, say ζ ∼ r for example, and ξ to be small, as in ξ ∼ r−1,

because this ensures that the dominant contribution to the Hessian comes from ∂̄p̄∂qV . This

looks good for stability but unfortunately ∂̄p̄∂qV has an obvious flat direction in this case

proportional to F̃ q because

F aFqamF̃
q = 0 (4.25)

The corresponding zero eigenvalue is generically lifted by the next-leading contribution to

the Hessian, which comes from the off-diagonal term ∂p∂qV . This means that the leading

correction to this zero eigenvalue is in fact negative and our critical point is actually unstable.

5 Connection with Flux Compactifications

Until now, we have mainly focused on the field theory perspective of Seiberg-Witten theo-

ries deformed by electric and magnetic FI terms. Here we will briefly discuss the geometric

realization of the vacua that we have studied so far in the context of string theory compact-

ifications in the presence of NS and RR fluxes. In a series of papers [49], Seiberg-Witten

theories were geometrically engineered in Type IIA and IIB string theories compactified on
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Calabi-Yau manifolds in a rigid limit of special geometry. For example, in type IIB, SU(N)

Seiberg-Witten theory was realized on a geometry constructed as a K3 fibration over a P1

base. Near the singular locus of K3 over P1, the Calabi-Yau manifold becomes

z +
Λ2N

z
+ 2WAN−1

(x1, ui) + 2x2
2 + 2x2

3 = 0,

where WAN−1
(xk, ui) corresponds to the characteristic polynomial of the Seiberg-Witten the-

ory.

Non-vanishing NS and RR fluxes, H = HRR + τstHNS, generate a superpotential [50] and

lift the vacuum degeneracy in the Calabi-Yau manifold [32],

WGV W =

∫

H ∧ Ω =

∫

Bi

H

∫

Ai

Ω −
∫

Ai

H

∫

Bi

Ω

≡ eia
i +miaD i

where (Ai, Bi) = δij comprise a symplectic basis of three-cycles. Since the integrals of the

holomorphic 3-from, Ω, are naturally identified with the periods of Seiberg-Witten theory

while turning on generic fluxes yields a set of complex valued (ei, m
j), we can realize the

model treated in this paper by adding fluxes appropriately.

Supersymmetry-breaking in Calabi-Yau compactifications of this sort have also appeared

in connection with brane/antibrane systems in [31] and more recently in [33–39]. In particular,

a notion of geometric transition involving gauge/gravity duality was generalized to the non-

supersymmetric setting, allowing configurations of branes and antibranes to be studied using

the same sort of Abelian gauge theory with FI terms considered in the present paper. Because

the vacua studied here have natural realizations on the flux side in this context, it would be

interesting to follow the geometric transition in reverse and study them from this perspective.

The flux realization of the model with FI terms also gives us a clear picture of how the

potential behaves near a singular point in moduli space. At such a point, a massless dyon

with charges (ne
i , n

m
i ) emerges and the corresponding cycle γ = ne

iAi + nm
i Bi shrinks. When

we turn on generic FI-terms, the scalar potential diverges there for the simple reason that

non-zero fluxes penetrate the cycle
∫

γ

H = ne
iei − nm

i mi 6= 0.

and render infinite the energy cost associated with closing it up.
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A N = 2 Superfields, FI Terms, and Nonlinear Realization of Su-

persymmetry

In this Appendix, we make explicit our superfield conventions and discuss the nonlinear

realization of N = 2 supersymmetry of the action (3.3) in greater detail. The results of this

appendix are not new but we present them in this component language for both clarity and

completeness.

A.1 N = 2 Superspace and Superfields

We shall work in the N = 2 superspace conventions of [52] with two anticommuting coordi-

nates θα and θ̃α. The standard realization of N = 2 supersymmetry on this space is through

the operators

Qα =
∂

∂θα
− i(σµθ̄)α∂µ Q̃α =

∂

∂θ̃α
− i(σµ ¯̃

θ)α∂µ (A.1)

and their conjugates. A generic chiral N = 2 superfield, A can be constructed from two chiral

N = 1 superfields, Φ and G, along with a chiral N = 1 spinor superfield Wα as

A(ỹ, θ, θ̃) = Φ(ỹ, θ) + i
√

2θ̃W (ỹ, θ) + θ̃2G(ỹ, θ) (A.2)

where ỹµ = xµ + iθσµθ̄ + iθ̃σµ ¯̃
θ. The N = 1 superfields admit further component expansions

Φ(ỹ, θ) = φ(ỹ) +
√

2θψ(ỹ) + θ2F (ỹ)

Wα(ỹ, θ) = −iλα(ỹ) + θγ

(

δγ
αD(ỹ) − i

2
(σµσ̄νθ)γ

α Fµν(ỹ)

)

− iθ2ξα(ỹ)

G(ỹ, θ) = F̃ (ỹ) +
√

2θη(ỹ) + θ2C(ỹ)

(A.3)

Note that Wα does not satisfy any constraints so it is not quite the superfield with which

we are used to constructing N = 1-invariant actions. In particular, Fµν does not satisfy the

Bianchi identity and ξα is not proportional to
(

σµ∂µλ̄
)

α
.

Let us now consider a chiral superfield AD satisfying the additional reducing constraint

(3.1), which we repeat here for convenience

(

Da αDb
α

)

AD =
(

D
a

α̇D
b α̇
)

A†
D (A.4)
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This again admits an expansion of the sort (A.2)

AD(ỹ, θ, θ̃) = ΦD(ỹ, θ) + i
√

2θ̃WD(ỹ, θ) + θ̃2GD(ỹ, θ) (A.5)

The corresponding N = 1 expansion, though, becomes

ΦD(ỹ, θ) = φD(ỹ) +
√

2θψD(ỹ) + θ2FD(ỹ)

Wα D(ỹ, θ) = −iλα D(ỹ) + θγ

(

δγ
αDD(ỹ) − i

2
(σµσ̄νθ)γ

α Fµν D(ỹ)

)

+ θ2σ
µ

αβ̇
∂µλ̄

β̇
D(ỹ)

GD(ỹ, θ) = F̄D(ỹ) + i
√

2
(

θσµ∂µψ̄D(ỹ)
)

− θ2∂2φ̄D(ỹ)

(A.6)

with

∂[µFνρ]D = 0 (A.7)

Note that the reduced N = 2 superfield differs from the unconstrained one in several ways.

In addition to Fµν D satisfying the Bianchi identity, the θ2 component of Wα D as well as the θ

and θ2 components of GD are no longer independent but instead are given by total derivatives

of other component fields. Finally, the bottom component of GD is an auxiliary field which

is not independent but instead set to the complex conjugate of the top component of ΦD,

denoted FD.

A.2 Supersymmetry Transformations of the Action (3.3)

We now turn our attention to the action (3.3), repeated here for convenience

S =
1

2
Im

[
∫

d4x d2θ d2θ̃
(

F(Ai) −AiAD i

)

]

+
1

2
Re

∫

d4x
(

EiY
i +M iYD i

)

(A.8)

With the above expansions of A and AD, it is straightforward to write (A.8) in components

and demonstrate that integrating out AD when Ei = M j = 0 indeed simply causes A to

become a reduced N = 2 chiral superfield. The situation of vanishing Ei and M j is also

one in which the action (3.3) clearly preserves N = 2 supersymmetry because it is simply

the top component of an N = 2 chiral superfield, which transforms into a total derivative.

What we will focus on in the remainder of this appendix, though, is the realization of N = 2

supersymmetry when Ei and M j are nonzero.

Written in component form, the FI terms in (A.8) are given by

1

2
Re

∫

d4x
(

EiY
i +M iYD i

)

=
1

2

∫

d4x
{

Re
(

eiF
i + ēiF̃

i
)

+ Re (2mFD)
}

(A.9)

Because FD is the θ2 component of a reduced N = 2 superfield, it is easy to see that it

transforms into a total derivative under the action of all N = 2 generators (A.1). This is not
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so for F and F̃ , though, as there are two problematic non-derivative transformations

ǫQ̃F =
√

2ǫξ ǫQF̃ =
√

2ǫη (A.10)

If A were reduced, the ξα would be proportional to (σµ∂µλ̄)α while ηα ∼ (σµ∂µψ̄)α. In this

case, the RHS of (A.10) would consist of total derivatives and invariance of (A.9) would be

assured. As it stands, however, (A.9) is not preserved by either Qα or Q̃α.

As mentioned in the text, we can try to improve the situation by suitably adjusting the

transformation law of AD. In particular, because AD appears in (3.3) only via a term which

is linear in both A and AD, we can try to absorb the terms on the RHS of (A.10) by suitably

shifting the transformation laws of component fields of AD. Indeed, expanding in components

we see that ξi and ηi appear in the AAD term as

∫

d2θ d2θ̃
(

−AiAD i

)

= . . .+
1

2
Im
(

λD iξ
i + ψD iη

i
)

+ . . . (A.11)

This means that the full action (A.8) can be made invariant under the full N = 2 supersym-

metry if we modify the transformation laws of λD and ψD under Q̃ and Q from

(

ǫQ̃
)

λα D =
√

2ǫαF̄D (ǫQ)ψα D =
√

2ǫαFD (A.12)

to
(

ǫQ̃
)

λα D =
√

2ǫα
(

F̄D − ie
)

(ǫQ)ψα D =
√

2 (FD − iē) (A.13)

Because of the inhomogeneous terms now present in these transformation laws, the realiza-

tion is no longer linear. We can linearize one of the supercharges, though, by shifting FD

appropriately. In particular, if we take FD → FD + iē then the Q transformation of ψα D

becomes linear. As shown in the text, this can be understood by noting that such a shift also

effectively removes the eiF
i term from the action. On the other hand, taking FD → FD − iē

renders the Q̃ transformation of λα D linear. In this case, the shift of FD effectively removes

the ēiF̃
i term from the action. Note that, while we have a choice to linearly realize either

supersymmetry, it is impossible to simultaneously do so for the full N = 2 supersymmetry

algebra. This implies that at most N = 1 supersymmetry can be realized in vacua of the

model (A.8).
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