
Formalizing synthesis in TLA+

Ioannis Filippidis and Richard M. Murray

Control and Dynamical Systems
California Institute of Technology
{ifilippi,murray}@caltech.edu

December 23, 2016

Abstract

This report proposes a TLA+ definition for the problem of constructing
a strategy that implements a temporal property. It is based on a note by
Lamport [1] that outlines a formalization of realizability in TLA. The
modified definition proposed here is expressed axiomatically in TLA+.
Specifying what function is acceptable as a strategy requires care, so that
a function with empty domain be avoided, while ensuring that the strategy
will not need to have a domain too large to be a set.

We prove that initial conditions should appear in assumptions only,
unless an initial predicate is added to the definition of a realization. We
show that a specification should include an assumption about a set of
initial values to ensure that realizability does not become unprovable. We
discuss what form of open-system properties expressed with the “while-
plus” operator +−▷ are realizable.

We formalize the notions of interleaving and disjoint-state behaviors,
based on definitions given by Lamport and Abadi, and consider the no-
tion of interleaving for an open-system property. We give examples of
expressing different forms of games in TLA+ using the proposed defini-
tion, including games with partial information.

Contents

1 Motivation 3

2 Functions as strategies 3

3 Specifications that functions can implement 4
3.1 Initial conditions . 4
3.2 From where should a strategy matter? 6

3.2.1 Interpretation vs model 7
3.2.2 Recursively structured interpretation 8

1

3.2.3 TLA+ function axioms . 11
3.2.4 When realizability is unprovable 11

3.3 Placing initial conditions . 14

4 Defining realizability and synthesis 17
4.1 Sharing variables . 17
4.2 Realizability . 17
4.3 Synthesis . 21

5 Who changed each variable 22
5.1 Behaviors . 22

5.1.1 Interleaving . 22
5.1.2 Shared or disjoint state 23
5.1.3 Remarks . 24

5.2 Properties . 25
5.2.1 Interleaving . 25
5.2.2 Shared or disjoint state 25
5.2.3 Open-system specifications 25
5.2.4 Stepwise type precondition needed inside G 26

5.3 Synchronous games with full information 27

6 Discussion 28
6.1 Specifying a type invariant is not restrictive 28
6.2 Variants for defining realizability 29
6.3 Interpretations and models . 30

7 Conclusion 31

A Proofs 32

B Auxiliary results 56

C Lamport’s definition of realizability 65

2

1 Motivation

A TLA+ formula φ describes some behaviors1. Constructing an implementation
is a separate concern. In TLA+, implementation is implication between two
properties ψ ⇒ φ. Synthesis is the construction of an implementation ψ that
we can run on a computer. A computer only knows how to execute some concrete
steps, so the synthesized property ψ should be expressed in terms of these steps.

In order to define synthesis, we must describe what our computer can do, for
example what variables it can change. A specification for the synthesis problem
describes precisely what it means to control a variable. Formalizing the notion
of variable controllability was one motivation for what follows.

Another reason was the observation that, in the literature on games, a strat-
egy is sometimes allowed to be a partial function. The intention is that a smaller
domain may suffice to define a winning strategy. However, such a definition can
leave unspecified what happens outside the strategy’s domain2. If plays outside
the strategy’s domain are declared as impossible due to typeness considerations,
then a function with empty domain would qualify as a winning strategy3. The
definition of synthesis formalized below in TLA+ aims to avoid such ambiguity,
a symptom of using a typed logic [5, 6, 7].

2 Functions as strategies

We want to define the solution of a game in TLA+. Several other definitions of
this problem exist in the literature. Based on the definition outlined in [1], we
give a TLA+ definition that is general enough to serve for more than one kind
of game, including games of partial information.

We have to choose what qualifies as a strategy. Is an operator a strategy?
A strategy reads the current state and writes (part of) the next state. So, a
strategy operator must take arguments. To express realizability, we will want
to quantify over system strategies. TLA+ is a first-order logic, so we cannot
quantify over unary operators [8, p.318], [5, p.508]. In order to quantify over
strategies, a strategy should be a set. We want to use a strategy as a mapping.
There are several alternative ways for defining sets that can serve the purpose
of mappings [6, p.4]. We prefer to let a strategy be a function f , similarly to
[1, 9, 10]. This requirement can be expressed axiomatically in TLA+ with the
predicate

IsAFunction(f)
∆
= f = [x ∈ domain f 7→ f [x]]

[8, p.303]. This is convenient, because it does not mention a set of candidate
strategies, and leads to a simpler definition of synthesis below. This predicate

1Any formula describes a collection of behaviors too large to be a set (a proper class).
2A partial function f can lead the game outside its domain, artificially terminating it.
3Non-axiomatic definitions of synthesis that avoid this have been given using partial func-

tions [2, p.46], [3, p.367], [4, p.915]. They are informal, and more complex, because trivial
solutions need to be expressly excluded.

3

can be written equivalently as

IsAFunction(f) = ∃S : ∧ S = domain f
∧ f = [x ∈ S 7→ f [x]].

We are about to construct a function f suitable for our purpose, and so choose
domain f . This choice raises the question of what specifications admit a func-
tion as strategy.

3 Specifications that functions can implement

3.1 Initial conditions

Somewhat simplified, function f reads the variables x , h and controls the next
value of x ,

Definition 1 (Simple realization) Let

ψ(x , h, f)
∆
= 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩.

The objective of this control law is to implement the property φ(x , h) that
mentions only the variables x and h, and does not mention the constant f .
Proving that f implements the property φ(x , h) (roughly) means proving that

|= ψ(x , h, f) ⇒ φ(x , h).

Above, we decided that a strategy should be a function f , so we want

|= ∧ IsAFunction(f)
∧ ψ(x , h, f) ⇒ φ(x , h).

Any property φ implies an initial (state) predicate Init(x , h), even if it is trivial
(true). We will show that for ψ to implement φ:

1. ψ should contain a (non-trivial) initial predicate, or

2. no initial state should violate φ.

For any initial value u of x , we will construct a behavior that satisfies ψ but
violates φ. The proofs are in Appendix A. The proof style is described in [11].
The operator ∃∃∃∃∃∃ expresses temporal existential quantification [8, §8.8, p.109].

Proposition 2
Assume: 1. constants u, f (rigid variables)

2. variable h (flexible variable)
Prove: ∃∃∃∃∃∃ x : ∧ x = u

∧ 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩

4

In words, for any behavior4 there exists some stutter-equivalent x -variant be-
havior that satisfies (x = u) ∧ 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩. The proof is written at
the meta-level, in Zermelo-Fraenkel (ZF) set theory [12]. For this reason, we
translate the statement to ZF, using definitions from [8, p.316], and

(1) ∀behavior σ : F
∆
= ¬∃behavior σ : ¬F = ∀σ : IsABehavior(σ) ⇒ F

Proposition 3
Assume: 1. constants u, f

2. variables h, x
Prove: ∀behavior σ : ∃behavior τ : ∧ τ ∼ xσ

∧ τ |= ∧ x = u
∧ 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩

Proof: on page 34.

[Proposition 3] Proof sketch: Given any behavior σ and TLA+ constant u,
pick a behavior τ with5

τ [n ∈ Nat] ≜ if n = 0 then [σ[0] except !JxK = σ[0]JuK]
else [σ[n] except !JxK = τ [n − 1]Jf [⟨x , h ⟩]K]

By construction, all steps6 of τ satisfy the action x ′ = f [⟨x , h ⟩], and initially
x = u. This construction is possible because f and ⟨x , h ⟩ are sets, and TLA+ an
untyped logic, so the expression f [⟨x , h ⟩] is syntactically well-formed [8, p.71].
In an untyped logic, every syntactically well-formed expression is interpreted as
some set [8, p.67]. So, the expression f [⟨x , h ⟩] has some set as meaning.

Next, we show that if some initial states violate φ then no function f can
implement φ with ψ.

Lemma 4
Assume: 1. state Init(x , h)

2. temporal φ(x , h)

3. No variable symbols other than x , h occur in φ(x , h)

4. ψ as defined in Definition 1

5. φ(x , h) ⇒ Init(x , h)

6. ∃ u, r : Init(u, r) ≡ false
Prove: ∀ f : ∃∃∃∃∃∃ x , h : ψ(x , h, f) ∧ ¬φ(x , h).

4In Proposition 2, the proof goal is equivalent to its universal closure [13, p.5].
5Using TLA+ notation also for ZF, ! refers to the function being defined. The variable

interpretation stateJuK is defined in [8, p.311].
6A step of a behavior is defined in [8, p.16].

5

Realization ψ(x, h, f) φ(x, h)

Init(x, h)

initial states that

violate φ

any state
can be initial

from any initial state
there exists some behavior
that satisfies ψ

τ

⟨x, h⟩ = ⟨u, r⟩

Figure 1: If some initial state violates φ, and no initial predicate I is included
in the realization ψ, then φ is unrealizable.

Proof: on page 36.

[Lemma 4] Proof sketch: We can pick initial values u, r such that

(⟨x , h ⟩ = ⟨u, r ⟩) ⇒ (Init(x , h) ≡ false)

By contrapositive of assumption 5

¬Init(x , h) ⇒ ¬φ(x , h)

So

(2) (⟨x , h ⟩ = ⟨u, r ⟩) ⇒ ¬φ(x , h)

By Proposition 2, which holds ∀∀∀∀∀∀ h (universal closure)

(3) ∃∃∃∃∃∃ x , h : ∧ ⟨x , h ⟩ = ⟨u, r ⟩
∧ ψ(x , h, f)

By Eqs. (2) and (3), for any f

∃∃∃∃∃∃ x , h : ∧ ψ(x , h, f)
∧ ⟨x , h ⟩ = ⟨u, r ⟩

⇒

∃∃∃∃∃∃ x , h : ψ(x , h, f) ∧ ¬φ(x , h).

3.2 From where should a strategy matter?

Suppose that behaviors that assign arbitrary values to x , h can violate the prop-
erty φ(x , h). No function f in the property ψ(x , h, f) can provably implement

6

φ(x , h) in this case, because domain f must be a set. This suggests that φ
should include an assumption of the form ⟨x , h ⟩ ∈ S about the initial condi-
tion. We will prove that otherwise realizability can be impossible to prove. The
proof relies on the freedom that exists in how function application, f [x], is inter-
preted when x /∈ domain f . TLA+ is untyped, so f [x] is some set. The axioms
of TLA+ leave unspecified what set f [x] is for x /∈ domain f .

3.2.1 Interpretation vs model

An interpretation is a way to assign meaning to expressions of a language. One
way to assign meaning is to take an expression in the object language (here
TLA+), and map it to an expression in the metalanguage (here ZF) [8, p.292].
A model is an interpretation in which all the theorems of a formal theory are
interpreted as statements that are theorems of the metatheory.

We base our definition of interpretation for first-order TLA+ on the liter-
ature. Vanzetto defines a translation of TLA+ to input for SMT solvers [14].
Merz formalizes TLA+ in the Isabelle theorem prover [15], for TLAPS (the TLA
proof system), including functions [16]. Models of first-order TLA∗ are defined
in [17, pp.80–86]. Lamport refers to Leisenring’s study [18] of the operator
choose. Leisenring defines models for ZFε7 [18, p.18], but not for modal logic.
A semantics for TLA+ can be given by pairing a model as defined by Leisenring
with a behavior σ, similarly to [14, 17, 19, 20]. Following Lamport, we use
TLA+ syntax for ZF itself [8, p.292], including function syntax. For example,
the definition of behaviors as functions with domain Nat [8, p.315].

By interpretation of TLA+ in ZF we mean an operator I (,) and a set σ
such that

• IsABehavior(σ), and

• the mapping I (,) defines the meaning I (e, s) of each basic state function
e in each state s. Let8

sJeKI ∆
= I (e, s)

Constant expressions have the same meaning in each state, so we can omit
s and write JeKI .

The role of a behavior σ is to map each index n ∈ Nat and variables9 to values
in each index n ∈ Nat . We will denote that a temporal formula F is interpreted
as true in the metatheory as [17]

I , σ |= F

7ZF abbreviates Zermelo-Fraenkel set theory. ZFε denotes ZF extended with the operator
choose. The operator choose is Hilbert’s ε operator [18], [21, p.9]. We use ZFε, so we omit
ε and write ZF.

7A basic state function is a particular form of TLA+ expression. The TLA+ syntax defines
countably many expressions. The meaning of a basic state function is a mapping from all
states, so an operator, but not a function [8, p.311].

8The expression sJeKI extends the notation sJeK of [8, p.311]. A similar notation is sJxKI ,α
in [17, p.81].

7

The assignment of values to constants (rigid variables) is specified by I . We
could define a separate operator ConstI , but we will use I for that purpose too,
in the recursive interpretation defined later. The other observation is that we
will writte Flatten(. . . , I) and recurse to ApplyFuncI when I is given to the
operator Flatten, and to ApplyFuncR when R is given to Flatten.

A model of TLA+ is an interpretation in which each theorem is interpreted as
a statement provable in the metatheory. We use an operator IsAModel(I (,), σ)
to signify this, by writing the predicate IsAModel(I , σ).

3.2.2 Recursively structured interpretation

Structured interpretations In the proofs, we assume for some interpre-
tation IA, σ that IsAModel(IA, σ), and modify the first-order interpretation
operator IA to IB so that both:

1. the resulting interpretation IB , σ has some desired properties10, and

2. IsAModel(IB , σ).

It can be difficult to define IB in terms of IA so as to achieve both of these
goals. An example of what can go wrong is given in Section 6.3. The difficulty
lies in that IA takes entire TLA+ expressions as arguments. We have to change
not only the interpretation of those symbols that we are primarily interested
in, but also all other expressions that contain those symbols, to ensure that all
axioms and proof rules are true in IB too.

The standard way of defining a first-order interpretation I is inductively [8,
Ch.16]. This is the case in the literature cited earlier. TLA+ is a modal logic, so
the interpretation I , σ of a temporal formula is defined in terms of actions over
steps [8, p.315], of actions in terms of state predicates over states [8, p.313], and
of constant expressions [8, pp.311]. The interpretation I is defined inductively
using the operators:

• Tokenize(e) for a TLA+ expression e is a tuple of strings (tokens).

• Flatten(seq , s, I (,)) takes a sequence of tokens and interprets it in ZF.

• ApplyFuncI (u, v), an operator that takes the interpretation u of an ex-
pression e1, the interpretation v of another expression e2, and gives the
interpretation of the expression “e1[e2]”.

• MakeFunction(S) for a set S of 2-tuples returns a function.

• DomainOf (a) interprets function domain syntax.

9There are variables and constants in TLA+. Sometimes, constants are called “rigid vari-
ables” [8, p.110], and the variables “flexible variables”. A behavior σ assigns values only to
flexible variables. The values of constants are defined by the first-order interpretation I .

10Modifying one model to obtain another is a method widely used for proving relative
consistency results. The method of forcing [22] is one approach for constructing new models.
We do not use forcing, because we modify the interpretation of functions without changing
the domain of discourse.

8

We describe these operators using a combination of definitions and examples

Tokenize(str)
∆
= choose seq ∈ Seq(string) :

∧ seq ∈ TLAPlusGrammar .Module
∧ str = Concatenate(seq)

with Concatenate defined as we usually understand it, Seq from the standard
Sequences module [8, Fig.18.1, p.341], and TLAPlusGrammar [8, p.278] 11.
Rigid quantification is defined in [8, pp.88, 109] as

σ |= (∀ r : F)
∆
= ∀ r : (σ |= F)

The modification of constant symbols in the first-order interpretation is not
mentioned, and the same symbol r occurs in object language (TLA+) as in
the metalanguage (ZF). We need to keep track of these details, so we base our
definition on12 [14, p.31]

(4)

I , σ |= ∀ r : φ
∆
=

∀ u : let

I |r≜u(seq , s)
∆
= if seq = ⟨“r”⟩

then u
else I (seq , s)

in I |r≜u , σ |= φ.

Function constructors are interpreted as

Flatten(Tokenize(“[x ∈ e1 7→ e2]”), s, I) =

MakeFunction({
⟨ r , Flatten(Tokenize(“e2”), s, I |x≜r) ⟩ :

r ∈ Flatten(Tokenize(“e1”), s, I)

})

So, a function is determined by the values of e2 for x ranging over values in e1,
but not outside. Function domain syntax is interpreted as

Flatten(Tokenize(“domain e”), s, I) = DomainOf (Flatten(Tokenize(“e”), s, I))

Function application is interpreted as

Flatten(Tokenize(“e1[e2]”), s, I) = ApplyFuncI
(
Flatten(Tokenize(“e1”), s, I),

Flatten(Tokenize(“e2”), s, I)
)
.

11If no such seq exists, then Tokenize(str) is some unknown value, but we don’t care,
because this happens only when, by definition of TLAPlusGrammar , str is not a syntactically
correct TLA+ module. Strictly speaking, not all syntactically acceptable module strings have
meaning [8, Chapters 16, 17], but we can ignore those cases, because the result for those
strings is irrelevant to our study of TLA+.

12In particular, the definition of truthM(∀ x : φ) there. There is a typo in the subscript,
where I and v ⊕ (x 7→ d) need to be swapped.

9

With the definition sketched above, we can reduce the meaning of any TLA+

formula to the meaning of variables and constants [8, p.310] in ZF.

The tokenizer in action The operator Tokenize takes a string str (a finite
sequence of characters), and chooses seq , a sequence of strings (each of them a
token) that belongs to the TLA+ grammar, so that concatenating the strings
in seq yields str . For example,

Tokenize(“p ∈ q”) = ⟨“p”, “ ∈ ”, “q”⟩.

The string “p ∈ q” has been split into the sequence ⟨“p”, “ ∈ ”, “q”⟩, where
each of “p”, “ ∈ ”, “q” is a string. This agrees with our perception of what a
tokenizer program is doing.

The operator Flatten interprets the tokenizer’s result in state s as follows

Flatten(Tokenize(“p ∈ q”, s, I) = Flatten(⟨“p”, “ ∈ ”, “q”⟩, s, I)
= Flatten(⟨“p”⟩, s, I) ∈ Flatten(⟨“q”⟩, s, I)

Is there such an interpretation? We outlined an inductive definition of
interpretation. The operator Flatten can be defined in more detail as in [14]. We
are not going to give an exhaustive definition, neither prove relative consistency
of TLA+ with respect to ZF. The parser and translator code in TLAPS and
TLC13 is evidence that it is possible to define these operators.

By Gödel’s second incompleteness theorem, if TLA+ is consistent, then
TLA+ cannot prove it is consistent. By Gödel’s completeness theorem, if TLA+

is consistent, then it has a model with a set as domain of discourse [23, Sec.5.2].
We are going to assume that a relative interpretation [24, Def. I.16.11, p.99]

of TLA+ in ZF is available, and modify it to obtain another relative interpre-
tation that satisfies a desired property. Assuming that the starting relative
interpretation proves relative consistency [24, Cor. I.16.14, p.101], relative con-
sistency follows for the second interpretation. We need to refer to behaviors, so
we cannot work directly within TLA+ to prove relative consistency by interpret-
ing the second TLA+ theory in terms of the starting one. Instead, our proof
could be viewed as a relative interpretation of the ZF underlying the second
TLA+ theory within the ZF underlying the starting TLA+ theory.

Note that relative interpretation via relativization relies on class-sized mod-
els, and care is then required that the interpretation be defined in the metathe-
ory, due to Tarski’s theorem on the undefinability of truth [24, p.84].

Another way to view the proofs is in terms of set-sized models. Assuming
that a model with set as domain of discourse exists, we construct another model
with the same domain, but different interpretation for functions. The assump-
tion that a set-sized model exists is equivalent to assuming that ZF is consistent
[23, Sec.5.2].

13TLC is a model checker for TLA+.

10

3.2.3 TLA+ function axioms

We summarize the definitions and axiom schemata of TLA+ that describe func-
tions. The symbol e stands for any TLA+ expression.

IsAFunction(f)
∆
= f = [x ∈ domain f 7→ f [x]]

∀ f , g : (∧ IsAFunction(f)
∧ IsAFunction(g))

⇒ (f = g) ≡ ∧ domain f = domain g
∧ ∀ x ∈ domain f : f [x] = g [x]

(domain [x ∈ S 7→ e]) = S

∀ y ∈ S : [x ∈ S 7→ e][y] = let x
∆
= yin e

IsAFunction([x ∈ S 7→ e])

∀ f : (f ∈ [S → T]) ≡ ∧ IsAFunction(f)
∧ S = domain f
∧ ∀ x ∈ S : f [x] ∈ T

[f except ![d] = e]
∆
= [y ∈ domain f 7→ if y = d then

let @
∆
= f [d]

in e
else f [y]]

This summary is given only for convenience. For details, consult [8, 25, 16].
It should be emphasized that TLA+ functions are interpreted “shallowly” by

the operators ApplyFunction and MakeFunction. These define TLA+ functions
separately from ZF functions. We could have followed a “deeper” approach, but
it would have only made the proofs less readable.

3.2.4 When realizability is unprovable

Modifying the value of constant symbols does not affect the truthness of axioms
and proof rules in a model of TLA+ that is an interpretation with the recur-
sive structure outlined above. Care is needed when modifying the operator
ApplyFunc to ensure that function axioms be preserved. We use the following
claim, whose proof is sketched, but omitted.

Proposition 5 (Independence from function application outside domain)

Assume: 1. IsAModel(J , σ)

2. J has the recursive structure outlined above.

3. R is an interpretation obtained from J by replacing the operator
ApplyFuncJ with an operator ApplyFuncR

4. ∀ u, v : ∨ v /∈ DomainOf (u)
∨ ApplyFuncR(u, v) = ApplyFuncJ (u, v)

Prove: IsAModel(R, σ)

11

Proof sketch: on page 36.

Another way to describe the above change is based on how TLAPS translates
TLA+ to SMT, which can be written as

ApplyFunc(u, v) = if v ∈ DomainOf (u) then a(u, v) else ω(u, v),

where the operator ω remains uninterpreted [14, Eq.(4.12), §4.4.2, p.78]. What
we do amounts to modifying only ω.

Lemma 6 (Unprovability of realizability)
Assume: 1. TLA+ is sound.

2. zf new J (,), σ
3. J , σ is an interpretation with the recursive structure described ear-

lier.
4. IsAModel(J , σ)
5. temporal φ(x , h)
6. The symbols f ,m do not occur in the expression φ(x , h).
7. No14 function syntax occurs in the expression φ(x , h) (function

application, constructors, and related constructs).

8. ψ(x , h, f)
∆
= ∃∃∃∃∃∃m : 2[x ′ = f [⟨x , h,m ⟩]⟨x ,h,m ⟩

9. CanLoseOutside
∆
= ∀S : ∃∃∃∃∃∃ x , h : ∧ ¬φ(x , h)

∧ 2(⟨x , h ⟩ /∈ S)
10. |= CanLoseOutside

11. G
∆
= ∃ f : ∧ IsAFunction(f)

∧ ∀∀∀∀∀∀ x , h : ψ(x , h, f) ⇒ φ(x , h).
Prove: ⊬ G

Proof: on page 37.

In words, prove that (arbitrary14 memory) realizability of φ cannot be proved,
unless, for any behavior that violates φ, eventually ⟨x , h ⟩ ∈ S .

In other words, outside its domain, f plays arbitrarily. The behavior sat-
isfies ψ, but may violate φ, and we cannot prove that it doesn’t. We have
shown that f should matter only for behaviors that eventually enter some set
S , 3(⟨x , h ⟩ ∈ S). It follows that any provably realizable specification φ should
satisfy

¬(∀S : ∃∃∃∃∃∃ x , h : ¬φ(x , h) ∧2(⟨x , h ⟩ /∈ S) ≡
∃S : ∀∀∀∀∀∀ x , h : 2(⟨x , h ⟩ /∈ S) ⇒ φ(x , h)

The above case is one alternative. The other alternative is

¬2(⟨x , h ⟩ /∈ S) ≡ 3(⟨x , h ⟩ ∈ S) ≡ ∨ 2(⟨x , h ⟩ ∈ S)
∨ ∧ 3(⟨x , h ⟩ ∈ S)
∧ 3(⟨x , h ⟩ /∈ S)

13This assumption can be relaxed to: under the moderate interpretation of Boolean opera-
tors, the meaning of φ is independent of function values that correspond to arguments outside
their domain. However, this will complicate the proof, without adding to our purpose.

14This is a strong statement. Neither finiteness, nor even type invariance of m is required.

12

For specifications that contain enough type invariants, there is some set S such
that a behavior σ |= 3(⟨x , h ⟩ /∈ S) has a finite prefix that either satisfies or
violates the specification (depending on whether the environment or system
violated their type invariant first).

For the same reasons as above, we shouldn’t expect any function to be
provably winning depending on the initial prefix of a behavior (behavior states
before the earliest state that satisfies ⟨x , h ⟩ ∈ S). So, we will regard the previous
result as support that if φ is provably realizable, then behaviors that start from
outside S should satisfy φ, independently of f . In other words, outside S ,
the initial condition should determine whether a behavior is winning or losing.
Formally,
(5)
|= ∃S : ∀ u, r /∈ S : ∃w ∈ boolean : ∀∀∀∀∀∀ x , h : (⟨x , h ⟩ = ⟨u, r ⟩) ⇒ (w = φ).

So, domain f ⊆ S suffices to consider all candidate winning strategies.
For example, if

φ
∆
= (y ∈ Sy ∧ . . .) +−▷ (x ∈ S x ∧ . . .),

then

• (x /∈ S x) ⇒ ¬φ, and

• (x ∈ S x) ∧ (y /∈ Sy) ⇒ φ,

so for (x /∈ S x)∨(y /∈ Sy) ≡ ⟨x , y ⟩ /∈ S x ×Sy , strategy f does not matter. This
partitioning of initial conditions is shown schematically in Fig. 2. These are all
the possible cases, but not all should occur. Clearly, if x ∈ S x appears in (or is
implied by) the guarantee in +−▷, the specification is unrealizable. This case is
analyzed further in Section 5.2.4.

Notice that x /∈ S x is not a set of values for x , and (x ∈ S x)∧ (y /∈ Sy) not
a set of values for y [8, p.66], [6, 7]. No function f can be designed to play in a
known way from so many initial conditions, because domain f would have to
be too large to be a set. Nevertheless, we need only reason about f in those
behaviors that satisfy (x ∈ S x) ∧ (y ∈ Sy). Proving that f does not matter
from other initial conditions allows us to ignore those initial conditions when
designing f . Such a proof ensures that it suffices for domain f to contain all
initial conditions from where f can affect the outcome, and aids in mechanization
of finding f (the other aid is the presence of type invariants, for similar reasons).

Focusing on a set of initial conditions is independent of whether any initial
states violate φ. By the above, we showed that an initial condition in the form
of set containment should appear as an assumption (or within the realization ψ).
This is necessary for any TLA+ definition of synthesis, due to our unprovability
result.

It also aids mechanization, but may not be enough for mechanization. Type
invariants are an extra aid for mechanization, which may be unnecessary for
certain types of φ, assuming suitable theorem-proving capabilities.

13

x ∈ Sx ∧ y ∈ Sy

x ∈ Sx ∧ y /∈ Sy

x ∈ Sx ∧ y /∈ Sy

x /∈ Sx

¬φ holds from here

φ holds from here

φ holds from here

f matters from here

Figure 2: Initial conditions from where the strategy f matters. The collection
of values for x that satisfy the predicate x /∈ Sx is too large to be a set. Likewise
for y /∈ Sy. Unlike them, the values for ⟨x, y⟩ that satisfy the predicate x ∈ Sx∧
y ∈ Sy does form a set. This allows for a function f to be designed for acting
within a set as its domain.

3.3 Placing initial conditions

If some initial conditions violate φ, i.e.,

∃ u, r : (⟨x , h ⟩ = ⟨u, r ⟩) ⇒ ¬φ(x , h)

then we must include an initial condition I in the realization ψ, for example

I (x , h) ∧2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩

and select I so that |= I (x , h) ⇒ Init(x , h) (Lemma 4). We decide to not include
an initial condition in ψ, to keep it simpler. So, no initial state should violate
φ. (Otherwise, no matter how we play from a violating state, we have already
lost.)

Still, we must include an initial condition in the assumption of φ, because
otherwise no function can be proved to implement φ (Section 3.2).

We will see in Section 5.2.4 that the definition15 of +−▷, together with the
untyped nature or TLA+, require including a type precondition on environ-
ment variables in the guarantee (or defining a slight variant of +−▷). This is
an additional reason for not adding an initial condition to ψ, because then the
initial condition would appear at two places (Of course, this doesn’t apply to
the aforementioned variant of +−▷.)

Assume that we use the operator +−▷ to define φ
∆
= A +−▷ G . By Propo-

sition 9, φ is vacuous if A is unsatisfiable. Assume ∃ x , h : A(x , h) (satisfiable
assumption). By Proposition 12, initial states that violate InitG violate φ. So,

it must be InitG
∆
= true. The only remaining location to place the initial

condition assumption is InitA.
Advantages of writing the synthesis problem and the specification φ in this

way are:

14

• A synthesis problem is defined by the controllability predicates µik , and
a single property φ, instead of two separate properties I and φ. This is
simpler. It also collects everything about temporal behavior within one
property, φ.

• The initial condition for every variable appears in the assumption A, em-
phasizing that it is the environment’s responsibility, not the component’s.
In other words, we should start the component f from admissible initial
conditions, which is what we mean by including I in ψ. Putting I inside
A, instead of inside the realization ψ, groups it with other assumptions,
all assumptions at one place.

Disadvantages:

• Symmetry is lost. The property φenv
∆
= G +−▷ A does not anymore

express a specification for constructing an environment component, un-
less we reverted to defining synthesis for the environment using an initial
condition I inside ψ. What really happened is that, by using I , the asym-
metry was factored out as I , so asymmetry was shifted outside φ. This
alowed φenv to be obtained by simply swapping G and A. In contrast,
with the property

φsys
∆
= (I ∧A) +−▷ G ,

where no initial states violate G (for the reasons explained above), the
environment should be specified with the property

φenv
∆
= (I ∧G) +−▷ A,

where no initial states violate A (for the same reasons).

• We cannot synthesize strategies for closed-system properties. So, φ
∆
= G

is unrealizable. We must either write it as I +−▷ G , or place an initial
condition I within the realization ψ.

15

some initial

state violates φ

ψ includes an

initial condition

true

unprovable whether realizable in case

true

false

false

only initial values

inside some set matter
true

false

maybe realizable

φ unrealizable

by ψ
(Lemma 4)(Section 3.3)

arbitrary behaviors can violate φ (Lemma 6)

Figure 3: Summary of results about initial conditions.

InitG ∧ ¬InitA

InitG ∧ InitA

f matters from here

¬InitG

φ

¬φ
φ?

Figure 4: Role of initial conditions in an open-system property of the form
(InitA ∧A) +−▷ (InitG ∧G).

16

4 Defining realizability and synthesis

4.1 Sharing variables

We follow an approach noted by Lamport [1], along the lines of work by Abadi
and Lamport [10]. This approach formulates the synthesis problem using, for
each variable x , an action µx . If a step satisfies the action µx , then it is called
a µx -step. Any change of variable x in a µx -step is attributed to player f x ,
possibly among other players.

This action promises to f x that each step either stutters x , or is a ¬µx -step,
or, if f x so wants, then a µx -step that changes x will eventually occur. In any
µx -step that changes x , function f x controls x ′.

The action µx tells the system that it can affect certain variables in certain
steps. Conversely, it lets environment variables unconstrained by system strate-
gies. Wild environment behavior is then to be rejected by the assumption in
φ. The definition of action µx should be part of the open-system specification
module that defines the system property φ.

4.2 Realizability

Realizability is a decision problem, and synthesis the associated search prob-
lem. We can define realizability in TLA+ as in Fig. 5, based on Lamport’s
definition [1] (see also Appendix C). This definition motivates the definition of
Fig. 6, which is in canonical form and more general. The requirements for finite
domains ensure that f , g can be implemented in the real world.

With the definition of Fig. 5, a given temporal formula φ is realizable with
the action µ if we can prove the

THEOREM Realizability(φ, µ)!IsRealizable.

Note the action’s meaning

∨ ¬µ
∨ x ′ = f [v] ∧m ′ = g [v]
∨ ⟨m, x , y ⟩′ = ⟨m, x , y ⟩

This formula says that

• any change of x ,m in a ¬µ-step is attributed to the environment (disjunct
¬µ),

• changes of x and m in a µ-step are attributed to f and g (disjunct x ′ =
f [v] ∧m ′ = g [v]), or

• a stuttering step occurs (disjunct ⟨m, x , y ⟩′ = ⟨m, x , y ⟩).

The brevity of this definition owes to the definition of a function and the un-
typeness of TLA+. Variants are possible, by writing two safety and liveness

17

module RealizabilityFirst

extends FiniteSets

state µ(,)

temporal φ(,)

IsAFunction(f)
∆
= f = [u ∈ domain f 7→ f [u]]

module Inner

variables x , y

constants f , g ,m0

OnlyAllowedChanges
∆
=

∀ r : ∀⟨m, p, q ⟩ ∈ domain f ∪ domain g :

let v = ⟨m, p, q ⟩
in ∨ ⟨f [v], g [v]⟩ = ⟨p, q ⟩

∨ µ(v , ⟨r , f [v], g [v]⟩)

Realization(m)
∆
=

let

v
∆
= ⟨m, x , y ⟩

A
∆
= ∧ x ′ = f [v]

∧ m ′ = g [v]

in ∧ m = m0

∧ 2[µ(v , v ′) ⇒ A]v
∧ 23∨ ⟨µ(v , v ′)⟩v

∨ ∧ x = f [v]
∧ m = g [v]

Realize
∆
= ∧ IsAFunction(f) ∧ IsFiniteSet(domain f)

∧ IsAFunction(g) ∧ IsFiniteSet(domain g)
∧ OnlyAllowedChanges
∧

(
∃∃∃∃∃∃m : Realization(m)

)
⇒ φ(x , y)

Inner(f , g ,m0, x , y)
∆
= instance Inner

IsRealization(f , g ,m0)
∆
= ∀∀∀∀∀∀ x , y : Inner(f , g ,m0, x , y)!Realize

IsRealizable
∆
= ∃ f , g ,m0 : IsRealization(f , g ,m0)

Figure 5: A module that defines realizability by constraining the strategy f to
request only ⟨m,x⟩-nonstuttering steps. The module FiniteSets can be found
in [8, Fig.18.2, p.341].

18

module Realizability

extends FiniteSets

state µ(,)

temporal φ(,)

IsAFunction(f)
∆
= f = [u ∈ domain f 7→ f [u]]

module Inner

variables x , y

constants f , g ,m0

Realization(m)
∆
=

let

v
∆
= ⟨m, x , y ⟩

A
∆
= ∧ x ′ = f [v]

∧ m ′ = g [v]

in ∧ m = m0

∧ 2[µ(v , v ′) ⇒ A]v
∧ WF⟨m,x ⟩(µ(v , v

′) ∧A)

Realize
∆
= ∧ IsAFunction(f) ∧ IsFiniteSet(domain f)

∧ IsAFunction(g) ∧ IsFiniteSet(domain g)
∧

(
∃∃∃∃∃∃m : Realization(m)

)
⇒ φ(x , y)

Inner(f , g ,m0, x , y)
∆
= instance Inner

IsRealization(f , g ,m0)
∆
= ∀∀∀∀∀∀ x , y : Inner(f , g ,m0, x , y)!Realize

IsRealizable
∆
= ∃ f , g ,m0 : IsRealization(f , g ,m0)

Figure 6: A module that defines realizability.

19

pairs, one for variable x , and another for m. The memory can be shifted to the
property φ itself, in which case m would be mentioned within φ.

The liveness condition requires weakly fair scheduling

23∨ ⟨µ⟩v
∨ ∧ x = f [v]

∧ m = g [v]

≡
(
32∨ x ̸= f [v]

∨ m ̸= g [v]

)
⇒ 23⟨µ⟩v .

In words, if f or g continuously request to make a change, then eventually
µ ∧ (v ′ ̸= v). By the safety conjunct, this implies eventually

⟨x ′,m ′ ⟩ = ⟨f [v], g [v]⟩.

Specifically for games with full information16(where µ = ¬unchanged ⟨m, x , y ⟩),
the negated fairness condition means that f , g want to change x ,m, but a change
never happens

¬23∨ ⟨true⟩v
∨ ∧ x = f [v]
∧ m = g [v]

≡ 32∧ v = v ′ nothing changes

∧ ⟨x ,m ⟩ ̸= ⟨f [v], g [v]⟩ request for change

Comments on the definition

• Why not write ⟨x ,m ⟩′ = f [v], instead of using two functions f and g?
Because, a function f can falsify ⟨x ,m ⟩′ = f [v] by simply taking values
that are tuples of different length. This leads to trivial realizability, as
proved in Proposition 15. Clearly, when we think of “implementation”,
we do not mean this case.

A more complicated and less readable alternative is to add the constraint

∀ v ∈ domain f : IsATuple(f [v]) ∧ Len(f [v]) = 2.

• Universal temporal quantification of v (∀∀∀∀∀∀ v) cannot be avoided, because
then, by the linear nesting of quantifiers, for each behavior σ, we could
pick a different function f .

• Existential temporal quantification of m (∃∃∃∃∃∃m) cannot be avoided, because
variable m is an internal variable of the implementation, so if it occurs in
φ, then it should not be constrained by a realization, except via x .

• To define controllability, we need the action µ.

• To avoid unprovability of realizability we have to include a set containment
as initial condition in φ (Lemma 6).

• To quantify over a mapping f , it must be a set, so a function (Section 2).

16Asynchronous reduces to stutter invariance within the assumption’s action.

20

• Instead of adding an (environment) assumption (H in Appendix C) about
infinite memory h, we find it simpler and explicit to design the memory
update function g . This also makes the implementation self-contained.

• The liveness condition about µ cannot be placed in the assumption of φ,
because the liveness condition for f cannot be a conjunct of the imple-
mentation (that would allow any f that never stutters to be a winning
strategy). So, the liveness conjunct should mention both f and µ. But,
the implementation f should not occur as a constant in φ.

There is no way to “prove” these observations right or wrong, because what
we are doing is specifying what synthesis means. No mechanized way can confirm
that this definition matches what we think. The best we can hope for is to avoid
errors, by constructing simple counterexamples [8, p.76].

4.3 Synthesis

Synthesis corresponds to the proof step

pick f , g ,m0 : Realizability(φ, µ)!IsRealization(f , g ,m0).

By the definition of pick [26, Sec.7.4.5, p.25] the above expands to the proof
steps

⟨1⟩1. Realizability(φ, µ)!IsRealizable
⟨1⟩2. Suffices: Assume: 1. new f , g ,m0

2. Realizability(φ, µ)!IsRealization(f , g ,m0)
Prove: Q.E.D.

In principle, one could require IsRealizable to hold, and then choose f , g ,m0.
However, choose for temporal formulae is intentionally omitted from the cur-
rent definition of TLA+ [8, p.110].

21

5 Who changed each variable

5.1 Behaviors

5.1.1 Interleaving

A behavior is interleaving if each nonstuttering17 step is attributed to exactly
one player [8, p.137]. A step is attributed to a player by using an action18 µi .
With this definition of attribution, a behavior is interleaving if it satisfies the
(mutual exclusion) property19

(6)
C

∆
= 0..n [component indices]

Interleaving
∆
= 2[∀ j ∈ C : ∀ i ∈ C \ {j} : µj ⇒ ¬µi]v

This definition works for both disjoint-state and shared-state specifications. In
words, if each nonstuttering step is attributed to at most one player, then the
behavior is interleaving. If any step is attributed to more than one players, then
the behavior is noninterleaving. In other words, a noninterleaving behavior is
one that is not interleaving. Interleaving refers only to variables mentioned in
the specification20.

Also, if µi allows stuttering steps, then any stuttering will be considered as

interleaving. For example, µi
∆
= true is problematic. This µi attributes all

steps to a player, including stuttering steps. As a result, this leaves indefinite
stuttering as the only21 behaviors that satisfy the property Interleaving . To
avoid this, we can either require that µik ⇒ (x k ̸= x ′

k), or, within the predicate
Interleaving , conjoin x k ̸= x ′

k to each µik , to obtain µik ∧ (x k ̸= x ′
k). The

problem with the latter is that it leads to a mismatch between what attribution
of steps categorizes a behavior as interleaving, and what attribution we obtain
by using µik directly. In other words, attributing steps with µik could yield a
different result in this case. For this reason22, we23 require that µik allow no

17If a variable does not change in a step, then there is no change to attribute to anyone.
Otherwise, we need to choose who to attribute the change to.

18µ are actions. A Moore strategy can rely on requesting changes only at states that satisfy
µ independently of next state.

19µi and xk are metasyntactic notation.
20No behavior is really interleaving: A behavior assigns values to all variables. All the

specifications that we write leave some variables unmentioned. So, for any behavior that is
interleaving with the above definition, we can construct another behavior that differs only in
how unmentioned variables change. We can choose to make unmentioned variables change
in all steps. If we decide to attribute changes of unmentioned variables to the environment,
then such a behavior shouldn’t be considered interleaving. But we shouldn’t characterize a
behavior by thinking about unmentioned variables, because they don’t matter to the problem
at hand (otherwise they should have been mentioned). In other words, “interleaving” is not a
genuine property of a behavior. It is a property defined relative to the variables mentioned in
a given problem. If we restrict attention only to variables that occur in φ, then a specification
can be called interleaving or not.

21For this example, 2[∀ j ∈ C : ∀ i ∈ C \ {j} : true ⇒ false]v ≡ 2[false]v ≡ 2(v ′ = v)
(the last expression is not in TLA+).

22Whether µik allows stuttering steps or not has no effect on a realization, because 2[(µik ∧
(x ′

k ̸= xk)) ⇒ (x ′
k = f . . .)]⟨...xk ... ⟩ ≡ 2[¬µik ∨ (x ′

k = xk) ∨ (x ′
k = f . . .)]⟨...xk ... ⟩ ≡ 2[µik ⇒

(x ′
k = f . . .)]⟨...xk ... ⟩.

22

stuttering steps
(|= µik ⇒ (x ′

k ̸= x k)) ≡
(|= ⟨µik ⟩x k

≡ µik)

A special case is the following (orthogonality) definition given by Lamport
[8, p.139]

2[∃ k ∈ C : ∀ i ∈ C \ {k} : v ′
i = v i]v ≡

2[∀ j ∈ C : ∀ i ∈ C \ {j} : (v ′
j ̸= v j) ⇒ (v ′

i = v i)]v ≡
2[∀ j ∈ C : ∀ i ∈ C \ {j} : (v ′

j = v j) ∨ (v ′
i = v i)]v

This definition works only for disjoint-state specifications. In other words, in
order to apply this definition, first we need to partition the state into variable tu-

ples v i
∆
= [k ∈ 0..ni 7→ {x j : j ∈ C}]. (Lamport’s definition has v ′

i = v i , but
stutter-invariance implies that the two formulae describe the same behaviors.)
Algebraic manipulation shows that this is another way to write the disjointness
definition given by Abadi and Lamport [27, p.514]∧

i ̸=j2[(v
′
i = v i) ∨ (v ′

j = v j)]⟨v i ,v j ⟩ ≡

∀ j ∈ C : ∀ i ∈ C \ {j} : 2[(v ′
i = v i) ∨ (v ′

j = v j)]⟨v i ,v j ⟩ ≡
∀ j ∈ C : ∀ i ∈ C \ {j} : 2[(v ′

i = v i) ∨ (v ′
j = v j)]v

An interesting discussion of the interleaving and non-interleaving specifica-
tion styles, with examples, can be found in [28].

5.1.2 Shared or disjoint state

The actions µi attribute steps to players, not changes for each variable sep-
arately. If, for each variable (part) in an interleaving behavior, there exists a
player, such that all steps that change that variable are attributed to that player,
then state is disjoint [8, p.144]. If nonstuttering steps that change a variable in
an interleaving behavior are attributed to more than one player, then state is
shared.

These definitions work for interleaving behaviors only. They are too coarse
for noninterleaving behaviors. The problem is that µi attribute each step to a
player, but not changes of specific variables. A noninterleaving behavior contains
a step attributed by µi , µj to players i ̸= j . Which variables did each player
change? If we attribute to each player the changes of all variables, then there
are variables that both players change in the same step, so any noninterleaving
behavior would have shared-state.

For this reason, we need to refine the attribution to players, from steps to
changes of variables x k . Replace the µi actions with the actions µik . If a step
satisfies action µik , then we attribute to player i the change of variable x k . Let
V ⊆ Nat be variable x k indices and C ⊆ Nat be component indices.

23Lamport requires that µi do not allow stuttering steps.

23

x

y

1 1

2 2

x

y

1 1

2 2

x

y

1

1

2

2

x

y

1

12

2

interleaving non-interleaving

disjoint-state

shared-state

Figure 7: Schematic depiction of behaviors where changes to the variables x and
y are attributed to players 1 and 2. If all changes to variable x are attributed
to player 1, and all changes to variable y are attributed to player 2, then the
behavior is disjoint-state. Otherwise, the behavior is shared-state. If, in each
step, all changes to variables are attributed to at most one player, then the
behavior is interleaving. (“at most” vs “exactly” depends on whether the µij

form a partition of unity).

With this refined definition, let

(7) µi
∆
= ∃ k ∈ V : µik

so that interleaving still be defined as in Eq. (6). By substitution of Eq. (7) in
Eq. (6), we obtain

(8)

∧ Interleaving
∧ ∀ i ∈ C : µi = ∃ k ∈ V : µik

⇒

2[∀ j ∈ C : ∀ i ∈ C \ {j} : (∃ k ∈ V : µjk) ⇒ ¬∃ k ∈ V : µik]v ≡
2[∀ j ∈ C : ∀ i ∈ C \ {j} : (∃ k ∈ V : µjk) ⇒ ∀ k ∈ V : ¬µik]v

Define as disjoint-state wrt {µjk}j ∈ C ,k ∈ V a behavior that satisfies the prop-
erty

DisjointState
∆
= ∀ k ∈ V : ∃ i ∈ C : ∀ j ∈ C \ {i} : 2[¬µjk]x k

.

In words, for each variable x k , there exists a player i that can be considered as
owner of x k , because no change to x k is attributed to any other player j .

5.1.3 Remarks

When by “specification” we mean “property”, then the same definition applies
to specifications too. But, when by “specification” we mean a TLA+ module,
then we should choose a specific property to apply the above definitions.

Variables from different components can stutter in the same steps, so we
cannot use stuttering to attribute dynamics to players.

24

5.2 Properties

5.2.1 Interleaving

We defined what interleaving means for a behavior, given an attribution of
changes of variable values to players.

Assume that actions µik are defined. A property φ is interleaving with
respect to {µik}i,k iff it describes only interleaving behaviors

|= φ⇒ Interleaving ,

5.2.2 Shared or disjoint state

A property has disjoint-state with respect to {µik}i,k iff

|= φ⇒ DisjointState.

A property φ that is not interleaving is called noninterleaving. A property φ
without disjoint-state is shared-state.

5.2.3 Open-system specifications

Any realizable property of the form A +−▷ G that can be satisfied from any
initial condition (i.e., strongest implied initial predicate is true) allows a non-
interleaving behavior, if in all states not all mentioned variables are controlled
by one player only (∀∀∀∀∀∀ x 0, . . . , x k : ∃ i , j : ∃ k , r : (i ̸= j) ∧ (k ̸= r) ∧ µik ∧ µjr).

Proof: In Section 3.2 we showed that for winning to be provable in practice, the
strategy f should matter only from some set of initial values. Suppose that the
strongest initial predicate implied by φ is true. Ensuring this initial predicate,
but also ensuring that f matters only from a set of initial values, implies that
InitA ̸≡ true ⇒ ¬InitA ̸≡ false. That φ is satisfiable from any initial state
implies that InitG ≡ true.
Pick k , r and a behavior σ such that

σ |= ∧ InitG ∧ ¬InitA
∧ µik ∧ µjr

∧ ∧ x k ̸= x ′
k

∧ x r ̸= x ′
r

By definition of A +−▷ G , it is

(InitG ∧ ¬InitA) ⇒ (A +−▷ G).

So, σ |= A +−▷ G . Also, j ̸= i and both x k and x r change in the step ⟨σ[0], σ[1]⟩.
So, the behavior σ is noninterleaving. In other words, a realizable open system
property includes behaviors with arbitrary interleaving, whatever the action µ.
We have shown that there exists a behavior σ that is noninterleaving and satisfies
A +−▷ G .

Therefore, it would be inaccurate to call “interleaving” a property of the
form A +−▷ G . For this reason, when working with open systems, we will call

25

“interleaving” the property A∧G , which describes the closed system that results
when the environment satisfies the assumption.

In contrast, not all open system properties have shared state. There are
choices of open system properties and µ that are disjoint-state.

5.2.4 Stepwise type precondition needed inside G

An open system property A +−▷ G can be unrealizable for some formulae G that
we would expect it to be realizable. The cause is that even if G implies an
initial condition assumed in A, it still fails to be realizable. We explain it below
using an example.

Consider the definition of a game with two variables x and y . Let player 0 be
the environment, and player 1 the component that we specify. The environment
controls the variable x , and the component the variable y .

Proposition 7 (Unrealizable open system property)
Assume: 1. constant f

2. variables x , y

3. A
∆
= ∧ y = false

∧ 2(x = true)

4. G
∆
= ∧ 2[∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)

5. φ
∆
= A +−▷ G

6. ψ
∆
= 2[y ′ = f [⟨x , y ⟩]]⟨x ,y ⟩

Prove: ∃behavior σ : ψ ∧ ¬φ

Proof: on page 54.

By Proposition 7, the property φ is unrealizable. The unrealizability is due
to how the operator +−▷ is defined. A similar proof can be given for a realization
that includes a conjunct of the form WFy(y

′ = f [⟨x , y ⟩]) as defined in Fig. 6.
In that case, proving that a realization exists from any initial condition relies on
a machine closure argument [27, Prop.1, p.519], thus replacing Proposition 2.

The behavior σ does not satisfy A +−▷ G , because the environment vio-
lated the initial condition (σ[0]Jy /∈ boolean K). But PrefixSat(σ, 0,A) ignores
whether the state σ[0] violates A, and requires only that the environment have
some execution, from some initial state. However, PrefixSat(σ, 1,G) requires
that the component have an execution from the given state σ[0]. This is im-
possible, because the component is asked to continue from a state where the
environment has violated its type invariant.

Another example The example of Proposition 7 involves initial states. A
similar situation can arise during steps of a behavior. The violation of A +−▷ G

26

by a step is related to the “last environment step” and the “next component
step”. Consider previous example modified with the following guarantee

G
∆
= ∧ 2[(y ∈ boolean) ∧ (y ′ = x)]⟨x ,y ⟩

∧ 23(y = x)
∧ 23(y = true)

Pick a behavior σ with

∧ σ[0]J(x = true) ∧ (y = false)K
∧ σ[1]J(x /∈ boolean) ∧ (y = true)K

The initial state satisfies the assumption A, so the predicate PrefixSat(σ, 1,A)
is true. The nonstuttering step ⟨σ[0], σ[1]⟩ satisfies the action of the safety con-
junct in G . However, the step ⟨σ[0], σ[1]⟩ violates the safety assumption of A.
This is ignored by the predicate PrefixSat(σ, 1,A). The predicate PrefixSat(σ, 2,G)
is false. The reason is that indefinite stuttering from σ[1] violates 23(y = x),
and any nonstuttering G-step leads to y /∈ boolean , so indefinite stuttering
that violates 23(y = true). Thus, A +−▷ is violated.

The above examples arise because PrefixSat (Eq. (15) on page 34) requires
that the component be able to continue from the actual state σ[1]. The change
of variable y from state σ[0] to σ[1] is constrained, but the change of variable x
is not, thus wild environment behavior prevents the component from satisfying
the guarantee in PrefixSat(σ, 2,G).

The definition of +−▷ could have included overwriting within PrefixSat of the
values that uncontrolled variables take in state σ[1]. This would check what
values the component assigned in state σ[1] to variables that it controls. It
would ignore the (yet) unchecked values of environment variables in state σ[1],
and require that there be a way for the component to continue, if it was allowed
to overwrite those uncontrolled values in state σ[1].

With the current definition of the operator +−▷ in TLA+, we should include
a “stepwise type precondition” in the next-state action of G . In our example,
this means modifying G to

G
∆
= ∧ 2[(y ∈ boolean) ⇒ ∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)

Another way to avoid this situation with +−▷ is to define a slight variant of this
operator, a modification that will be discussed elsewhere.

5.3 Synchronous games with full information

A “synchronous” (and “Moore”) system with full information can be encoded

using µ
∆
= ¬unchanged ⟨x , y ,m ⟩ in Fig. 6

2[µ⇒ A]⟨m,x ,y ⟩ ≡ 2[(¬unchanged ⟨x , y ,m ⟩) ⇒ A]⟨m,x ,y ⟩ ≡ 2[A]⟨m,x ,y ⟩

27

The y in the subscript ⟨m, x , y ⟩ ensures that the strategy f does not miss any
steps that change the environment variable y . This represents a “synchronous”
arrangement between the component and its environment. A “Mealy” compo-
nent can read the value y ′, suggesting modifying Fig. 6 to

A
∆
= ∧ x ′ = f [⟨m, x , y , y ′ ⟩]

∧ m ′ = g [⟨m, x , y , y ′ ⟩]

An “asynchronous” arrangement is represented by omitting variable y from
the subscript, by letting ¬µ allow steps that the environment changes, but the

system stutters µ
∆
= ¬unchanged ⟨m, x ⟩

2[µ⇒ A]⟨m,x ,y ⟩ ≡ 2[(¬unchanged ⟨m, x ⟩) ⇒ A]⟨m,x ,y ⟩ ≡ 2[A]⟨m,x ⟩

The environment can take as many nonstuttering steps as it likes between con-
secutive nonstuttering system steps. The system does not observe y during
those environment steps. This mathematical model corresponds to those games
of partial information that Pnueli calls “asynchronous” [29]. There is little point
in writing a “Mealy” form, because the component already does not participate
in some steps that the environment changes. Expressing the above cases us-
ing the same module demonstrates that the proposed definition is reusable for
defining a range of different flavors of game.

Another case we can define is a synchronous game of partial information.
This case can be represented by hiding an environment variable y in φ, or by
omitting the variable y from the arguments of f . In either approach, the system
knows that y is a declared variable that changes at certain steps, but cannot
observe the value of y . The environment takes as many nonstuttering steps as
the system,, but the system cannot observe some changes of the environment.

6 Discussion

6.1 Specifying a type invariant is not restrictive

In Section 3.2, we showed that the formula φ should be satisfied if x , h do not
eventually enter a set. Based on this, we concluded that φ should be satisfied
whenever x , h start outside some specific set.

A further question is whether φ should also contain type invariants. If the
formula φ does not contain enough type invariants, then even the behaviors of
only variables that occur in φ can form a proper class (using the projection
operator defined on 65). In other words, even the sequences that matter are
so many that they don’t fit in a set. We expect that this makes automated
reasoning more difficult.

In contrast, if the formula φ contains enough type invariants, when the
environment satisfies the assumption, the projected behaviors that could be
winning form a set. It should then suffice to reason about a set of sequences at
the semantic level.

28

In the presence of type invariants that restrict variable values to sets, proving
that a program implements realizability for some fragment of formulae φ (for
example, GR(1) [3]) will involve reasoning about the type invariants. So, the
constructive reasoning has been shifted to writing proofs, rather than rendering
the definition of realizability less readable.

Symbolic synthesis algorithms need to select finite representations for vari-
ables. Type invariants in φ can be used as syntactic “type hints” for these
algorithms, in the spirit of type annotations for type checking [5] and type
synthesis [14].

6.2 Variants for defining realizability

No set of all strategies In general, any function could be a candidate strat-
egy to select as f or g . The collection of all functions is a proper class [13, p.23],
not a set. So, the collection of all candidate solutions is not a set.

Axiomatic or constructive? If φ contains suitable type invariants, then a
less axiomatic (more constructive) definition of synthesis can be given too. In
this case, it suffices for any realizing strategy f , g to take arguments and values
from some set S (S is defined using sets mentioned in the type invariants of φ).

It then suffices to search for implementations f , g ∈ Q
∆
= [S × S ×Nat → S].

But, to write Q , we must define S , thus mention in the implementation ψ the
sets that appear in the type invariants of φ. This approach leads to a definition
of realizability that depends on how the formula φ is written.

Functions as environment strategies? We did not represent the environ-
ment behavior using functions, only the system’s behavior. If we did, then we
would need to quantify universally over environment functions (possibly from
some set of functions, in presence of type invariants). This would yield a less
axiomatic definition, but with some additional differences.

A behavior may initially satisfy the assumption’s type invariant, but later
assign arbitrary values to environment variables, and so violate the assumption.
A given environment strategy function cannot assign arbitrary values (its range
is a set), so it cannot produce such a behavior. So, this behavior will be missing
from what f , g must be able to cope with.

A workaround is to let the environment strategy function take as value an
auxiliary value that violates the assumption’s type invariant. Such a function
can produce behaviors similar to those described above, but with less “variety”
of values violating the typeness assumption.

A (countable) infinite number of variable names are definable in TLA+.
Realizability must be defined using a module with finitely many characters. So,
an environment strategy would only assign to some environment variables. The
rest would still behave arbitrarily. Finitely many variables occur in the formula
φ, so an environment strategy would still assign to sufficiently many variables.

29

A function of history? Lamport’s definition (Appendix C) uses a history
variable that records all variables that occur in the specification. We used a
function on an uncontrolled variable h without requiring that h record history.
It is still possible to make h a history variable, by incorporating suitable as-
sumptions in φ. A motivation for not letting h record infinite history is that
we want to restrict functions to finite memory, and also consider synthesis of
g , the memory update function. An f that reads as input an infinite history
record h would have to be a function with infinite domain, so conceptually a
little different from its real-world implementation.

6.3 Interpretations and models

Pitfalls of modifying an unstructured interpretation Modifying an in-
terpretation IA to obtain another interpretation IB is difficult in absence of a
recursive definition. Let the identifier “m” be declared as a constant. Suppose
that we pick some fixed value u, and define

IB (e, s)
∆
= if e = “m” then u else IA(e, s)

If our purpose was to ensure that IB (“m”, s) = u, then it seems to have been
accomplished. However, in carelessly modifying IA, we could have violated a
TLA+ axiom. How can this happen? Suppose that the u we picked results in
IB (“IsAFunction(m)”, s). So, we created an additional function symbol in the
fresh model IB . Also, suppose that there was an identifier “p” such that

∧ IA(“p”, s) = u
∧ IA(“IsAFunction(p)”, s)
∧ IA(“domain p”, s) ̸= IA(“domain m”, s)

We did not change the interpretation of these expressions in IB , so

∧ IB (“p = m”, s)
∧ IB (“IsAFunction(p)”, s)
∧ IB (“domain p”, s) ̸= IB (“domain m”, s)

This violates the axiom about function equality [8, p.303] (see also axiom schema
in Section 3.2.3)

|= IB IsAFunction(p) ∧ IsAFunction(m) ⇒
(p = m) ≡ ∧ domain p = domain m

∧ ∀ x ∈ domain p : p[x] = m[x].

So, the resulting interpretation IB is not a model of TLA+.

Too specific a model In our first attempt to define an interpretation for
function application syntax, we used Hilbert’s ε operator similarly to [6, p.4] so
that f [x] be interpreted as follows

Apply(f , x)
∆
= choose y : {x , {y , x}} ∈ f

30

This definition would lead to an interpretation of TLA+ too restrictive for the
modifications that we make to derive a new interpretation. The undesired re-
striction is that there is one common value that all functions take outside their
domain

∀ f , x : x /∈ domain f ⇒
¬∃ y : {x , {x , y}} ∈ f ⇒
(choose y : {x , {y , x}} ∈ f = choose y : false) ⇒
Apply(f , x) = choose y : false

which follows from the axiomatic definition of choose [8, (16.2), p.295].
This problem can be avoided by using the operator Choice defined in [8,

p.295]. Choice is again defined in terms of choose, so the freedom to select
what f [x] means will again reduce to how constant operators are defined. So, we
will not use Choice, but define what f [x] means with the semantic interpretation
of TLA+.

Deeper nesting We defined a relative interpretation of the TLA+ syntax
for function application, f [x], in the metatheory ZF. This interpretation was
defined using a recursive definition of the Flatten operator in ZF. An operator
is a formula (a syntactic entity), so arguing that it makes sense takes place in
the metatheory (of ZF) using finitistic arguments [13].

We could have interpreted TLA+ expressions of the form f [x] as ZF ex-
pressions of the same form (assuming function syntax within ZF). With this
approach, to modify what f [x] means in a reinterpretation of TLA+ in ZF, we
would need to interpret ZF in ZF, and modify the interpretation of f [x]. This
involves arguing in the metatheory of the metatheory of TLA+, and keeping
track of the distinction between three levels. We avoided this nested approach
to make the proof easier to read.

7 Conclusion

We formalized a definition of synthesis based on [1]. In the process, we made
some specification choices and discussed alternatives. We showed that initial
conditions should appear in the form of set containment assumptions to avoid
unprovability of realizability.

Proving a synthesis algorithm correct will require reasoning about type in-
variants from the property to be implemented. We kept the definition simpler,
by not mentioning type invariants.

The definition of realizability proposed here is suitable for representing dif-
ferent types of games, including what have been known as asynchronous games,
and games with partial information.

Acknowledgment The authors would like to thank Scott Livingston for pro-
viding feedback on drafts of this manuscript, and Necmiye Özay for interesting

31

discussions related to synthesis.
This work was supported in part by the TerraSwarm Research Center, one

of six centers supported by the STARnet phase of the Focus Center Research
Program (FCRP), a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

A Proofs

Caution: Several proof steps are carried out within the metatheory, affecting
whether deduction steps are to be understood within TLA+ (where the de-
duction principle does not hold [26, Sec.8.2, p.37]), or within ZF (where the
deduction principle holds). We use zf new u to emphasize that u is a constant
in the metatheory. Behaviors, states, σ |= F live in the metatheory.

Proof rule names are abbreviated as: ∀E: universal elimination, ∀G: universal
generalization, ∃E: existential elimination, ∃G: existential generalization [18,
Thm.II.16, p.48], ∧E: conjunction elimination, ∧I: conjunction introduction, ∨I:
disjunction introduction, MP: modus ponens [18, p.40], DP: deduction principle
[18, Thm.II.5, p.42]. The proof rules STL1–STL6, TLA1, TLA2, INV1, INV2
are defined in [30, Fig.5, p.888].

Let VarNames be the collection of all variable names, which is a set [8,
pp.311, 313]. The following two operators characterize states and behaviors

(9)

IsAState(s)
∆
= ∧ IsAFunction(s)

∧ domain s = VarNames

IsABehavior(σ)
∆
= ∧ IsAFunction(σ)

∧ domain σ = Nat
∧ ∀n ∈ Nat : IsAState(σ[n])

We define = x for states

(10)

s =x t
∆
= s[“x”] = t [“x”]

s =x ,...,z t
∆
= ∧ s =x t

...
∧ s =z t

s ̸=x ,...,z t
∆
= ¬s =x ,...,z t

These definitions are similar to those in [31]. Note that x is the only variable
included in the comparison, which is opposite to the definition of = x in [30,
p.903]. Let

(11) EqualUpTo(var , τ, ρ)
∆
= ∀n ∈ Nat : ∀ v ∈ VarNames \ {var} :

τ [n][v] = ρ[n][v]

The operator EqualUpTo corresponds to = x as defined (for behaviors) in [30].

32

The “unstuttering” operator ♮ is defined as [8, p.311]

♮σ
∆
= let f [n ∈ Nat]

∆
= if n = 0 then 0

else if σ[n] = σ[n − 1]
then f [n − 1]
else f [n − 1] + 1

S
∆
= {f [n] : n ∈ Nat}

in [n ∈ S 7→ σ[choose i ∈ Nat : f [i] = n]

If a behavior σ has an (infinite) stuttering “tail”, then IsFiniteSet(domain ♮σ)
with the definition of [8, p.311] (above). In this case, the definition of [30,
Eq.(48), p.904] preserves the stuttering tail, so ¬IsFiniteSet(domain ♮σ). For
the purpose of defining ∃∃∃∃∃∃ , it does not make a difference which definition of ♮ is
used.

The operator ∃∃∃∃∃∃ can be defined as [30, Eq.(49)]

(12) σ |= ∃∃∃∃∃∃ x : F
∆
= ∃ τ, ρ : ∧ IsABehavior(τ)

∧ IsABehavior(ρ)
∧ ♮ρ = ♮σ
∧ EqualUpTo(“x”, ρ, τ)
∧ τ |= F

We define the operator ∼ x as follows (∼ x is not defined in [30])

(13) σ ∼ x τ
∆
= ∃ ρ : ∧ IsABehavior(ρ)

∧ ♮ρ = ♮σ
∧ EqualUpTo(“x”, ρ, τ)

Substituting Eq. (13) in Eq. (12) we obtain

(14)

σ |= ∃∃∃∃∃∃ x : F = ∃ τ : ∧ IsABehavior(τ)
∧ σ ∼ x τ
∧ τ |= F

= ∃behavior τ : ∧ σ ∼ x τ
∧ τ |= F

If IsABehavior(σ), then Eq. (14) can be shown to be equivalent to the definition
of ∃∃∃∃∃∃ in [8, p.316] with the operator ∼ x defined as in [25, p.4].

As defined in Eq. (1),

∀behavior σ : F
∆
= ¬∃behavior σ : ¬F

= ¬∃σ : IsABehavior(σ) ∧ ¬F
= ∀σ : ¬

(
IsABehavior(σ) ∧ ¬F

)
= ∀σ : IsABehavior(σ) ⇒ F

33

Remark 8 (Tuple constructor syntax) We use a schematic definition of
tuples, instantiated as

⟨x , h,m ⟩ ∆
= [i ∈ {1, 2, 3} 7→ if i = 1 then x

else if i = 2 then h
else m

]

The reason is that the definition given in [8, §16.1.9] refers to the operator ≤,
which is defined in the module ProtoReals [8, Fig.18.5, pp.346–347], which in
turn contains tuple syntax (for example, ⟨a, b ⟩ ∈ Leq).

The conditional expression above has been used to define tuples also in [31,
p.434], where the domain is defined using the operator ≤.

Equivalently, we could have used throughout the entire proof of Lemma 6
function constructor syntax, in place of the expression ⟨x , h,m ⟩.

An open system deals with an environment it cannot control [9, 2, 3]. It can
succeed only if the environment behaves as assumed, which can be described
with a property of the form A +−▷ G [8, p.156, p.316], [25, p.4]. This property
requires the system to exhibit behavior that satisfies G (guarantee), as long as
the environment does not violate A (assumption). We can write

A = InitA ∧A G = InitG ∧G

to emphasize the initial predicates InitA, InitG of the assumption and guarantee.
It follows that an open-system specification has the form

(InitA ∧A) +−▷ (InitG ∧G)

For convenience, let PrefixSat [8, p.316] be defined with σ as an explicit argu-
ment

(15) PrefixSat(σ,n,H)
∆
= ∃behavior τ : ∧ ∀ i ∈ 0..(n − 1) : τ [i] = σ[i]

∧ τ |= H

The operator +−▷ is defined as [8, p.316, equiv. p.337]
(16)

σ |= A +−▷ G ∆
= ∧ σ |= A ⇒ G

∧ ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)

[Proposition 3 on page 5] Proof:
⟨1⟩1. Suffices: Assume: IsABehavior(σ)

Prove: ∃behavior τ : ∧ σ ∼ x τ
∧ τ |= ∧ x = u

∧ 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩
by def ∀behavior.

⟨1⟩2. define VariableNames as the set of all variable names
by [8, p.311], this set exists.

34

⟨1⟩3. define

TauN (τ,n)
∆
= if n = 0

then [σ[0] except !JxK = σ[0]JuK]
else [σ[n] except !JxK = τ [n − 1]Jf [⟨x , h ⟩]K]]

TauFromSigma(τ)
∆
= τ = [n ∈ Nat 7→ TauN (τ,n)]

⟨1⟩4. ∃ τ : TauFromSigma(τ)
⟨2⟩1. Suffices: Assume: ∀behavior τ : ¬TauFromSigma(τ)

Prove: false
⟨2⟩2. pick τ : IsABehavior(τ) ∧ ¬TauFromSigma(τ)
⟨2⟩3.

∀behavior τ : ¬TauFromSigma(τ) ≡
∀behavior τ : ∃n ∈ Nat : τ [n] ̸= TauN (τ,n)

⟨2⟩4. ∃n ∈ Nat : τ [n] ̸= TauN (τ,n)
⟨2⟩5. ∀n ∈ Nat : IsAState(TauN (τ,n))
by ⟨1⟩3, Induction, ⟨2⟩2.

⟨2⟩6. ∃behavior g : g = [n ∈ Nat 7→ TauN (τ,n)]
by ⟨2⟩5

⟨2⟩7. ∃behavior g : ∀n ∈ Nat : g [n] = TauN (g ,n)
by ⟨2⟩6, Induction.

⟨2⟩8. Q.E.D.
by ⟨2⟩7 and assumption of ⟨2⟩1.

⟨1⟩5. pick τ : TauFromSigma(τ)
by ⟨1⟩4.

⟨1⟩6. IsABehavior(τ)
⟨2⟩1. IsAFunction(τ)
by ⟨1⟩3, ⟨1⟩5.

⟨2⟩2. domain τ = Nat
by ⟨1⟩3, ⟨1⟩5.

⟨2⟩3. ∀n ∈ Nat : IsAState(τ [n])
by def IsAState in [8, p.313], ⟨1⟩3, ⟨1⟩5.

⟨2⟩4. Q.E.D.
by ⟨2⟩1, ⟨2⟩2, ⟨2⟩3.

⟨1⟩7. σ ∼ x τ
⟨2⟩1. EqualUpTo(“x”, σ, τ)
by ⟨1⟩3, ⟨1⟩5, ⟨1⟩1, ⟨1⟩6, def EqualUpTo (Eq. (11) on page 32).

⟨2⟩2. ∧ IsABehavior(σ)
∧ ♮σ = ♮σ

by ⟨1⟩1, axiom equality reflexive.
⟨2⟩3. Q.E.D.

by ⟨2⟩1, ⟨2⟩2, def ∼ x (Eq. (13) on page 33), ∃G with witness ρ
∆
= σ.

⟨1⟩8. τ |= (x = u)
by ⟨1⟩3, ⟨1⟩5.

35

⟨1⟩9. τ |= 2[x ′ = f [⟨x , h ⟩]]⟨x ,h ⟩
by ⟨1⟩3, ⟨1⟩5, induction, f [⟨x , h ⟩] is a syntactically well-formed expression,
TLA+ is untyped, def of 2[A]v , assumption 1, 2 the expression f is a
constant symbol, h, x variable symbols, so symbol x does not occur in the
expressions f , h.

⟨1⟩10. Q.E.D.
by ⟨1⟩6, ⟨1⟩7, ⟨1⟩8, ⟨1⟩9.

[Lemma 4 on page 5] Proof:
⟨1⟩1. ∃ u, r : (⟨x , h ⟩ = ⟨u, r ⟩) ⇒ ¬φ(x , h)
⟨2⟩1. ∃ u, r : Init(u, r) ≡ false
by assumption 6.

⟨2⟩2. ¬Init(x , h) ⇒ ¬φ(x , h)
by contrapositive of assumption 5.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2

⟨1⟩2. ∀ u : ∀∀∀∀∀∀ h : ∃∃∃∃∃∃ x : (x = u) ∧ ψ(x , h, f)
by Proposition 2 and a formula being valid defined as its universal closure
being true.

⟨1⟩3. ∀ u, r : ∃∃∃∃∃∃ x , h : (⟨x , h ⟩ = ⟨u, r ⟩) ∧ ψ(x , h, f)
⟨1⟩4. pick u, r : (⟨x , h ⟩ = ⟨u, r ⟩) ⇒ ¬φ(x , h)
by ⟨1⟩1

⟨1⟩5. ∃∃∃∃∃∃ x , h : (⟨x , h ⟩ = ⟨u, r ⟩) ∧ ψ(x , h, f)
by ⟨1⟩3

⟨1⟩6. Q.E.D.
by ⟨1⟩5, ⟨1⟩4 and take universal closure with respect to f .

[Proposition 5 on page 11] Proof sketch:
⟨1⟩1. The truthness of axioms and proof rules of TLA+ is independent of what

value f [x] is for x /∈ domain f .
Proof sketch: by the moderate interpretation of Boolean operators [8,
p.297], if f [x] appears in an axiom, then the truthness of the axiom is inde-
pendent of what value f [x] is for x /∈ domain f [8, §16.1.7]. In other words,
if f is a function symbol, then the axioms of TLA+ leave the values f [x] for
x /∈ domain f completely unspecified.
by assumption 2 the function constructor syntax [x ∈ S 7→ e(x)] satisfies
the relevant axioms, which can be proved using the dependence ofMakeFunction
only on values of ApplyFunc(p,) inside DomainOf (p). This ensures that the
function constructor axiom of [25] remains true.

⟨1⟩2. The modification of the interpretation from J to R changes only values
f [x] for x /∈ domain f .

Proof sketch: by assumption 3, 4.
⟨1⟩3. The modification of the interpretation from J to R cannot affect the truth-

ness of axioms or proof rules.
⟨1⟩4. The axioms and proof rules of TLA+ are true in the interpretation J , σ.
⟨2⟩1. The TLA+ theorems and proof rules are true in the interpretation J , σ.
by assumption 1.

36

⟨2⟩2. Any axiom is a theorem.
⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩5. The axioms and proof rules of TLA+ are true in the interpretation R, σ.
by ⟨1⟩4, ⟨1⟩3, MP.

⟨1⟩6. All theorems of TLA+ are true in R, σ.
by ⟨1⟩5, induction from axioms applying proof rules.

⟨1⟩7. Q.E.D.
by ⟨1⟩6, def IsAModel .

[Lemma 6 on page 12] Proof:
⟨1⟩1. Define:

F
∆
= ∀ f : IsAFunction(f) ⇒ ∃∃∃∃∃∃ x , h : ψ(x , h, f) ∧ ¬φ(x , h)

(Note that F = ∀ f : ∃∃∃∃∃∃ x , h : IsAFunction(f) ⇒ ψ(x , h, f) ∧
¬φ(x , h))

⟨1⟩2. |= ∀ f : IsAFunction(f) ⇒ CanLoseOutside
⟨2⟩1. |= ∀ f : IsAFunction(f) ⇒ true
by predicate logic.

⟨2⟩2. |= CanLoseOutside
by assumption 10, ⟨2⟩1.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩3. Define: 1. FirstTwo(S)
∆
= {⟨a, b ⟩ : ∃ c : ⟨a, b, c ⟩ ∈ S}

2. BehOutside
∆
= ∀ f : ∨ ¬IsAFunction(f)

∨ ∃∃∃∃∃∃ x , h : ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))

(Note that BehOutside = ∀ f : ∃∃∃∃∃∃ x , h : IsAFunction(f) ⇒
∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))

)

⟨1⟩4. |= BehOutside
⟨2⟩1. |= ∀ f : ∨ ¬IsAFunction(f)

∨ ∀S : ∃∃∃∃∃∃ x , h : ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ S)

by assumption 9, ⟨1⟩2.
⟨2⟩2. |= ∀S , f : ∨ ¬IsAFunction(f)

∨ ∃∃∃∃∃∃ x , h : ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ S)

by ⟨2⟩1, symbol S does not occur in the expression IsAFunction(f).
⟨2⟩3. |= ∀ f : ∨ ¬IsAFunction(f)

∨ ∃∃∃∃∃∃ x , h : ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))

by ⟨2⟩2, ∀E with S
∆
= FirstTwo(domain f).

⟨2⟩4. Q.E.D.
by ⟨2⟩3, ⟨1⟩4/2.

37

⟨1⟩5. |= ∀∀∀∀∀∀ x , h : ∀ f : ∃∃∃∃∃∃m : ∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

⟨2⟩1. ∃∃∃∃∃∃m : ∧ m = ⟨f , 0⟩
∧ 2[∧ m ′ = ⟨f ,m[2] + 1⟩

∧ ⟨x , h ⟩′ ̸= ⟨x , h ⟩
]⟨m,x ,h ⟩

by [10, §2.4] (m is a history-determined variable).
⟨2⟩2. |= 2[∧ m ′ = ⟨f ,m[2] + 1⟩

∧ ⟨x , h ⟩′ ̸= ⟨x , h ⟩
]⟨m,x ,h ⟩ ⇒ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

⟨3⟩1. |= [∧ m ′ = ⟨f ,m[2] + 1⟩
∧ ⟨x , h ⟩′ ̸= ⟨x , h ⟩

]⟨m,x ,h ⟩ ⇒ [m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

by ∧E.
⟨3⟩2. Q.E.D.
by ⟨3⟩1, TLA2.

⟨2⟩3. |= (∧ m = ⟨f , 0⟩
∧ 2[∧ m ′ = ⟨f ,m[2] + 1⟩

∧ ⟨x , h ⟩′ ̸= ⟨x , h ⟩
]⟨m,x ,h ⟩)

⇒ (∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩)

by ⟨2⟩2.
⟨2⟩4. Q.E.D.
by ⟨2⟩1, ⟨2⟩3, (|= A ⇒ B) ⇒ (|= (∃∃∃∃∃∃m : A) ⇒ (∃∃∃∃∃∃m : B)).

⟨1⟩6. 1. W (m, x , h, f)
∆
= ∨ ¬IsAFunction(f)

∨ ∧ ¬φ(x , h)
∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩
∧ 2

(
⟨x , h ⟩ /∈ FirstTwo(domain f)

)
2. V (f)

∆
= ∃∃∃∃∃∃ x , h,m : W (m, x , h, f)

3. Q
∆
= ∀ f : V (f)

⟨1⟩7. |= Q
⟨2⟩1. |= ∀ f : ∃∃∃∃∃∃ x , h : ∨ ¬IsAFunction(f)

∨ ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))

by ⟨1⟩4, ⟨1⟩3/2.
⟨2⟩2. ∀∀∀∀∀∀ x , h : ∀ f : ∃∃∃∃∃∃m : ∧ m = ⟨f , 0⟩

∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩
by ⟨1⟩5.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2, assumption 6.

⟨1⟩8. J , σ |= Q
⟨2⟩1. IsAModel(J , σ)
by assumption 4.

⟨2⟩2. |= Q
by ⟨1⟩7.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2, def |= [18, p.22].

38

⟨1⟩9. Γ(τ, u)
∆
= ∧ IsABeh(τ)

∧ σ ∼ x ,h,mτ
∧ J |f≜u , τ |= W (x , h,m, f)

⟨1⟩10. PickLosingBeh(u)
∆
= choose τ : Γ(τ, u)

⟨1⟩11. ∀ u : Γ(PickLosingBeh(u), u)
⟨2⟩1. ∀ u : ∃ τ : Γ(τ, u)
⟨3⟩1. J , σ |= ∀ f : ∃∃∃∃∃∃ x , h,m : W (x , h,m, f)
by ⟨1⟩6, ⟨1⟩7.

⟨3⟩2. ∀ u : J |f≜u , σ |= ∃∃∃∃∃∃ x , h,m : W (x , h,m, f)

by ⟨3⟩1, def ∀ (Eq. (4) on page 9).
⟨3⟩3. ∀ u : ∃ τ : ∧ IsABeh(τ)

∧ σ ∼ x ,h,mτ
∧ J |f≜u , τ |= W (x , h,m, f)

by ⟨3⟩2, def ∃∃∃∃∃∃ .
⟨3⟩4. Q.E.D.
by ⟨3⟩3, ⟨1⟩9.

⟨2⟩2. ∀ u : Γ(choose τ : Γ(τ, u), u)
by ⟨2⟩1, choose axiom .

⟨2⟩3. Q.E.D.
by ⟨2⟩2, ⟨1⟩10.

⟨1⟩12. IsIndex (i , η, u, v)
∆
= v = η[i]J⟨x , h,m ⟩KJ |

f≜p

⟨1⟩13.

ApplyFuncR(u, v)
∆
= let

η
∆
= PickLosingBeh(u)

k
∆
= choose i ∈ Nat : ∧ IsIndex (i , η, u, v)

∧ ¬IsIndex (i + 1, η, u, v)

r
∆
= choose i ∈ Nat : IsIndex (i , η, u, v)

in

if JIsAFunction(f)KJ |
f≜u

then

if ∃ i ∈ Nat : ∧ IsIndex (i , η, u, v)
∧ ¬IsIndex (i + 1, η, u, v)

then η[k + 1]JxK
else if ∃ i ∈ Nat : IsIndex (i , η, u, v) then η[r]JxK
else ApplyFuncJ (u, v)
else ApplyFuncJ (u, v)

⟨1⟩14. ∀ r : ∀ state s : sJdomain f KR|
f≜r

= sJdomain f KJ |
f≜r

⟨2⟩1. Suffices: Assume: 1. zf new r , s
2. IsAState(s)

Prove: sJdomain f KR|
f≜r

= sJdomain f KJ |
f≜r

by ∀G.
⟨2⟩2. Flatten(Tokenize(“domain g”), s, J |f≜r) = DomainOf (r)

39

Flatten(Tokenize(“domain g”), s, J |f≜r) =

Flatten(⟨“domain ”, “g”⟩, s, J |f≜r) =

DomainOf (Flatten(⟨“g”⟩, s, J |f≜r)) =

DomainOf (r)

⟨2⟩3. Flatten(Tokenize(“domain g”), s,R|f≜r) = DomainOf (r)

Similar to proof of ⟨2⟩2.
⟨2⟩4. Flatten(Tokenize(“domain g”), s, J |f≜r) = Flatten(Tokenize(“domain g”), s,R|f≜r)

by ⟨2⟩2, ⟨2⟩3.
⟨2⟩5. Q.E.D.
by ⟨2⟩4, structure of interpretations.

⟨1⟩15. ∀ q , r : r ∈ DomainOf (q) ⇒ (ApplyFuncR(q , r) = ApplyFuncJ (q , r))
⟨2⟩1. |= ∀ a, b, c,S : ⟨a, b ⟩ /∈ FirstTwo(S) ⇒ ⟨a, b, c ⟩ /∈ S
⟨3⟩1. Suffices: Assume: new a, b,S : ⟨a, b ⟩ /∈ FirstTwo(S)

Prove: ∀ c : ⟨a, b, c ⟩ /∈ S
by DP, ∀G.

⟨3⟩2. FirstTwo(S) = {⟨u, v ⟩ : ∃ c : ⟨u, v , c ⟩ ∈ S}
by ⟨1⟩3/1.

⟨3⟩3. ¬∃ c : ⟨a, b, c ⟩ ∈ S
by ⟨3⟩1, ⟨3⟩2.

⟨3⟩4. Q.E.D.
by ⟨3⟩3.

⟨2⟩2. Assume: 1. new S
2. variables x , h,m

Prove: |= 2(⟨x , h ⟩ /∈ FirstTwo(S)) ⇒ 2(⟨x , h,m ⟩ /∈ S)
by ⟨2⟩1, ∀E, STL4.

⟨2⟩3. Suffices: Assume: zf new q , r : r ∈ DomainOf (q)
Prove: ApplyFuncR(q , r) = ApplyFuncJ (q , r)

by DP, ∀G.
⟨2⟩4. Case: ¬JIsAFunction(f)KJ |

f≜q

by ⟨1⟩13 (def ApplyFuncR).
⟨2⟩5. Case: JIsAFunction(f)KJ |

f≜q

⟨3⟩1. η ∆
= PickLosingBeh(q)

⟨3⟩2. Case: ¬∃ i ∈ Nat : IsIndex (i , η, q , r)
by ⟨1⟩13 (def ApplyFuncR).

⟨3⟩3. Assume: ∃ i ∈ Nat : IsIndex (i , η, q , r)
Prove: false

⟨4⟩1. ¬J |f≜q , η |= 2(⟨x , h,m ⟩ /∈ domain f)

⟨5⟩1. ∃ l ∈ Nat : r = η[l]J⟨x , h,m ⟩KJ |
f≜q

⟨6⟩1. Case: ¬∃ i ∈ Nat : ∧ IsIndex (i , η, q , r)
∧ ¬IsIndex (i + 1, η, q , r)

⟨7⟩1. l
∆
= choose i ∈ Nat : IsIndex (i , η, q , r)

40

⟨7⟩2. ∧ l ∈ Nat
∧ IsIndex (l , η, q , r)

by ⟨7⟩1, ⟨3⟩3/A.
⟨7⟩3. r = η[l]J⟨x , h,m ⟩KJ |

f≜q

by ⟨7⟩2, ⟨1⟩12.
⟨7⟩4. Q.E.D.
by ⟨7⟩3, ⟨7⟩2, ∃G witness l .

⟨6⟩2. Case: ∃ i ∈ Nat : ∧ IsIndex (i , η, q , r)
∧ ¬IsIndex (i + 1, η, q , r)

⟨7⟩1. l
∆
= choose ∈ Nat : ∧ IsIndex (i , η, q , r)

∧ ¬IsIndex (i + 1, η, q , r)

⟨7⟩2. ∧ l ∈ Nat
∧ IsIndex (l , η, q , r)
∧ ¬IsIndex (l + 1, η, q , r)

by ⟨7⟩1, ⟨6⟩2/A.
⟨7⟩3. IsIndex (l , η, q , r)
by ⟨7⟩2, ∧E.

⟨7⟩4. r = η[l]J⟨x , h,m ⟩KJ |
f≜q

by ⟨7⟩3, ⟨1⟩12.
⟨7⟩5. Q.E.D.
by ⟨7⟩4, ⟨7⟩2, ∃G witness l .

⟨6⟩3. Q.E.D.
by ⟨6⟩1, ⟨6⟩2, which are exhaustive.

⟨5⟩2. ∃ l ∈ Nat : η[l]J⟨x , h,m ⟩ ∈ domain f KJ |
f≜q

⟨6⟩1. r ∈ DomainOf (q)
by ⟨2⟩3/A.

⟨6⟩2. ∃ l ∈ Nat : η[l]J⟨x , h,m ⟩KJ |
f≜q

∈ DomainOf (q)

by ⟨5⟩1, ⟨6⟩1.
⟨6⟩3. Q.E.D.
by ⟨6⟩2.

⟨5⟩3. Q.E.D.
⟨6⟩1. ¬∀ l ∈ Nat : η[l]J⟨x , h,m ⟩ /∈ domain f KJ |

f≜q

by ⟨5⟩2, constant operator semantics in TLA+.
⟨6⟩2. ¬∀ l ∈ Nat : ⟨η[l], η[l + 1]⟩J⟨x , h,m ⟩ /∈ domain f KJ |

f≜q

by ⟨6⟩1, action semantics in TLA+.
⟨6⟩3. Q.E.D.
by ⟨6⟩2, temporal formula semantics in TLA+.

⟨4⟩2. J |f≜q , η |= 2(⟨x , h,m ⟩ /∈ domain f)

⟨5⟩1. ∀ u : Γ(PickLosingBeh(u), u)
by ⟨1⟩11.

⟨5⟩2. Γ(PickLosingBeh(q), q)

by ⟨5⟩1, ∀E with u
∆
= q .

⟨5⟩3. Γ(η, q)
by ⟨5⟩2, ⟨3⟩1.

41

⟨5⟩4. ∧ IsABeh(η)
∧ σ ∼ x ,h,mη
∧ J |f≜q , η |= W (x , h,m, f)

by ⟨5⟩3, ⟨1⟩9.
⟨5⟩5. J |f≜q , η |= ∨ ¬IsAFunction(f)

∨ ∧ ¬φ(x , h)
∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f)

by ⟨5⟩4, ⟨1⟩6/1.
⟨5⟩6. J |f≜q , η |= 2(⟨x , h ⟩ /∈ FirstTwo(domain f))

by ⟨5⟩5, ⟨2⟩5/A.
⟨5⟩7. J |f≜q , η |= 2(⟨x , h ⟩ /∈ FirstTwo(domain f)) ⇒ 2(⟨x , h,m ⟩ /∈ domain f)

by ⟨2⟩2, ∀E with S
∆
= domain f .

⟨5⟩8. Q.E.D.
by ⟨5⟩6, ⟨5⟩7, MP.

⟨4⟩3. Q.E.D.
by ⟨4⟩1, ⟨4⟩2.

⟨3⟩4. Q.E.D.
by ⟨3⟩1, ⟨3⟩2, which are exhaustive.

⟨2⟩6. Q.E.D.
by ⟨2⟩4, ⟨2⟩5, which are exhaustive.

⟨1⟩16. Define: Interpretation R using Tokenize,FlattenR,ApplyFuncR,MakeFunction
(so the only difference with J is replacement of the operator
ApplyFuncJ with ApplyFuncR and use of ApplyFuncR in the
recursive definition of FlattenR).

⟨1⟩17. IsAModel(R, σ)
by ⟨1⟩16, assumption 3, 4, Proposition 5.

⟨1⟩18. Suffices: R, σ |= F
⟨2⟩1. ̸|= ¬F
⟨3⟩1. ∧ IsAModel(R, σ)

∧ R, σ |= F
by ⟨1⟩17, ⟨1⟩18.

⟨3⟩2. R, σ ̸|= ¬F
by ⟨3⟩1, def |= (semantic validity) [18, p.22].

⟨3⟩3. Q.E.D.
by ⟨3⟩2, def |=.

⟨2⟩2. ̸|= G
⟨3⟩1. ̸|= ¬F
by ⟨2⟩1.

⟨3⟩2. G ≡ ¬F
⟨4⟩1. G = ∃ f : ∧ IsAFunction(f)

∧ ∀∀∀∀∀∀ x , h : ψ(x , h, f) ⇒ φ(x , h)
by assumption 11.

⟨4⟩2. F = ∀ f : IsAFunction(f) ⇒ ∃∃∃∃∃∃ x , h : ψ(x , h, f) ∧ ¬φ(x , h)

42

by ⟨1⟩1.
⟨4⟩3. Q.E.D.
by ⟨4⟩1, ⟨4⟩2.

⟨3⟩3. Q.E.D.
by ⟨3⟩1, ⟨3⟩2.

⟨2⟩3. ̸|= G ⇒ ⊬ G
⟨3⟩1. TLA+ is sound
by assumption 1.

⟨3⟩2. (⊢ G) ⇒ (|= G)
by ⟨3⟩1, def soundness.

⟨3⟩3. Q.E.D.
by ⟨3⟩2, contrapositive.

⟨2⟩4. Q.E.D.
by ⟨2⟩2, ⟨2⟩3, MP.

⟨1⟩19. Suffices: Assume: zf new p
Prove: R|f≜p , σ |= ∃∃∃∃∃∃ x , h : ∨ ¬IsAFunction(f)

∨ ∧ ψ(x , h, f)
∧ ¬φ(x , h)

by ⟨1⟩1 (def F), def ∀.
⟨1⟩20. τ ∆

= PickLosingBeh(p)
⟨1⟩21. Γ(τ, p)

by ⟨1⟩11, ⟨1⟩20, ∀E with u
∆
= p.

⟨1⟩22. J |f≜p , τ |= W (m, x , h, f)

by ⟨1⟩21, ⟨1⟩9.
⟨1⟩23. Assume: R|f≜p , τ |= IsAFunction(f)

Prove: J |f≜p , τ |= IsAFunction(f)

⟨2⟩1. Flatten(Tokenize(“[x ∈ domain f 7→ f [x]] = f ”, τ [0],R|f≜p))

by ⟨1⟩23/A, ⟨1⟩16.
⟨2⟩2. Flatten(⟨“f ”⟩, τ [0],R|f≜p)

= Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0],R|f≜p)

by ⟨2⟩1.
⟨2⟩3. Flatten(⟨“f ”⟩, τ [0],R|f≜p) = Flatten(⟨“f ”⟩, τ [0], J |f≜p)

⟨3⟩1. Flatten(⟨“f ”⟩, τ [0],R|f≜p) = p

⟨3⟩2. Flatten(⟨“f ”⟩, τ [0], J |f≜p) = p

⟨3⟩3. Q.E.D.
by ⟨3⟩1, ⟨3⟩2.

⟨2⟩4. Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0],R|f≜p)

= Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0], J |f≜p)

43

⟨3⟩1.
Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0],R|f≜p)

= MakeFunction({
⟨r ,ApplyFuncR(
Flatten(⟨“f ”⟩, τ [0],Rf≜p,x≜r),

Flatten(⟨“x”⟩, τ [0],Rf≜p,x≜r)

)⟩ :

r ∈ Flatten(⟨“domain ”, “f ”⟩, τ [0],R|f≜p) })

⟨3⟩2.
@ =MakeFunction({

⟨r ,ApplyFuncR(p, r)⟩ :

r ∈ DomainOf
(
Flatten(⟨“f ”⟩, τ [0],R|f≜p)

)
})

⟨3⟩3. @ = MakeFunction({⟨r ,ApplyFuncR(p, r)⟩ : r ∈ DomainOf (p)})
⟨3⟩4. ∀ r ∈ DomainOf (p) : ApplyFuncR(p, r) = ApplyFuncJ (p, r)

by ⟨1⟩15, ∀E with q
∆
= p.

⟨3⟩5. MakeFunction({⟨r ,ApplyFuncR(p, r)⟩ : r ∈ DomainOf (p)
= MakeFunction({⟨r ,ApplyFuncJ (p, r)⟩ : r ∈ DomainOf (p)

by ⟨3⟩3, ⟨3⟩4.
⟨3⟩6.

@ = MakeFunction({
⟨r ,ApplyFuncJ (
Flatten(⟨“f ”⟩, τ [0], J f≜p,x≜r),

Flatten(⟨“x”⟩, τ [0], J f≜p,x≜r)

)⟩ :

r ∈ Flatten(⟨“domain ”, “f ”⟩, τ [0], J |f≜p) })

⟨3⟩7. @ = Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0], J |f≜p)

⟨3⟩8. Q.E.D.
by ⟨3⟩1, ⟨3⟩2, ⟨3⟩3, ⟨3⟩5, ⟨3⟩6, ⟨3⟩7.

⟨2⟩5. Flatten(⟨“f ”⟩, τ [0], J |f≜p)

= Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0], J |f≜p)

by ⟨2⟩2, ⟨2⟩3, ⟨2⟩4.
⟨2⟩6. Flatten(Tokenize(“[x ∈ domain f 7→ f [x]]”), τ [0], J |f≜p)

by ⟨2⟩5.
⟨2⟩7. Q.E.D.
by ⟨2⟩6.

⟨1⟩24. Assume: 1. zf new n, k ∈ Nat

2. J |f≜p , τ |= ∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨x ,h,m ⟩

44

3. ∧ τ [n] = x ,h,mτ [k]
∧ τ [n] ̸= x ,h,mτ [n + 1]
∧ τ [k] ̸= x ,h,mτ [k + 1]

Prove: n = k
⟨2⟩1. Suffices: Assume: n ̸= k

Prove: false
⟨3⟩1. n, k ∈ Nat
by ⟨1⟩24/A1.

⟨3⟩2. (n = k) ∨ (n ̸= k)
by ⟨3⟩1, Naturals.

⟨3⟩3. Q.E.D.
by ⟨3⟩2, ⟨2⟩1.

⟨2⟩2. Case: n < k
⟨3⟩1. τ |= ∧ m[2] ∈ Nat

∧ 2[(m[2])′ = m[2] + 1]⟨m,x ,h ⟩
⟨4⟩1. τ |= m[2] ∈ Nat
⟨5⟩1. |= (m = ⟨f , 0⟩) ⇒ (m[2] = 0)
⟨5⟩2. τ |= (m = ⟨f , 0⟩)
by ⟨1⟩24/A2, ∧E.

⟨5⟩3. τ |= m[2] = 0
by ⟨5⟩1, ⟨5⟩2, MP.

⟨5⟩4. Q.E.D.
by ⟨5⟩3, Naturals.

⟨4⟩2. τ |= 2[(m[2])′ = m[2] + 1]⟨m,x ,h ⟩
⟨5⟩1. |= [m ′ = ⟨f ,m[2] + 1⟩]m,x ,h ⟩ ⇒ [(m[2])′ = m[2] + 1]⟨m,x ,h ⟩
⟨5⟩2. |= 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩ ⇒ 2[(m[2])′ = m[2] + 1]⟨m,x ,h ⟩
by ⟨5⟩1, TLA2.

⟨5⟩3. τ |= 2[m ′ = ⟨f ,m[2]+1⟩]⟨m,x ,h ⟩ ⇒ 2[(m[2])′ = m[2]+1]⟨m,x ,h ⟩
by ⟨5⟩2, def |=, ⟨1⟩21, ⟨1⟩9 (IsABeh(τ)).

⟨5⟩4. Q.E.D.
by ⟨1⟩24/A2 ∧E, ⟨5⟩3, MP.

⟨4⟩3. Q.E.D.
by ⟨4⟩1, ⟨4⟩2, ∧I.

⟨3⟩2. τ |= 2(m[2] ∈ Nat)
⟨4⟩1.

(
∧ m[2] ∈ Nat
∧ [(m[2])′ = m[2] + 1]⟨m,x ,h ⟩

)
⇒ (m[2] ∈ Nat)′

45

Proof:

∧ m[2] ∈ Nat
∧ [(m[2])′ = m[2] + 1]⟨m,x ,h ⟩

= ∧ m[2] ∈ Nat
∧ ∨ (m[2])′ = m[2] + 1
∨ ⟨m, x , h ⟩′ = ⟨m, x , h ⟩

= ∨ ∧ m[2] ∈ Nat
∧ m ′ = m

∨ ∧ m[2] ∈ Nat
∧ (m[2])′ = m[2] + 1

⇒ ∨ (m[2] ∈ Nat)′

∨ ∧ (m[2] + 1) ∈ Nat
∧ (m[2])′ = (m[2] + 1)

⇒ (m[2] ∈ Nat)′

⟨4⟩2. |= (∧ m[2] ∈ Nat
∧ 2[(m[2])′ = m[2] + 1]⟨m,x ,h ⟩

) ⇒ 2(m[2] ∈ Nat)

by ⟨3⟩1, INV1 with P
∆
= m[2] ∈ Nat .

⟨4⟩3. τ |= ∧ m[2] ∈ Nat
∧ 2[(m[2])′ = m[2] + 1]⟨m,x ,h ⟩

⇒ 2(m[2] ∈ Nat)

by ⟨4⟩2, def |=, ⟨1⟩21, ⟨1⟩9 (IsABeh(τ)).
⟨4⟩4. Q.E.D.
by ⟨3⟩1, ⟨4⟩3, MP.

⟨3⟩3. τ |= 2[∧ m[2] ∈ Nat
∧ (m[2])′ = m[2] + 1

]⟨m,x ,h ⟩

by ⟨3⟩1, ∧E, ⟨3⟩2, INV2, MP.
⟨3⟩4. ⟨τ [n], τ [n + 1]⟩J∧ m[2] ∈ Nat

∧ (m[2])′ = m[2] + 1
K

⟨4⟩1. ⟨τ [n], τ [n + 1]⟩J[∧ m[2] ∈ Nat
∧ (m[2])′ = m[2] + 1

]⟨m,x ,h ⟩K
by ⟨3⟩3, TLA+ semantics, ⟨1⟩24/A1, ∀E.

⟨4⟩2. τ [n] ̸= x ,h,mτ [n + 1]
by ⟨1⟩24/A3, ∧E.

⟨4⟩3. Q.E.D.
by ⟨4⟩1, ⟨4⟩2.

⟨3⟩5. ⟨τ [n], τ [n + 1]⟩J(m[2])′ ≤ m[2]KJ |
f≜p

⟨4⟩1. ∀ i , j ∈ Nat : (i ≤ j) ⇒ ⟨τ [i], τ [j]⟩Jm[2] ≤ (m[2])′KJ |
f≜p

by ⟨3⟩3, (finitary) induction.
⟨4⟩2. (n + 1) ≤ k
⟨5⟩1. n, k ∈ Nat
by ⟨1⟩24/A1.

⟨5⟩2. n < k
by ⟨2⟩2.

⟨5⟩3. Q.E.D.
by ⟨5⟩1, ⟨5⟩2, Naturals.

⟨4⟩3. (n + 1 ≤ k) ⇒ ⟨τ [n], τ [k]⟩Jm[2] ≤ (m[2])′KJ |
f≜p

by ⟨3⟩1, ⟨1⟩24/A1, ∀E with i
∆
= n + 1, j

∆
= k .

46

⟨4⟩4. ⟨τ [n + 1], τ [k]⟩Jm[2] ≤ (m[2])′KJ |
f≜p

by ⟨4⟩2, ⟨4⟩3, MP.
⟨4⟩5. τ [k] = x ,h,mτ [n]
by ⟨1⟩24/A3.

⟨4⟩6. τ [k]JmK = τ [n]JmK
by ⟨4⟩5, def = x ,h,m (Eq. (4) on page 9).

⟨4⟩7. ⟨τ [n + 1], τ [n]⟩Jm[2] ≤ (m[2])′KJ |
f≜p

by ⟨4⟩4, ⟨4⟩6, m is the only variable symbol that appears in the ex-
pression “m[2] ≤ (m[2])′”.

⟨4⟩8. Q.E.D.
by ⟨4⟩7, TLA+ action semantics.

⟨3⟩6. ⟨τ [n], τ [n + 1]⟩J∧ m[2] ∈ Nat
∧ (m[2])′ = m[2] + 1
∧ (m[2])′ ≤ m[2]

KJ |
f≜p

by ⟨3⟩4, ⟨3⟩5.
⟨3⟩7. ⟨τ [n], τ [n + 1]⟩J∧ m[2] ∈ Nat

∧ m[2] + 1 ≤ m[2]
KJ |

f≜p

by ⟨3⟩6.
⟨3⟩8. ⟨τ [n], τ [n + 1]⟩JfalseKJ |

f≜p

by ⟨3⟩7, Naturals.
⟨3⟩9. τ [n]JfalseKJ |

f≜p

by ⟨3⟩8, TLA+ action semantics.
⟨3⟩10. Q.E.D.
by ⟨3⟩9, def JK for an interpretation, assumption 3, 4 (J |f≜p is a

model).
⟨2⟩3. Case: n > k
Proof: Similar to that of ⟨2⟩2.

⟨2⟩4. Q.E.D.
⟨3⟩1. ∨ n < k

∨ n > k
≡ ∧ n, k ∈ Nat

∧ n ̸= k
by Naturals.

⟨3⟩2. (n < k) ∨ (n > k)
by ⟨3⟩1, ⟨1⟩24/A1, ⟨2⟩1/A, MP.

⟨3⟩3. Q.E.D.
by ⟨3⟩2, the cases ⟨2⟩2, ⟨2⟩3 are exhaustive.

⟨1⟩25. R|f≜p , τ |= ∨ ¬IsAFunction(f)
∨ ∧ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩

∧ ¬φ(x , h)
⟨2⟩1. R|f≜p , τ |= ∨ ¬IsAFunction(f)

∨ ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))
∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

⟨3⟩1. Suffices: Assume: JIsAFunction(f)KR|
f≜p

47

Prove: R|f≜p , τ |= ¬φ(x , h)
by DP.

⟨3⟩2. J |f≜p , τ |= IsAFunction(f)

by ⟨1⟩23.
⟨3⟩3. J |f≜p , τ |= W (m, x , h, f)

by ⟨1⟩22.
⟨3⟩4. J |f≜p , τ |= ∨ ¬IsAFunction(f)

∨ ∧ ¬φ(x , h)
∧ 2(⟨x , h ⟩ /∈ FirstTwo(domain f))
∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

by ⟨3⟩4, ⟨1⟩6/1.
⟨3⟩5. J |f≜p , τ |= ∨ ¬IsAFunction(f)

∨ ¬φ(x , h)
by ⟨3⟩4, ∧E.

⟨3⟩6. J |f≜p , τ |= ¬φ(x , h)
by ⟨3⟩2, ⟨3⟩5, MP.

⟨3⟩7. Q.E.D.
by ⟨3⟩6, ⟨1⟩16, assumption 7.

⟨2⟩2. R|f≜p , τ |= ∨ ¬IsAFunction(f)
∨ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩

⟨3⟩1. Suffices: Assume: R|f≜p , τ |= IsAFunction(f)

Prove: R|f≜p |= 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩

by DP, TLA+ semantics.
⟨3⟩2. Suffices: Assume: zf new k ∈ Nat

Prove: ⟨τ [k], τ [k + 1]⟩J[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩KR|
f≜p

⟨4⟩1. ∀ k ∈ Nat : ⟨τ [k], τ [k + 1]⟩J[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩KR|
f≜p

by ⟨3⟩2.
⟨4⟩2. Q.E.D.
by ⟨4⟩1, TLA+ semantics.

⟨3⟩3. Suffices: Assume: ⟨τ [k], τ [k + 1]⟩J¬unchanged ⟨x , h,m ⟩KR|
f≜p

Prove: ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

⟨4⟩1. ∨ ¬⟨τ [k], τ [k + 1]⟩J¬unchanged ⟨x , h,m ⟩KR|
f≜p

∨ ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

by ⟨3⟩3.
⟨4⟩2. ∨ ⟨τ [k], τ [k + 1]⟩Junchanged ⟨x , h,m ⟩KR|

f≜p

∨ ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

by ⟨4⟩1, TLA+ semantics.
⟨4⟩3. ⟨τ [k], τ [k + 1]⟩J(x ′ = f [⟨x , h,m ⟩]) ∨ unchanged ⟨x , h,m ⟩KR|

f≜p

by ⟨4⟩2, TLA+ semantics.
⟨4⟩4. Q.E.D.
by ⟨4⟩3, def [A]v .

⟨3⟩4. Q.E.D.

48

⟨4⟩1. ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

≡
(
τ [k + 1]JxK = ApplyFuncR(p, τ [k]J⟨x , h,m ⟩KR|

f≜p
)
)

⟨5⟩1. ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

≡
(
τ [k + 1]JxKR|

f≜p
= τ [k]Jf [⟨x , h,m ⟩]KR|

f≜p

)
by TLA+ semantics.

⟨5⟩2. τ [k + 1]JxKR|
f≜p

= τ [k + 1]JxK
by TLA+ semantics: τ [k + 1]JxKR|

f≜p
= τ [k + 1][“x”]. We use

τ [k + 1]JxK to denote τ [k + 1][“x”], emphasizing that it is the same
in R|f≜p and J |f≜p .

⟨5⟩3. τ [k]Jf [⟨x , h,m ⟩]KR|
f≜p

= ApplyFuncR(p, τ [k]J⟨x , h,m ⟩KR|
f≜p

)

τ [k]Jf [⟨x , h,m ⟩]KR|
f≜p

= Flatten(Tokenize(“f [⟨x , h,m ⟩]”), τ [k],R|f≜p)

= ApplyFuncR
(

Flatten(⟨“f ”⟩, τ [k],R|f≜p),

Flatten(Tokenize(“⟨x , h,m ⟩”), τ [k],R|f≜p)

= ApplyFuncR(p, τ [k]J⟨x , h,m ⟩KR|
f≜p

)
)

⟨5⟩4. Q.E.D.
by ⟨5⟩1, ⟨5⟩2, ⟨5⟩3.

⟨4⟩2. τ [k]J⟨x , h,m ⟩KR|
f≜p

= τ [k]J⟨x , h,m ⟩KJ |
f≜p

⟨5⟩1. e(i , a, b, c)
∆
= if i = 1 then a else if i = 2 then b else c

⟨5⟩2. τ [k]J⟨x , h,m ⟩KR|
f≜p

= MakeFunction({⟨1, τ [k][“x”]⟩, ⟨2, τ [k][“h”]⟩, ⟨3, τ [m][“m”]⟩})

49

Proof: (See also Remark 8 on page 33.)

τ [k]J⟨x , h,m ⟩KR|
f≜p

= τ [k]J[i ∈ {1, 2, 3} 7→ e(i , x , h,m)]KR|
f≜p

= Flatten(Tokenize(“[i ∈ {1, 2, 3} 7→ e(i , x , h,m)]”), τ [k],R|f≜p)

= MakeFunction({⟨r ,Flatten(Tokenize(“e(i , x , h,m)”), τ [k],R|f≜p,i≜r)⟩ :

r ∈ Flatten(Tokenize(“{1, 2, 3}”), τ [k],R|f≜p)})

= MakeFunction({⟨r ,Flatten(Tokenize(“e(i , x , h,m)”), τ [k],R|f≜p,i≜r)⟩ :

r ∈ {1, 2, 3}
})

= MakeFunction({
⟨r , if r = 1 then τ [k][“x”]

else if r = 2 then τ [k][“h”]

else τ [k][“m”]⟩,
r ∈ {1, 2, 3}

})
= MakeFunction({⟨1, τ [k][“x”]⟩, ⟨2, τ [k][“h”]⟩, ⟨3, τ [k][“m”]⟩})

⟨5⟩3. τ [k]J⟨x , h,m ⟩KJ |
f≜p

= MakeFunction({⟨1, τ [k][“x”]⟩, ⟨2, τ [k][“h”]⟩, ⟨3, τ [m][“m”]⟩})
Proof: Similar to that of ⟨5⟩2.

⟨5⟩4. Q.E.D.
by ⟨5⟩2, ⟨5⟩3.

⟨4⟩3. ⟨τ [k], τ [k + 1]⟩Jx ′ = f [⟨x , h,m ⟩]KR|
f≜p

≡
(
τ [k + 1]JxK = ApplyFuncR(p, τ [k]J⟨x , h,m ⟩KJ |

f≜p
)
)

by ⟨4⟩1, ⟨4⟩2.
⟨4⟩4. ApplyFuncR(p, τ [k]J⟨x , h,m ⟩KJ |

f≜p
) = τ [k + 1]JxK

⟨5⟩1. J |f≜p , τ |= IsAFunction(f)

by ⟨3⟩1/A, ⟨1⟩23.
⟨5⟩2. ⟨τ [k], τ [k + 1]⟩J¬unchanged ⟨x , h,m ⟩KJ |

f≜p

⟨6⟩1. ⟨τ [k], τ [k + 1]⟩J¬unchanged ⟨x , h,m ⟩KR|
f≜p

by ⟨3⟩3/A.
⟨6⟩2. ∨ τ [k][“x”] ̸= τ [k + 1][“x”]

∨ τ [k][“h”] ̸= τ [k + 1][“h”]
∨ τ [k][“m”] ̸= τ [k + 1][“m”]

by ⟨6⟩1, x , h,m not declared as constants in R|f≜p ⟨1⟩9, ⟨1⟩10,
⟨1⟩20, ⟨1⟩16.

⟨6⟩3. Q.E.D.
by ⟨6⟩2, x , h,m not declared as constants in J |f≜p ⟨1⟩9, ⟨1⟩10,
⟨1⟩20.

50

⟨5⟩3. v
∆
= τ [k]J⟨x , h,m ⟩KJ |

f≜p

⟨5⟩4.
ApplyFuncR(p, v)

= let

η
∆
= PickLosingBeh(p)

j
∆
= choose i ∈ Nat : ∧ IsIndex (i , η, p, v)

∧ ¬IsIndex (i + 1, η, v)

r
∆
= choose i ∈ Nat : IsIndex (i , η, p, v)

in

if JIsAFunction(f)KJ |
f≜p

then

if ∃ i ∈ Nat : ∧ IsIndex (i , η, p, v)
∧ ¬IsIndex (i + 1, η, p, v)

then η[j + 1]JxK
else if ∃ i ∈ Nat : IsIndex (i , η, p, v)

then η[r]JxK else ApplyFuncJ (p, v)

else ApplyFuncJ (p, v)

by ⟨1⟩13.
⟨5⟩5. η = τ
by ⟨5⟩4, ⟨1⟩20.

⟨5⟩6.

ApplyFuncR(p, v)

= let

j
∆
= choose i ∈ Nat : ∧ IsIndex (i , τ, p, v)

∧ ¬IsIndex (i + 1, τ, v)

r
∆
= choose i ∈ Nat : IsIndex (i , τ, p, v)

in

if ∃ iNat : ∧ IsIndex (i , τ, p, v)
∧ ¬IsIndex (i + 1, τ, p, v)

then τ [j + 1]JxK
else if ∃ i ∈ Nat : IsIndex (i , τ, p, v) then τ [r]JxK
else ApplyFuncJ (p, v)

by ⟨5⟩4, ⟨5⟩1, ⟨5⟩5.
⟨5⟩7. ∃ i ∈ Nat : ∧ IsIndex (i , τ, p, v)

∧ ¬IsIndex (i + 1, τ, p, v)

⟨6⟩1. Suffices: ∃ i ∈ Nat : ∧ τ [k]J⟨x , h,m ⟩KJ |
f≜p

= τ [i]J⟨x , h,m ⟩KJ |
f≜p

∧ τ [k]J⟨x , h,m ⟩KJ |
f≜p

̸= τ [i + 1]J⟨x , h,m ⟩KJ |
f≜p

by ⟨1⟩12.

51

⟨6⟩2. τ [k]J⟨x , h,m ⟩KJ |
f≜p

= τ [k]J⟨x , h,m ⟩KJ |
f≜p

by ZF equality reflexivity axiom.
⟨6⟩3. ⟨τ [k], τ [k + 1]⟩J¬unchanged ⟨x , h,m ⟩KJ |

f≜p

by ⟨5⟩2.
⟨6⟩4. τ [k]J⟨x , h,m ⟩KJ |

f≜p
̸= τ [i + 1]J⟨x , h,m ⟩KJ |

f≜p

by ⟨6⟩3.
⟨6⟩5. Q.E.D.

by ⟨6⟩2, ⟨6⟩4, ∧I, ∃G with witness i
∆
= k , ⟨3⟩2/A.

⟨5⟩8. ApplyFuncR(p, v) = τ [1+choose i ∈ Nat : ∧ IsIndex (i , τ, p, v)
∧ ¬IsIndex (i + 1, τ, pv)

]JxK
by ⟨5⟩6, ⟨5⟩7.

⟨5⟩9. Suffices: k = choose i ∈ Nat : ∧ IsIndex (i , τ, p, v)
∧ ¬IsIndex (i + 1, τ, p, v)

by substitution of k for choose ... in RHS of ⟨5⟩8.
⟨5⟩10. Q.E.D.

⟨6⟩1. r
∆
= choose i ∈ Nat : ∧ IsIndex (i , τ, p, v)

∧ ¬IsIndex (i + 1, τ, p, v)

⟨6⟩2. ∧ r ∈ Nat
∧ IsIndex (r , τ, p, v)
∧ ¬IsIndex (r + 1, τ, p, v)

by ⟨5⟩7, ZF axiom about choose .
⟨6⟩3. ∧ τ [k]J⟨x , h,m ⟩KJ |

f≜p
= τ [r]J⟨x , h,m ⟩KJ |

f≜p

∧ τ [k]J⟨x , h,m ⟩KJ |
f≜p

̸= τ [r + 1]J⟨x , h,m ⟩KJ |
f≜p

by ⟨6⟩2, ⟨5⟩3, ⟨1⟩12.
⟨6⟩4. τ [r]J⟨x , h,m ⟩KJ |

f≜p
̸= τ [r + 1]J⟨x , h,m ⟩KJ |

f≜p

by ⟨6⟩3.
⟨6⟩5. τ [k] = x ,h,mτ [r]
by ⟨6⟩3, x , h,m variables , ⟨6⟩2 (r ∈ Nat), ⟨3⟩2/A (k ∈ Nat),
⟨1⟩21, ⟨1⟩9 (IsABehavior(τ)), def = a,b,....

⟨6⟩6. τ [r] ̸= x ,h,mτ [r + 1]
by ⟨6⟩4, x , h,m variables , ⟨3⟩2/A (k ∈ Nat), ⟨1⟩21, ⟨1⟩9 (IsABehavior(τ)),
def = a,b,....

⟨6⟩7. τ [k] ̸= x ,h,mτ [k + 1]
by ⟨5⟩2, x , h,m variables , ⟨3⟩2/A (k ∈ Nat), ⟨1⟩21, ⟨1⟩9 (IsABehavior(τ)),
def = a,b,....

⟨6⟩8. ∧ τ [r] = x ,h,mτ [k]
∧ τ [r] ̸= x ,h,mτ [r + 1]
∧ τ [k] ̸= x ,h,mτ [k + 1]

by ⟨6⟩5, ⟨6⟩6, ⟨6⟩7.
⟨6⟩9. r = k
by ⟨6⟩8, ⟨1⟩24, ⟨6⟩1 (r ∈ Nat), ⟨3⟩2/A (k ∈ Nat), ⟨1⟩21, ⟨1⟩9
(IsABehavior(τ)).

⟨6⟩10. Q.E.D.

52

by ⟨6⟩9, ⟨6⟩1, J |f≜p , τ |= ∧ m = ⟨f , 0⟩
∧ 2[m ′ = ⟨f ,m[2] + 1⟩]⟨m,x ,h ⟩

(⟨3⟩1/A,

⟨1⟩23, ⟨1⟩22, ⟨1⟩6/1—similarly to ⟨1⟩25/⟨2⟩1/⟨3⟩4) ∧E, ∧I.
⟨4⟩5. Q.E.D.
by ⟨4⟩4.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩26. R|f≜p , σ |= ∃∃∃∃∃∃ x , h : ∨ ¬IsAFunction(f)
∨ ∧ ∃∃∃∃∃∃m : 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩

∧ ¬φ(x , h)
⟨2⟩1. R|f≜p , σ |= ∃∃∃∃∃∃ x , h,m : ∨ ¬IsAFunction(f)

∨ ∧ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩
∧ ¬φ(x , h)

⟨3⟩1. R|f≜p , τ |= ∨ ¬IsAFunction(f)
∨ ∧ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩
∧ ¬φ(x , h)

by ⟨1⟩25.
⟨3⟩2. ∧ IsABehavior(τ)

∧ σ ∼ x ,h,mτ
by ⟨1⟩21, ⟨1⟩9, ∧E.

⟨3⟩3. ∧ IsABehavior(τ)
∧ σ ∼ x ,h,mτ
∧ R|f≜p , τ |= ∨ ¬IsAFunction(f)

∨ ∧ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩
∧ ¬φ(x , h)

by ⟨3⟩1, ⟨3⟩2, ∧I.
⟨3⟩4. Q.E.D.
by ⟨3⟩3, def ∃∃∃∃∃∃ .

⟨2⟩2. Q.E.D.
⟨3⟩1. R|f≜p , σ |= ∃∃∃∃∃∃ x , h : ∨ ¬IsAFunction(f)

∨ ∃∃∃∃∃∃m : ∧ 2[x ′ = f [⟨x , h,m ⟩]]⟨x ,h,m ⟩
∧ ¬φ(x , h)

⟨4⟩1. Assume: 1. temporal A,B
2. m does not occur in A

Prove: |= (∃∃∃∃∃∃m : A ∨ B) ≡ (A ∨ ∃∃∃∃∃∃m : B)
⟨4⟩2. m does not occur in ¬IsAFunction(f)
by defs IsAFunction, f (constant), m (variable).

⟨4⟩3. Q.E.D.
by ⟨2⟩1, ⟨4⟩1, ⟨4⟩2.

⟨3⟩2. Q.E.D.
⟨4⟩1. Assume: 1. temporal A,B

2. m does not occur in A
Prove: |= (∃∃∃∃∃∃m : A ∧ B) ≡ (A ∧ ∃∃∃∃∃∃m : B)

⟨4⟩2. m does not occur in φ(x , h)

53

by assumption 6.
⟨4⟩3. Q.E.D.
by ⟨3⟩1, ⟨4⟩1, ⟨4⟩2.

⟨1⟩27. Q.E.D.
by ⟨1⟩26, assumption 8 (def ψ), ⟨1⟩19.

[Proposition 7 on page 26] Proof:
⟨1⟩1. pick σ : ∧ IsABehavior(σ)

∧ σ |= ∧ x = true
∧ y /∈ boolean
∧ ψ

by def ψ, Proposition 2 (simplified realizations exist from arbitrary initial
conditions).

⟨1⟩2. PrefixSat(σ, 0,A) ≡ true
⟨2⟩1. PrefixSat(σ, 0,A) ≡ ∃behavior τ : τ |= ∧ y = false

∧ 2(x = true)
Proof:

PrefixSat(0,A) = ∃behavior τ : ∧ ∀ i ∈ 0..(−1) : τ [i] = σ[i]
∧ τ |= A

≡ ∃behavior τ : ∧ ∀ i ∈ ∅ : τ [i] = σ[i]
∧ τ |= A

≡ ∃behavior τ : τ |= ∧ y = false
∧ 2(x = true)

⟨2⟩2. ∃behavior τ : τ |= ∧ y = false
∧ 2(x = true)

by witness τ
∆
= [n ∈ Nat 7→ [var ∈ VarNames 7→ (var ̸= “y”)]]

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩3. PrefixSat(σ, 1,G) ≡ false
⟨2⟩1. PrefixSat(σ, 1,G) ⇒ ∃behavior τ : τ |= ∧ x = true

∧ y /∈ boolean
∧ 2[∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)

54

PrefixSat(σ, 1,G) = ∃behavior τ : ∧ ∀ i ∈ 0..(1− 1) : τ [i] = σ[i]
∧ τ |= G

≡ ∃behavior τ : ∧ ∀ i ∈ 0..0 : τ [i] = σ[i]
∧ τ |= G

≡ ∃behavior τ : ∧ τ [0] = σ[0]
∧ τ |= G

⇒ ∃behavior τ : τ |= ∧ x = true
∧ y /∈ boolean
∧ 2[∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)

⟨2⟩2. Suffices: Assume: ∃behavior τ : τ |= ∧ x = true
∧ y /∈ boolean
∧ 2[∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)
Prove: false

by ⟨2⟩1.
⟨2⟩3. pick τ : τ |= ∧ x = true

∧ y /∈ boolean
∧ 2[∧ y ∈ boolean

∧ y ′ = x
]⟨x ,y ⟩

∧ 23(y = x)
by ⟨2⟩2.

⟨2⟩4. 2(x ̸= y)
⟨3⟩1. τ |= 2(y /∈ boolean)
by ⟨2⟩3, INV1.

⟨3⟩2. τ |= 2(x = true)
⟨4⟩1. τ |= ∧ x = true

∧ 2[false]⟨x ,y ⟩
by ⟨2⟩3, ⟨3⟩1.

⟨4⟩2. Q.E.D.
by ⟨4⟩1, INV1.

⟨3⟩3. Q.E.D.
by ⟨3⟩1, ⟨3⟩2.

⟨2⟩5. τ |= ∧ 2(x ̸= y)
∧ 23(x = y)

by ⟨2⟩3, ⟨2⟩4.
⟨2⟩6. Q.E.D.
by ⟨2⟩5.

⟨1⟩4. σ |= ¬A +−▷ G

55

⟨2⟩1. σ |= A +−▷ G ≡ ∧ σ |= (A ⇒ G)
∧ PrefixSat(σ, 0,A) ⇒ PrefixSat(σ, 1,G)
∧ ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)

by def +−▷ (page 34), ∀E with n = 0.
⟨2⟩2. (PrefixSat(σ, 0,A) ⇒ PrefixSat(σ, 1,G)) ≡ false
by ⟨1⟩2, ⟨1⟩3.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩5. Q.E.D.
⟨2⟩1. ∧ IsABehavior(σ)

∧ σ |= ψ
by ⟨1⟩1, ∧E.

⟨2⟩2. ∧ IsABehavior(σ)
∧ σ |= ψ ∧ ¬φ

by ⟨2⟩1, ⟨1⟩4, def φ, ∧I.
⟨2⟩3. Q.E.D.
by ⟨2⟩2, ∃G, def ∃behavior.

B Auxiliary results

Proposition 9 (Vacuity)
Assume: ¬A
Prove: A +−▷ G

⟨1⟩1. Suffices: Assume: 1. new σ
2. IsABehavior(σ)

Prove: ∧ σ |= A ⇒ G
∧ ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)

by def +−▷.
⟨1⟩2. ∀n ∈ Nat : PrefixSat(σ,n,A) ≡ false
by def PrefixSat , assumption .

⟨1⟩3. ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)
by ⟨1⟩2.

⟨1⟩4. σ |= A ⇒ G
by assumption , ∨I.

⟨1⟩5. Q.E.D.
by ⟨1⟩3, ⟨1⟩4, ∧I.

Proposition 10 (Closed system specification)
Assume: A
Prove: G ≡ A +−▷ G

⟨1⟩1. Suffices: Assume: 1. new σ
2. IsABehavior(σ)

56

Prove: σ |= G ≡ ∧ σ |= A ⇒ G
∧ ∀n ∈ Nat : ∨ ¬PrefixSat(σ,n,A)

∨ PrefixSat(σ,n + 1,G)

by def +−▷.
⟨1⟩2. ∀n ∈ Nat : PrefixSat(σ,n,A) ≡ true
by def PrefixSat , assumption .

⟨1⟩3.
(∀n ∈ Nat : (PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G))) ≡
(∀n ∈ Nat : PrefixSat(σ,n + 1,G))

by ⟨1⟩2.
⟨1⟩4. (σ |= A ⇒ G) ≡ (σ |= G)
by assumption .

⟨1⟩5. (σ |= G) ⇒ (σ |= ∀n ∈ Nat : PrefixSat(σ,n + 1,G))

by def PrefixSat , witness τ
∆
= σ.

⟨1⟩6. σ |= G ≡ ∧ σ |= A ⇒ G
∧ σ |= ∀n ∈ Nat : PrefixSat(σ,n + 1,G)

by ⟨1⟩4, ⟨1⟩5.
⟨1⟩7. Q.E.D.
by ⟨1⟩3, ⟨1⟩6.
Let24

SatFromAnyInitG
∆
= ∀∀∀∀∀∀ u : InitG(u) ⇒ ∃∃∃∃∃∃ r : (r = u) ∧G(r)

The predicate SatFromAnyInitG means that G is satisfiable from every initial
state that satisfies InitG .

Proposition 11 (PrefixSat(σ, 1,G))
Assume:

1. variable x

2. state InitG(x)

3. temporal G(x)

4. no variables other than x occur in InitG(x),G(x)

5. zf new σ

6. IsABehavior(σ)

Prove: (∧ σ |= InitG(x)
∧ SatFromAnyInitG)

⇒ PrefixSat(σ, 1,G(x))

⟨1⟩1. PrefixSat(σ, 1,G(x)) = ∃behavior τ : ∧ τ [0] = σ[0]
∧ τ |= G(x)

24Instead of temporal quantification (∀∀∀∀∀∀ u), we could have used rigid quantification (∀ u).
Showing that the two alternatives are equivalent (using [30, Note 16, p.920] and the assump-
tions of Proposition 11) would only complicate the proofs, without any significant benefit.

57

by def PrefixSat .
⟨1⟩2. Suffices: Assume: ∧ σ |= InitG(x)

∧ SatFromAnyInitG

Prove: ∃behavior τ : ∧ τ [0] = σ[0]
∧ τ |= G(x)

by DP, ⟨1⟩1.
⟨1⟩3. ∨ ¬σ |= InitG(x)

∨ σ |= ∃∃∃∃∃∃ r : (r = x) ∧G(r)

⟨2⟩1. |= ∀∀∀∀∀∀ u : ∨ ¬InitG(u)
∨ ∃∃∃∃∃∃ r : (r = u) ∧G(r)

by ⟨1⟩2, ∧E, def SatFromAnyInitG .
⟨2⟩2. ∀behavior η : η |= ∨ ¬InitG(x)

∨ ∃∃∃∃∃∃ r : (r = x) ∧G(r)
by ⟨2⟩1, def ∃∃∃∃∃∃ , assumption 1.

⟨2⟩3. Q.E.D.
by ⟨2⟩2, assumption 6, ∀E.

⟨1⟩4. σ |= ∃∃∃∃∃∃ r : (r = x) ∧G(r)
by ⟨1⟩2, ∧E, ⟨1⟩3, MP.

⟨1⟩5. ∃behavior τ : ∧ σ ∼ rτ
∧ τ |= (r = x) ∧G(r)

by ⟨1⟩4, def ∃∃∃∃∃∃ .
⟨1⟩6. pick η : ∧ IsABehavior(η)

∧ σ ∼ rη
∧ η[0]Jr = xK
∧ η |= G(r)

by ⟨1⟩5.
⟨1⟩7. ∧ IsABehavior(η)

∧ ∀ v ∈ VarNames \ {“r”} : σ[0][v] = η[0][v]
∧ η[0]JrK = η[0]JxK
∧ η |= G(r)

by ⟨1⟩6, def ∼ r , ∀E.
⟨1⟩8. ∧ IsABehavior(η)

∧ η[0]JrK = σ[0]JxK
∧ η |= G(r)

by ⟨1⟩7, η[0]JrK = η[0]JxK = σ[0]JxK.
⟨1⟩9. τ ∆

= [n ∈ Nat 7→ if n = 0 then σ[0]
else [η[n] except !JxK = η[n]JrK]]

⟨1⟩10. ∧ IsABehavior(τ)
∧ τ [0] = σ[0]
∧ τ |= G(x)

⟨2⟩1. τ [0] = σ[0]
by ⟨1⟩9, assumption 6.

⟨2⟩2. IsABehavior(τ)
by ⟨1⟩9, ⟨1⟩6.

⟨2⟩3. τ |= G(x)

58

⟨3⟩1. ∀n ∈ Nat : τ [n]JxK = η[n]JrK
⟨4⟩1. τ [0]JxK = η[0]JrK
by ⟨2⟩1, ⟨1⟩8.

⟨4⟩2. ∀n ∈ Nat \ {0} : τ [n]JxK = η[n]JrK
by ⟨1⟩9.

⟨4⟩3. Q.E.D.
by ⟨4⟩1, ⟨4⟩2.

⟨3⟩2. ∧ IsABehavior(η)
∧ η |= G(r)

by ⟨1⟩8.
⟨3⟩3. Q.E.D.
by ⟨3⟩1, ⟨3⟩2, ⟨2⟩2, assumption 4.

⟨2⟩4. Q.E.D.
by ⟨2⟩1, ⟨2⟩2, ⟨2⟩3, ∧I.

⟨1⟩11. Q.E.D.

by ⟨1⟩10, ∃G with witness τ
∆
= τ , def ∃behavior.

It is worth noting that in Proposition 11 we needed the assumption SatFromAnyInitG ,
in order to prove the reverse from the direction to be proved in Proposition 12.
In other words, it holds that PrefixSat(σ, 1,G) ⇒ (σ |= InitG(x)), but

(σ |= InitG(x)) ̸⇒ PrefixSat(σ, 1,G),

instead
(∧ σ |= InitG(x)
∧ SatFromAnyInitG)

⇒ PrefixSat(σ, 1,G).

Proposition 12 (+−▷ implies component initial condition)
Assume: 1. temporal A,G

2. state InitG

3. ∃behavior τ : τ |= A

4. |= G ⇒ InitG
Prove: (A +−▷ G) ⇒ InitG

⟨1⟩1. Suffices: Assume: 1. zf new σ
2. IsABehavior(σ)
3. σ |= A +−▷ G

Prove: σ |= InitG
by DP.

⟨1⟩2. PrefixSat(σ, 0,A) ⇒ PrefixSat(σ, 1,G)
⟨2⟩1. ∧ σ |= A ⇒ G

∧ ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)

by ⟨1⟩1/A, def +−▷.
⟨2⟩2. ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G)
by ⟨2⟩1, ∧E.

⟨2⟩3. Q.E.D.

59

by ⟨2⟩2, ∀E with n
∆
= 0 ∈ Nat .

⟨1⟩3. ∃behavior τ : ∧ τ [0] = σ[0]
∧ τ |= G

⟨2⟩1. PrefixSat(σ, 0,A)
⟨3⟩1. PrefixSat(σ, 0,A) = ∃behavior τ : ∧ ∀ i ∈ 0..(0− 1) : τ [i] = σ[i]

∧ τ |= A
by def PrefixSat .

⟨3⟩2. PrefixSat(σ, 0,A) ≡ ∃behavior τ : τ |= A
by ⟨3⟩1.

⟨3⟩3. Q.E.D.
by ⟨3⟩2, assumption 3.

⟨2⟩2. PrefixSat(σ, 1,G)
by ⟨2⟩1, ⟨1⟩2, MP.

⟨2⟩3. PrefixSat(σ, 1,G) = ∃behavior τ : ∧ ∀ i ∈ 0..(1− 1) : τ [i] = σ[i]
∧ τ |= G

by def PrefixSat .
⟨2⟩4. Q.E.D.
⟨2⟩2, ⟨2⟩3.

⟨1⟩4. (∃behavior τ : τ [0] = σ[0] ∧ τ |= G) ⇒ σ |= InitG
⟨2⟩1. Suffices: Assume: ∃behavior τ : ∧ τ [0] = σ[0]

∧ τ |= G
Prove: σ |= InitG

by DP.
⟨2⟩2. pick τ : ∧ IsABehavior(τ)

∧ τ [0] = σ[0]
∧ τ |= G

by ⟨2⟩1.
⟨2⟩3. ∧ τ [0] = σ[0]

∧ τ |= InitG
by ⟨2⟩2, assumption 4.

⟨2⟩4. ∧ τ [0] = σ[0]
∧ τ [0]JInitGK

by ⟨2⟩3, assumption 2.
⟨2⟩5. σ[0]JInitGK
by ⟨2⟩4.

⟨2⟩6. Q.E.D.
by ⟨2⟩5, ⟨1⟩1, assumption 2.

⟨1⟩5. Q.E.D.
by ⟨1⟩3, ⟨1⟩4.

Proposition 13 (Violation of environment initial condition)
Assume: 1. variable x

2. temporal A,G(x)

3. state InitA, InitG(x)

4. no variables other than x occur in InitG(x),G(x)

60

5. |= A ⇒ InitA
Prove: (∧ InitG(x)

∧ ¬InitA
∧ SatFromAnyInitG)

⇒ A +−▷ G(x)

⟨1⟩1. Suffices: Assume: 1. SatFromAnyInitG
2. zf new σ
3. IsABehavior(σ)
4. σ |= InitG(x) ∧ ¬InitA

Prove: σ |= A +−▷ G(x)
by DP, TLA+ semantics.

⟨1⟩2. Suffices: ∧ σ |= A ⇒ G(x)
∧ ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G(x))

by def +−▷.
⟨1⟩3. σ |= A ⇒ G(x)
⟨2⟩1. σ |= ¬InitA
by ⟨1⟩1.

⟨2⟩2. σ |= A ⇒ InitA
by assumption 5, def |=, ⟨1⟩1 (IsABehavior(σ)).

⟨2⟩3. σ |= (¬InitA) ⇒ (¬A)
by ⟨2⟩3, TLA+ semantics, contrapositive.

⟨2⟩4. ¬σ |= A
by ⟨2⟩1, ⟨2⟩3, MP.

⟨2⟩5. Q.E.D.
by ⟨2⟩4, ∨I.

⟨1⟩4. ∀n ∈ Nat : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G(x))
⟨2⟩1. σ |= PrefixSat(σ, 0,A) ⇒ PrefixSat(σ, 1,G(x))
⟨3⟩1. σ |= InitG(x) ∧ SatFromAnyInitG
by ⟨1⟩1.

⟨3⟩2. σ |= PrefixSat(σ, 1,G(x))
by Proposition 11.

⟨3⟩3. Q.E.D.
by ⟨3⟩2, ∨I.

⟨2⟩2. ∀n ∈ Nat \ {0} : PrefixSat(σ,n,A) ⇒ PrefixSat(σ,n + 1,G(x))
⟨3⟩1. Suffices: Assume: new n ∈ Nat \ {0}

Prove: ¬PrefixSat(σ,n,A)
by ∨I, ∀G.

⟨3⟩2. Suffices: Assume: PrefixSat(σ,n,A)
Prove: false

⟨3⟩3. ∃behavior τ : ∧ ∀ i ∈ 0..(n − 1) : τ [i] = σ[i]
∧ τ |= A

by ⟨3⟩2, def PrefixSat .
⟨3⟩4. pick τ : ∧ IsABehavior(τ)

∧ τ [0] = σ[0]
∧ τ |= A

by ⟨3⟩1, ⟨3⟩3.

61

⟨3⟩5. ¬τ |= A
⟨4⟩1. ¬σ |= InitA
by ⟨1⟩1.

⟨4⟩2. ¬τ |= InitA
⟨5⟩1. τ [0] = σ[0]
by ⟨3⟩4, ∧E.

⟨5⟩2. Q.E.D.
by ⟨5⟩1, ⟨4⟩1, assumption 3.

⟨4⟩3. τ |= (¬InitA) ⇒ (¬A)
⟨5⟩1. IsABehavior(τ)
by ⟨3⟩4.

⟨5⟩2. Q.E.D.
by assumption 5, def |=, ⟨5⟩1, contrapositive.

⟨4⟩4. Q.E.D.
by ⟨4⟩2, ⟨4⟩3, MP.

⟨3⟩6. Q.E.D.
by ⟨3⟩4, ⟨3⟩5.

⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩5. Q.E.D.
by ⟨1⟩3, ⟨1⟩4, ∧I.

Proposition 14
Assume: 1. RealizationWrong defined using Fig. 5 with w ′ = f [v] and w =

f [v].

2. OnlyAllowedChanges omitted from definition of realizability (sim-

ilar proof can be carried out if included, using f
∆
= ⟨choose p ∈ A :

p ̸= x , 1⟩ in Proposition 14)

3. zf new σ

4. IsABehavior(σ)

5. σ |= ∧ RealizationWrong(m)
∧ m = 0
∧ x ∈ A
∧ y ∈ B

6. w
∆
= ⟨x ,m ⟩

7. v
∆
= ⟨m, x , y ⟩

8. µ
∆
= ¬unchanged ⟨m, x , y ⟩

Prove: false

⟨1⟩1. f
∆
= [r ∈ {0} ×A× B 7→ ⟨0⟩]

m0
∆
= 0

⟨1⟩2. σ |= ∧ m = 0
∧ 2[w ′ = f [v]]v
∧ ∨ 23⟨true⟩v

∨ 23(w = f [v]).

62

⟨2⟩1. |= RealizationWrong(m) = ∧ m = 0
∧ 2[w ′ = f [v]]v
∧ ∨ 23⟨true⟩v
∨ 23(w = f [v]).

by def

RealizationWrong(m) ≡ ∧ m = m0

∧ 2[¬unchanged v ⇒ w ′ = f [v]]v
∧ ∨ 23⟨¬unchanged v ⟩v
∨ 23w = f [v].

≡ ∧ m = 0
∧ 2[w ′ = f [v]]v
∧ ∨ 23⟨true⟩v
∨ 23(w = f [v]).

⟨2⟩2. σ |= RealizationWrong(m)
⟨2⟩3. Q.E.D.
by ⟨2⟩1, ⟨2⟩2.

⟨1⟩3. σ |= 2(f [v] = ⟨0⟩)
⟨2⟩1. σ |= ∧ ⟨m, x , y ⟩ ∈ {0} ×A× B

∧ 2[⟨x ,m ⟩′ = f [⟨m, x , y ⟩]]v
by ⟨1⟩2, assumption 5, assumption 6.

⟨2⟩2. |= (∧ ⟨m, x , y ⟩ ∈ {0} ×A× B
∧ [⟨x ,m ⟩′ = f [⟨m, x , y ⟩]]v)

⇒ (⟨m, x , y ⟩ ∈ {0} ×A× B)′

⟨3⟩1. Suffices: Assume: ∧ ⟨m, x , y ⟩ ∈ {0} ×A× B
∧ [⟨x ,m ⟩′ = f [⟨m, x , y ⟩]]v)

Prove: (⟨m, x , y ⟩ ∈ {0} ×A× B)′

by DP.
⟨3⟩2. f [⟨m, x , y ⟩] = ⟨0⟩
⟨4⟩1. ⟨m, x , y ⟩ ∈ {0} ×A× B
by ⟨3⟩1/A.

⟨4⟩2. domain f = {0} ×A× B
by ⟨1⟩1.

⟨4⟩3. ⟨m, x , y ⟩ ∈ domain f
by ⟨4⟩1, ⟨4⟩2.

⟨4⟩4. Q.E.D.
by ⟨4⟩3, ⟨1⟩1.

⟨3⟩3. ⟨x ,m ⟩′ ̸= f [⟨m, x , y ⟩]
⟨4⟩1. ⟨x ,m ⟩′ ̸= ⟨0⟩
by axiom about function equality.

⟨4⟩2. Q.E.D.
by ⟨4⟩1, ⟨3⟩2.

⟨3⟩4. v ′ = v
by ⟨3⟩1/A, ⟨3⟩3.

⟨3⟩5. Q.E.D.
by ⟨3⟩1/A, ⟨3⟩4.

63

⟨2⟩3. |= (∧ ⟨m, x , y ⟩ ∈ {0} ×A× B
∧ 2[⟨x ,m ⟩′ = f [⟨m, x , y ⟩]]v)

⇒ 2(⟨m, x , y ⟩ ∈ {0} ×A× B)

by ⟨2⟩2, INV1.
⟨2⟩4. σ |= 2(⟨m, x , y ⟩ ∈ {0} ×A× B)
by ⟨2⟩1, ⟨2⟩3, assumption 4.

⟨2⟩5. Q.E.D.
by ⟨2⟩4, ⟨1⟩1.

⟨1⟩4. σ |= ∧ 2[false]v
∧ 23⟨true⟩v

⟨2⟩1. σ |= ∧ 2(f [v] = ⟨0⟩)
∧ 2[w ′ = f [v]]v
∧ 23∨ ⟨true⟩v

∨ w = f [v]
by ⟨1⟩2, ⟨1⟩3.

⟨2⟩2. σ |= ∧ 2[false]v
∧ 23∨ ⟨true⟩v

∨ false
by ⟨2⟩1, assumption 6, axiom about function equality.

⟨2⟩3. Q.E.D.
by ⟨2⟩2.

⟨1⟩5. Q.E.D.
by ⟨1⟩4.

Proposition 15 (f should control variables, not a tuple)

Assume: 1. w
∆
= ⟨x ,m ⟩

2. µ
∆
= ¬unchanged ⟨m, x , y ⟩

3. (⟨x , y ⟩ /∈ A× B) ⇒ φ

4. RealizationWrong defined using Fig. 5 with w ′ = f [v] and w =
f [v].

5. OnlyAllowedChanges omitted from definition of realizability (sim-

ilar proof can be carried out if included, using f
∆
= ⟨choose p ∈ A :

p ̸= x , 1⟩ in Proposition 14)

6. IsRealizableWrong defined with similar change as RealizationWrong
Prove: IsRealizableWrong

⟨1⟩1. Suffices: Assume: 1. new σ
2. IsABehavior(σ)

Prove: σ |= RealizationWrong(m) ⇒ φ
by def IsRealizableWrong .

⟨1⟩2. case σ |= ⟨x , y ⟩ /∈ A× B
by assumption 3.

⟨1⟩3. case σ |= ⟨x , y ⟩ ∈ A× B
by Proposition 14.

⟨1⟩4. Q.E.D.
by ⟨1⟩2, ⟨1⟩3, which are exhaustive.

64

Unmentioned variables are irrelevant Assume that the formula φ men-
tions only finitely many variables. A behavior assigns values to all variables [8,
p.18, p.313]. So, some variable z does not occur in φ. Assume σ is a behavior
and σ |= φ. For any set S , let

Tau(S)
∆
= [σ except ![0] = [σ[0] except !Jz K = S]].

The operator Tau is injective. This proves that the collection of behaviors σ
that satisfy σ |= φ is too large to be a set [8, p.66, p.69].

Let PhiVars be the set of variables that occur in the formula φ. A variable
not in PhiVars can be ignored for deciding whether σ |= φ. In other words, in
order to design a winning strategy f , it suffices to reason only about variables
in PhiVars. Define the projection operator

(17) P(state)
∆
= choose s : ∧ IsAFunction(s)

∧ domain s = PhiVars
∧ ∀ var ∈ PhiVars : s[var] = state[var]

The operator P maps each state state to an assignment of values to variables
in PhiVars that agrees with state. This operator can be used to show that se-
mantic reasoning about sequences of assignments to PhiVars suffices for finding
functions that implement TLA+ properties.

C Lamport’s definition of realizability

For quick reference, the definition given in [1] is repeated below, almost ver-
batim. Read [1] first, because the accompanying description has been omitted
here.

H
∆
= ∧ h = ⟨v ⟩

∧ 2[h ′ = h ◦ ⟨v ′ ⟩]⟨h,v ⟩
∧ ∀n : (n ∈ Nat ⇒ 3(|h| > n))

Strategy(µ, f)
∆
= ∀∀∀∀∀∀ h : (∧ h ∈ (VALn)

∧ |h| ̸= 0)
⇒ (∨ µ(last(h)/v , f (h)/v ′)

∨ f (h) = ⊥)

Outcome(µ, f)
∆
= ∃∃∃∃∃∃ h : ∧ H

∧ 2[µ⇒ v ′ = f (h)]⟨h,v ⟩
∧ ∨ 23⟨µ⟩⟨h,v ⟩
∨ 23f (h) = ⊥

RealizablePart(µ, φ)
∆
= ∃ f : ∧ ∀∀∀∀∀∀ v : Outcome(µ, f) ⇒ φ

∧ Outcome(µ, f)

References

[1] L. Lamport, “Miscellany,” 21 April 1991, note sent to TLA mailing list.
[Online]. Available: http://lamport.org/tla/notes/91-04-21.txt

65

[2] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between fair
simulation and trace inclusion,” Information and Computation, vol. 200,
no. 1, pp. 35–61, 2005.

[3] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in VMCAI, 2006, pp. 364–380.

[4] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis
of reacive(1) designs,” JCSS, vol. 78, no. 3, pp. 911–938, 2012.

[5] L. Lamport and L. C. Paulson, “Should your specification language be
typed?” TOPLAS, vol. 21, no. 3, pp. 502–526, May 1999.

[6] L. Lamport, “Types are not harmless,” SRC, DEC, Tech. Rep., 18 July
1995. [Online]. Available: http://lamport.org/tla/types.ps.Z

[7] ——, “Types considered harmful,” SRC, DEC, Tech. Rep., 23 December
1992. [Online]. Available: http://lamport.org/tla/notes/types.ps.Z

[8] ——, Specifying Systems: The TLA+ language and tools for hardware and
software engineers. Addison-Wesley, 2002.

[9] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable spec-
ifications of reactive systems,” in ICALP, 1989, pp. 1–17.

[10] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
TOPLAS, vol. 16, no. 5, pp. 1543–1571, 1994.

[11] L. Lamport, “How to write a 21st century proof,” Journal of fixed point
theory and applications, vol. 11, no. 1, pp. 43–63, 2012.

[12] H.-D. Ebbinghaus, Ernst Zermelo: An approach to his life and work.
Springer, 2007.

[13] K. Kunen, Set theory: An introduction to independence proofs. North
Holland, 1980.

[14] H. Vanzetto, “Proof automation and type synthesis for set theory in the
context of TLA+,” Ph.D. dissertation, Université de Lorraine, Dec 2014.
[Online]. Available: https://hal.inria.fr/tel-01096518

[15] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A proof assistant
for higher-order logic. Springer, 2002.

[16] S. Merz, “File isabelle/Functions.thy in TLAPS v1.4.3,” LORIA,
2011, time-stamp: 2011-10-11 17:38:56 merz. [Online]. Available:
http://tla.msr-inria.inria.fr/tlaps/dist/current/tlaps-1.4.3.tar.gz

[17] ——, “Logic-based analysis of reactive systems: Hiding, composition,
and abstraction,” Habilitationsschrift, Ludwig-Maximilians-Universität,
München, Dec 2001. [Online]. Available: http://www.loria.fr/∼merz/
papers/habil.ps.gz

66

[18] A. C. Leisenring, Mathematical Logic and Hilbert’s ε-symbol. MacDonald
Technical & Scientific, 1969.

[19] M. Abadi, “An axiomatization of Lamport’s Temporal Logic of Actions,”
Digital Equipment Corporation, Tech. Rep., 1993. [Online]. Available:
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-65.pdf

[20] S. Merz, “On the completeness of Propositional Raw TLA,” 1997. [Online].
Available: http://www4.in.tum.de/∼merz/isabelle/TLA/doc/ptla.ps

[21] D. Hilbert and P. Bernays, Grundlagen der Mathematik II. Springer, 1970.

[22] T. Y. Chow, “A beginner’s guide to forcing,” in Communicating
mathematics, ser. Contemporary Mathematics. AMS, 2009, vol. 479, pp.
25–40. [Online]. Available: https://arxiv.org/abs/0712.1320

[23] J. Bagaria, “Set theory,” in The Stanford Encyclopedia of Philosophy, win-
ter 2016 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford Uni-
versity, 2016.

[24] K. Kunen, Set theory, ser. Studies in Logic. College Publications, 2013,
vol. 34.

[25] L. Lamport, “Errata to Specifying Systems,” 28 Oct 2016. [Online].
Available: http://lamport.org/tla/errata.pdf

[26] ——, “TLA+2: A preliminary guide,” Tech. Rep., 15 Jan 2014. [Online].
Available: https://research.microsoft.com/en-us/um/people/lamport/tla/
tla2-guide.pdf

[27] M. Abadi and L. Lamport, “Conjoining specifications,” TOPLAS, vol. 17,
no. 3, pp. 507–535, 1995.

[28] S. Merz, “A user’s guide to TLA,” in Modélisation et vérification des pro-
cessus parallèles: Actes de l’école d’été. Nantes, France: Ecole centrale de
Nantes, 1998, pp. 29–44.

[29] A. Pnueli and U. Klein, “Synthesis of programs from temporal property
specifications,” in MEMOCODE, 2009, pp. 1–7.

[30] L. Lamport, “The temporal logic of actions,” TOPLAS, vol. 16, no. 3, pp.
872–923, 1994.

[31] S. Merz, The specification language TLA+. Springer, 2008, pp. 401–451.

67

