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Abstract

Approximate Bayesian Computation (ABC) methods have gained in their popularity over the last decade

because they expand the horizon of Bayesian parameter inference methods to the range of models for which

only forward simulation is available. The majority of the ABC methods rely on the choice of a set of summary

statistics to reduce the dimension of the data. However, as has been noted in the ABC literature, the lack of

convergence guarantees that is induced by the absence of a vector of sufficient summary statistics that assures

inter-model sufficiency over the set of competing models, hinders the use of the usual ABC methods when

applied to Bayesian model selection or assessment. In this paper, we present a novel ABC model selection

procedure for dynamical systems based on a newly appeared multi-level Markov chain Monte Carlo method,

self-regulating ABC-SubSim, and a hierarchical state-space formulation of dynamic models. We show that

this formulation makes it possible to independently approximate the model evidence required for assessing

the posterior probability of each of the competing models. We also show that ABC-SubSim not only provides

an estimate of the model evidence as a simple by-product but also it gives the posterior probability of each

model as a function of the tolerance level, which allows the ABC model choices made in previous studies

to be understood. We illustrate the performance of the proposed framework for ABC model updating and

model class selection by applying it to two problems in Bayesian system identification: a single degree-of-

freedom bilinear hysteretic oscillator and a three-story shear building with Masing hysteresis, both of which

are subject to a seismic excitation.

Keywords: Approximate Bayesian Computation, Subset Simulation, Bayesian model selection, system

identification, Bilinear and Masing hysteretic models

1. Introduction

In many areas of science such as biology, economics, social sciences and engineering, it is desired to

make inference about the parameters of a mathematical model based on the experimental data from a real

system in order to make more accurate predictions of the system behavior and to better understand it.

Furthermore, there are invariably multiple candidate models with different mathematical forms to represent
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the system behavior and so there is a need to assess their plausibility based on the experiment data. The

fully probabilistic Bayesian approach provides a rigorous framework to achieve these goals while also properly

quantifying the uncertainty in the model parameters induced by uncertainty in the measurements and the

accuracy of the mathematical model. In the Bayesian approach, a key idea is to construct a stochastic model

class M consisting of the following fundamental probability distributions [1]: a set of parameterized input-

output probability models p(y|θ,u,M) for predicting the system behavior of interest y for given input u and

a prior probability density function (PDF) p(θ|M) over the parameter space Θ ∈ RNp ofM that reflects the

relative degree of plausibility of each input-output model in the set. When data D consisting of the measured

system input û and output ẑ are available, the prior PDF p(θ|M) can be updated through Bayes’ Theorem

to obtain the posterior PDF for the uncertain model parameters θ as:

p(θ|D,M) = p(ẑ|θ, û,M)p(θ|M)
p(ẑ|û,M) ∝ p(ẑ|θ, û,M)p(θ|M) (1)

where p(ẑ|θ, û,M) denotes the likelihood function of θ which gives the probability of getting the data based

on the input-output probability model p(y|θ,u,M) and p(ẑ|û,M) =
∫

Θ p(ẑ|θ, û,M) p(θ|M) dθ denotes

the evidence, or marginal likelihood, for model class M. Despite the fact that p(ẑ|û,M) is a constant and

does not affect the shape of the posterior PDF, it is well known that it plays a crucial role in model class

selection and averaging (e.g., [1–3]).

If M ≡ {M1,M2, . . . ,ML} is a set of competing candidate model classes for a real system, then the

posterior probability of each model class is given by Bayes’ Theorem at the model-class level:

p(Ml|D,M) ∝ p(ẑ|û,Ml) p(Ml|M), l = 1, . . . , L (2)

in which p(Ml|M) denotes the prior probability of the model classMl. This posterior distribution quantifies

the plausibility of eachMl to represent the uncertain behavior of the real system. If there are multiple model

parameters treated as continuous stochastic variables forMl then calculation of its evidence, p(ẑ|û,Ml), in-

volves evaluation of a high dimensional integral over the parameter space that is computationally prohibitive.

In addition, there are some model classes, e.g., hidden Markov models or dynamical state-space models, for

which the likelihood function is difficult or even impossible to compute, but one might still be interested

to perform Bayesian parameter inference or model selection. Approximate Bayesian Computation (ABC)

methods were originally conceived to circumvent the need for computation of the likelihood by simulating

samples from the corresponding input-output probability model p(y|θ,u,M).

The basic idea behind ABC is to avoid evaluation of the likelihood function in the posterior PDF

p(θ|D,M) ∝ p(ẑ|θ, û,M) p(θ|M) over the parameter space θ by using an augmented posterior PDF:

p(θ,y|D,M) ∝ P (ẑ|y,θ) p(y|θ, û,M) p(θ|M) (3)

over the joint space of the model parameters θ and the model output y that is simulated using the distribution

p(y|θ, û,M). The interesting point of this formulation is the degree of freedom brought by the choice of

function P (ẑ|y,θ). The original ABC algorithm [4] defines P (ẑ|y,θ) = δẑ(y), where δẑ(y) is equal to 1
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when ẑ = y and equal to 0 otherwise, to retrieve the target posterior distribution when y exactly matches

ẑ. However, the probability of generating exactly ẑ = y is zero for continuous stochastic variables.

Pitchard et al. [5] broadened the realm of the applications for which ABC algorithm can be used by

replacing the point mass at the observed output data ẑ with an indicator function IS(ε)(y), where IS(ε)(y)

gives 1 over the set S(ε) = {y : ρ(η(ẑ) − η(y)) ≤ ε} and 0 elsewhere, for some chosen metric ρ and

low-dimensional summary statistic η. In this case, the approximate posterior PDF can be written as:

p(θ,y|D, ε,M) ∝ IS(ε)(y) p(y|θ, û,M) p(θ|M) (4)

In this manner, Pitchard et al. [5] imposed two layers of approximation on the target posterior PDF

p(θ,y|D, ε,M): (a) a tolerance parameter ε to assign a non-zero probability only for a region in (θ,y)

space where y closely approximates ẑ, i.e., ẑ ≈ y; and (b) summary statistics η(.) to summarize data in a

low-dimensional space giving a weak form of the comparisons. If the summary statistics are sufficient for iden-

tification of θ, the approximation error vanishes, that is, p(θ,y|D, ε,M) = p(θ,y|D,M) as ε→ 0. Otherwise,

summarizing the data induces a second level of approximation of the target posterior distribution. Algorithm

1 gives a pseudo-code to draw J samples from the approximate posterior distribution p(θ,y|D, ε,M).

Algorithm 1 Standard ABC rejection algorithm [4]
for j = 1 to J do

while ρ(η(y′),η(ẑ)) > ε do

Draw a candidate sample θ′ ∼ p(θ|M).

Generate y′ ∼ p(y|θ′,M).

end while

Set (θ(j),y(j)) = (θ′,y′).

end for

Algorithm 1 gives samples from the true posterior distribution when the tolerance parameter ε is suf-

ficiently small and the summary statistics η(.) are sufficient. These conditions pose some difficulties for

computer implementation of this algorithm which renders it far from a routine use for parameter inference

and model selection. Firstly, a sufficiently small tolerance parameter ε means that only predicted model

outputs y lying in a small local neighborhood centered on the observed data vector ẑ are accepted. However,

this leads to a problem of rare-event simulation and so if Algorithm 1 is used, the model output y must

be computed for a huge number of candidate samples in order to produce an acceptable sample size in the

data-approximating region S(ε). Thus, many ABC algorithms have emerged to enhance the computational

efficiency of the basic ABC rejection algorithm, e.g., ABC-MCMC [6–8] , ABC-PRC [9, 10], ABC-SMC

[11–13], ABC-PMC [14] and ABC-SubSim [15].

Secondly, the lack of a reasonable vector of summary statistics that works across models hinders the use

of an ABC algorithm for model selection [16]. The ABC solution to the Bayesian model selection problem is

to perform the inference at a model class level by incorporating a model index within the model parameters.
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In this approach, a prior distribution p(Ml) for l = 1, . . . , L is assigned to the competing models in the set

M ≡ {M1,M2, . . . ,ML} along with a prior distribution p(θ|Ml) for the parameters conditional on the

model index Ml. Then, following the standard ABC rejection algorithm at the model class level, as given

by the pseudo-code in Algorithm 2, the posterior probability of each of the candidate models can be readily

estimated as follows:

p(Ml|ẑ, ε) ≈
1
J

J∑
j=1

Im(j)=Ml
, for l = 1, . . . , L (5)

which is basically the frequency of acceptance from modelMl. Let the vector ηM (y) = [ηT1 (y), . . . , ηTL(y)]T

denote the concatenation of the summary statistics used for all models. Grelaud et al. [17] reported that

sufficiency of the summary statistics ηl(y) for models in the set M does not guarantee sufficiency of ηM (y)

for comparison of those models. In fact, forming sufficient statistics for model comparison is not feasible in

most problems for which ABC model selection has been implemented [18]. In this setting, the approximations

made by Algorithm 2 does not always converge to the true model posterior probability [19].

Note that one can resort to entire data in Algorithm 2 instead of using the summary statistics. This

avoids a loss of information in the metric ρ(ηM (y′),ηM (ẑ)) and, in turn, leads to a consistent decision

for model choice [18]. Toni et al. [13] and Toni and Stumpf [20] developed an ABC algorithm based on

Sequential Monte Carlo (ABC-SMC) and modified it such that a model index is incorporated within the

model parameters. The posterior probability for each model class is then estimated based on the distance

between the entire measured and simulated output. However, the estimated model posterior probabilities by

ABC-SMC are affected by the choice of the tolerance parameter ε and the variance of the proposal distribution

of the Markov chain used in ABC-SMC, which imposes a type of dependency on the estimates of p(Ml|ẑ, ε)

that is irrelevant to the statistical problem under investigation [21].

Algorithm 2 Standard ABC algorithm for model comparison [21]
for j = 1 to J do

repeat

Draw M′ from the prior distribution p(Ml) for l = 1, . . . , L.

Draw a candidate sample θ′ ∼ p(θ|M′).

Generate y′ ∼ p(y|θ′,M′).

until ρ(ηM (y′),ηM (ẑ)) ≤ ε

Set m(j) =M′ and (θ(j),y(j)) = (θ′,y′).

end for

Wilkinson [22, 23] proposed to replace the indicator function IS(ε)(y) over the data approximating region

S(ε) with a probability distribution function p(ẑ|y, ε), centered at y, to obtain the following approximate

posterior distribution:

p(θ,y|D, ε,M) ∝ p(ẑ|y, ε) p(y|θ, û,M) p(θ|M) (6)

This suggests a departure from the previous perspective so that p(θ,y|ẑ,M) is now interpreted as an exact
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posterior PDF for a new model in which the summary statistics are corrupted by a uniform error. Didelot et

al. [16] showed that if one formulates the posterior distribution in (6) using the entire data, its normalizing

constant converges to the marginal likelihood p(ẑ|M) as ε→ 0.

In this study, we show that formulating a dynamical system as a general hierarchical state-space model

enables us to independently estimate the model evidence for each model class. The recently proposed multi-

level MCMC algorithm called Approximate Bayesian Computation by Subset Simulation (ABC-SubSim), is

applied to solve the Bayesian inference problem of the uncertain parameters of the stochastic state-space

model. We show that not only can the model evidence be estimated as a by-product of the ABC-SubSim

algorithm, but also using the MCMC samples one can estimate the probability that model output y falls

into the data-approximating region S(ε) as a function of ε. The inherent difficulty of the ABC method for

estimation of the parameters of the uncertain prediction error for stochastic state-space model is addressed

and a new solution based on Laplace’s method of asymptotic approximation is presented. The effectiveness

of the ABC-SubSim algorithm for Bayesian model updating and model class selection with simulated data is

illustrated using two Bayesian system identification examples selected from the literature: (i) a single degree-

of-freedom bilinear hysteretic oscillator [2] for which the true system is not included in the set of competing

models; and (ii) a three-story shear building with Masing hysteresis [24], both of which are subject to seismic

excitation. These numerical examples demonstrate the performance of ABC-SubSim for solving the Bayesian

model updating and model class selection problem for dynamic models with a relatively large parameter

space.

2. Formulation

In this section, we review the formulation of a Bayesian hierarchical model class for dynamical systems and

then we employ the recently-appeared algorithm for Bayesian updating, Approximate Bayesian Computation

by Subset Simulation (ABC-SubSim) [15] to explore its posterior PDF. We finally address the Bayesian model

selection approach for the hierarchical stochastic state-space models.

2.1. Formulation of hierarchical stochastic model class

We construct a hierarchical stochastic state-space model classM(ε) to predict the uncertain input-output

behavior of a system. The reason for the dependence on a parameter ε will become evident later in this section.

We start with the general case of a discrete-time finite-dimensional state-space model of a real dynamic

system:
∀n ∈ Z+, xn = fn(xn−1,un−1,θs)

yn = gn(xn,un,θs)

(State evolution)

(Output)
(7)

where un ∈ RNI , xn ∈ RNs and yn ∈ RNo denote the (external) input, model state and output vector at

time tn, and θs ∈ RNp is a vector of uncertain-valued model parameters. For the general case of stochastic

embedding, we introduce the uncertain state and output prediction errors wn and vn into this deterministic
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model to account for the model being always an approximation of the real system behavior, regardless of the

choice of θs [1]:

∀n ∈ Z+, xn = fn(xn−1,un−1,θs) +wn

yn = gn(xn,un,θs) + vn
(8)

where we now re-define xn and yn to be the dynamic system state and output vectors at time tn, not the model

state and output. The prior distributions, N (wn|0,Qn(θw)) and N (vn|0,Rn(θv)), ∀n ∈ Z+, are chosen for

the wn and vn based on the Principle of Maximum (Information) Entropy [25] under first and second moment

constraints, where {wn}Nn=1 and {vn}Nn=1 are sequences of independent stochastic variables [1]. We add the

uncertain parameters that specify these priors to the model parameters θs and use θ = [θTs θ
T
w θ

T
v ]T to denote

the uncertain parameter vector for the stochastic state-space model. If the initial state x0 is uncertain, we

also add it to θ and then choose a prior p(θ|M(ε)) for all of the model class parameters.

The defined stochastic state-space model defines a “hidden” Markov chain for the state time history

{x}Nn=1 (which will also be denoted by the vector x1:N = [xT1 , . . . , xTN ]T ∈ RNNs) by implying a state

transition PDF:

∀n ∈ Z+, p(xn|xn−1,un−1,θ,M(ε)) = N (xn|fn(xn−1,un−1,θ),Qn(θ)) (9)

along with a state-to-output PDF:

∀n ∈ Z+, p(yn|xn,un,θ,M(ε)) = N (yn|gn(xn,un,θ),Rn(θ)) (10)

These, in turn, imply the following two probability models connecting the input, state and output discrete-

time histories (which are readily sampled because each factor is Gaussian):

p(x1:N |u0:N ,θ,M(ε)) =
N∏
n=1

p(xn|xn−1,un−1,θ,M(ε)) (11)

p(y1:N |x1:N ,u0:N ,θ,M(ε)) =
N∏
n=1

p(yn|xn,un,θ,M(ε)) (12)

The stochastic input-output model (or forward model) for given parameter vector θ is then:

p(y1:N |u0:N ,θ,M(ε)) =
∫
p(y1:N |x1:N ,u0:N ,θ,M(ε))p(x1:N |u0:N ,θ,M(ε)) dx1:N (13)

This high-dimensional integral usually cannot be done analytically. We will therefore structure the stochastic

input-output model using a Bayesian hierarchical model to avoid the integration in (13), where y1:N and

x1:N are treated in the same way as the model parameters θ.

This can be done by extending the stochastic model to predict the measured system output zn at time

tn:

zn = yn + en = gn(xn,un,θ) + vn + en (14)
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where en denotes the uncertain measurement error at time tn. Unlike {wn}Nn=1 and {vn}Nn=1, the stochastic

sequence {en}Nn=1 will not necessarily be modeled as a set of independent stochastic variables; rather, we

allow for dependence by specifying a joint PDF for e1:n for any n ∈ Z+. A simple choice for the probability

model for the measurement error e1:n is a uniform PDF:

p(e1:n|M(ε)) = Iε(e1:n)
Vn(ε) , ∀e1:n ∈ RNon (15)

where Iε(e1:n) is the indicator function for the set S(ε) = {e1:n ∈ RNon : ‖e1:n‖≤ ε} for some vector norm

(e.g., ‖.‖∞ or ‖.‖2) on RNon, and Vn(ε) =
∫
RNon Iε(e1:n) de1:n is the volume of region S(ε). This finally reveals

that ε in M(ε) is a scalar upper bound on the measurement errors that parameterizes the chosen prior PDF

for e1:n, ∀n ∈ Z+. Thus, the predictive PDF for the observed system output (sensor output) z1:n, given the

actual system output y1:n, is then given by:

p(z1:n|y1:n,M(ε)) = p(e1:n|M(ε))
∣∣∣
e1:n=z1:n−y1:n

=

 Vn(ε)−1 if ‖z1:n − y1:n‖≤ ε

0 otherwise
(16)

The specification of the hierarchical prior PDF:

p(y1:N ,x1:N ,θ|u0:N ,M(ε)) = p(y1:N |x1:N ,u0:N ,θ,M(ε))p(x1:N |u0:N ,θ,M(ε)) p(θ|M(ε)) (17)

completes the definition of the stochastic model class M(ε). Thus, the PDFs in (16) and (17) define a

hierarchical stochastic model classM(ε) for each value of ε [26]. Here, p(θ|M(ε)) is assumed to be independent

of the system input history u0:N .

2.2. Bayesian model updating

If measured system input and system output data:

DN = {û0:N , ẑ1:N}

are available from the dynamic system, then the predictive PDF in (16) with n = N gives the likelihood

function:

p(ẑ1:N |y1:N ,M(ε)) =
ID(ε)(y1:N )
VN (ε) (18)

with the indicator function defined over the set D(ε) = {y1:N ∈ RNNo : ‖y1:N − ẑ1:N‖< ε}, where ‖.‖ is some

vector norm on RNNo .

The posterior PDF for stochastic model class M(ε) is then given by Bayes’ Theorem:

p(y1:N ,x1:N ,θ|DN ,M(ε)) = E(ε)−1 ID(ε)(y1:N )
VN (ε) p(y1:N ,x1:N ,θ|û0:N ,M(ε)) (19)

where the evidence for M(ε) is then defined as:

E(ε) = p(ẑ1:N |û0:N ,M(ε))

=
∫
p(ẑ1:N |y1:N , ε) p(y1:N ,x1:N ,θ|û0:N ,M(ε)) dy1:N dx1:N dθ

=
∫ ID(ε)(y1:N )

VN (ε) p(y1:N ,x1:N ,θ|û0:N ,M(ε)) dy1:N dx1:N dθ

(20)
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The theory for the hierarchical model and its updating presented so far in Section 2 is general and valid

for any ε > 0 deemed appropriate. For the application of ABC, we suppose that M(0) ≡ M(ε→ 0) is

actually the stochastic model class of interest. In this case, the output prediction errors vn in (8) represent a

combination of measurement errors and modeling errors with respect to the system output. For ε sufficiently

small, the set D(ε) of outputs y1:N will converge to the observed output vector ẑ1:N and the posterior

PDF in (19) for stochastic model class M(ε) will converge to the desired posterior distribution of the model

parameters p(θ|DN ,M(0)) after marginalization. This can be shown in the following way:

p(θ|DN ,M(ε)) =
∫
p(y1:N ,x1:N ,θ|DN ,M(ε)) dy1:N dx1:N =

1
E(ε)

∫ ID(ε)(y1:N )
VN (ε) p(y1:N |x1:N ,θ, û0:N ,M(ε))p(x1:N |θ, û0:N ,M(ε))p(θ|M(ε)) dy1:N dx1:N

(21)

Utilizing (13) to simplify the integrand in (21) and allowing ε→ 0 gives:

p(θ|DN ,M(0)) = 1
E(0)

∫
δẑ1:N (y1:N ) p(y1:N |θ, û0:N ,M(0)) p(θ|M(0)) dy1:N

= p(ẑ1:N |θ, û0:N ,M(0)) p(θ|M(0))
E(0)

(22)

in which E(0) ≡ E(ε→ 0) =
∫
p(ẑ1:N |θ, û0:N ,M(0)) p(θ|M(0)) dθ, the evidence for M(0). However, if the

tolerance ε is small, the acceptance rate is small so that the posterior distribution is estimated by only a

few points unless the Algorithm 1 is run for a very long time. On the contrary, if the tolerance is too large,

(ε → ∞) then the samples come from the hierarchical prior p(y1:N ,x1:N ,θ|û0:N ,M(ε)). Thus, a rational

choice for ε should strike a balance between computability and accuracy.

Remark 1. Vakilzadeh et al. [26] showed that for the hierarchical stochastic model class M(ε), the exact

posterior PDF (19) using a uniformly-distributed uncertain measurement error in the output space is identical

to the ABC posterior PDF given for no measurement error, see (16) and (20) in Vakilzadeh et al. [26]. Thus,

ABC-SubSim that was originally developed by Chiachio et al. [15] to draw samples from an ABC posterior

PDF can be used to solve the exact Bayesian problem for the hierarchical stochastic model classM(ε) given

by (16) and (17).

2.2.1. Approximate Bayesian Computation by Subset Simulation (ABC-SubSim)

For a good approximation of the posterior distribution for stochastic model class M(0), we want D(ε)

to be small neighborhood centered on the data vector ẑ1:N in RNNo . The probability P (y1:N ∈ D(ε)|ε) will

then be small and so, on average, many candidate samples will be required to generate an acceptable sample

having y1:N ∈ D(ε) (on average, 1/P (y1:N ∈ D(ε)|ε) candidate samples will be required). Henceforth, we use

P (D(ε)) ≡ P (y1:N ∈ D(ε)|ε) for a simpler notation. ABC-SubSim [15] was originally developed to address

this problem by exploiting the Subset Simulation method for efficient rare-event simulation [27]. The reader

is referred to [27] and [15] for a detailed explanation of how Subset Simulation and ABC-SubSim work.

The basic idea behind ABC-SubSim is to define the data-approximating region D(ε) as the intersection

of a set of nested decreasing data-approximating regions, D(εj) of “radius” εj , as defined above after (18),
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where εj+1 < εj . The probability P (D(ε)) can be then estimated as a product of conditional probabilities:

P (D(ε)) = P (D(ε1))
m∏
j=2

P (D(εj)|D(εj−1)) (23)

The intermediate data-approximating regions are adaptively selected such that all conditional probabilities

can be made large. Thus, ABC-SubSim replaces a problem involving rare-event simulation by a sequence of

problems involving simulation of more frequent events.

The simulation algorithm starts by drawing Nt independent and identically distributed samples (yi,(1)
1:N ,

x
i,(1)
1:N ,θi,(1)) from the hierarchical prior p(y1:N ,x1:N ,θ|u0:N ,M). The corresponding metric value εi,(1) =

‖yi,(1)
1:N − ẑ1:N‖ is then evaluated and samples are sorted in decreasing order of magnitude of their metric

value so that ε1,(1) ≥ ε2,(1) ≥ . . . ≥ εNt,(1). Thus, probability P (D(εi,(1))) corresponding to tolerance level

εi,(1) can be approximated based on the samples by:

P (D(εi,(1))) ≈ 1
Nt

Nt∑
i=1

ID(εi,(1))(y
i,(1)
1:N ) = Nt − i

Nt
= P̂εi,(1) (24)

In ABC-SubSim, the initial tolerance level ε1 is chosen using (24) so that P̂ε1 = P0, an assigned probability

whose value is best selected from the range [0.1, 0.3] (see Remark 2).

For higher simulation levels j ≥ 2, sampling from the conditional PDF (y1:N ,x1:N ,θ|y1:N ∈ D(εj−1), û0:N )

can be achieved by means of a component-wise MCMC algorithm, called Modified Metropolis Algorithm

(MMA) in [27], at the expense of generating dependent samples. Using the MCMC samples (yi,(j)1:N ,x
i,(j)
1:N ,θ

i,(j)),

the conditional probability can be estimated as:

P (D(εj)|D(εj−1)) ≈ 1
Nt

Nt∑
i=1

ID(εj)(y
i,(j)
1:N ) = P̂εj |εj−1 (25)

where P (D(εj)|D(εj−1)) ≡ P (y1:N ∈ D(εj)|y1:N ∈ D(εj−1)) is the conditional probability at the jth simula-

tion level. In ABC-SubSim, the intermediate tolerance levels εj (j ≥ 2) are adaptively determined as in Subset

Simulation [27], such that the sample estimate P̂εj |εj−1 of the conditional probabilities P (D(εj)|D(εj−1)) is

equal to an assigned value P0. To this end, we rearrange the samples generated by MCMC at the jth simula-

tion level in decreasing order of the magnitude for their associated metric values {εi,(j), i = 1, . . . , Nt}. Then,

the tolerance εj can be determined as the 100P0 percentile of the set of metric values εi,(j), i = 1, . . . , Nt.

For instance, we define εj = (εNt(1−P0),(j) + εNt(1−P0)+1,(j))/2.

Observe that the MCMC samples generated at the jth simulation level that fell in the data-approximation

region D(εj), i.e., samples corresponding to {εNt(1−P0)+i,(j), i = 1, . . . , NtP0}, are distributed as p(y1:N ,

x1:N ,θ|y1:N ∈ D(εj), û0:N ), and thus they provide NtP0 seeds in D(εj). Thus, a Markov chain of length

(1 − 1/P0) can be initiated from each of the seeds to populate D(εj) with Nt samples and it will be in its

stationary state from the start, giving perfect sampling (e.g., [28]).

Each of the sorted metric values εi,(j) gives a corresponding probability P (D(εi,(j))), which can be ap-
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proximated based on samples by:

P (D(εi,(j))) = P (D(ε1))
[ j−1∏
k=2

P (D(εk)|D(εk−1))
]
P (D(εi,(j))|D(εj−1))

≈ P j−1
0

Nt − i
Nt

= P̂εi,(j)

(26)

The algorithm proceeds in this way until εm becomes smaller than an appropriate final tolerance level ε.

Remark 2. To run the ABC-SubSim Algorithm, one needs to specify appropriate values for: (i) the number

of samples per simulation level Nt, and (ii) the conditional probability P0 of each stage of ABC-SubSim.

Choosing a large value for P0 increases the number of simulation levels required to achieve a specified tolerance

level ε for a fixed Nt. Thus, the higher P0 is, the higher is the computational burden of the algorithm. On the

other hand, a choice of a small value for P0 decreases the quality of the posterior approximation. Recently,

Zuev et al. [29] implemented a rigorous sensitivity analysis of Subset Simulation and reported that an optimal

choice for P0 lies in the range [0.1, 0.3]. Furthermore, for convenience P0Nt and 1/P0 are selected as positive

integers.

Remark 3. (24) and (26) produce an estimate of the probability P (y1:N ∈ D(ε)) as a function of tolerance

level ε, covering the large probabilities to small probability regimes (e.g., see Figure 5). This in turn means

that the calculation of the evidence of a candidate model class for different tolerance levels is a simple

by-product of the ABC-SubSim algorithm. In the next section, we will show that this property makes

ABC-SubSim an effective algorithm for Bayesian model selection.

Remark 4. In [26], a modification of ABC-SubSim, called self-regulating ABC-SubSim, has been proposed.

The key idea behind this method is to enhance efficient exploration of the posterior distribution over the

parameter space. A way to achieve this goal is to learn the proposal variance for the MMA algorithm in each

simulation level on-the-fly in order to coerce the mean acceptance probability for a candidate sample to be

close to a desired target value. Another key benefit of incorporating the self-regulating algorithm in ABC-

SubSim is that it gives a heuristic rule to automatically determine the number of simulation levels m as follows:

stop the algorithm when the average acceptance rate drops significantly. This recently proposed variant of

ABC-SubSim is used in this study to draw samples from the posterior PDF p(y1:N ,y1:N ,θ|DN ,M(ε)) of

stochastic model class M(ε).

2.3. Bayesian model class assessment

Bayesian model class selection provides a rigorous framework to compare the performance of a set of

candidate model classes in describing the experimental data. As exposed by Marin et al. [21], there are

well-known limitations of the ABC approach to the Bayesian model selection problem, mainly due to lack of

a sufficient summary statistics that work across models. However, in Section 2.2 we showed that formulating

the standard ABC posterior distribution as the exact posterior PDF (19) for the hierarchical state-space

10



model class allows us to independently estimate the evidence E(ε) for each alternative candidate modelM(ε)

as the normalizing constant associated with the exact posterior PDF (19). Didelot et al. [16] demonstrated

that under mild continuity conditions, this normalizing constant converges to the true model evidence E(0)

as ε→ 0. In this section, our objective is to show that calculation of the evidence E(ε) is a simple by-product

of the ABC-SubSim algorithm.

Consider a set M ≡ {M1(εM1),M2(εM2), . . . ,ML(εML
)} of L Bayesian hierarchical model classes for

representing a system. In Bayesian model selection, models in M are ranked based on their probabilities

conditioned on the data DN that is given by Bayes’ Theorem:

P (Mj(εMj
)|DN ) =

p(ẑ1:N |û0:N ,Mj(εMj
))P (Mj(εMj

)|M)∑L
l=1 p(ẑ1:N |û0:N ,Mj(εMj

))P (Mj(εMj
)|M)

(27)

where P (Mj(εMj
)|M) denotes the prior probability of Mj(εMj

) that indicates the modeler’s belief about

the initial relative plausibility ofMj(εMj
) within the set M . The factor p(ẑ1:N |û0:N ,Mj(εMj

)), which is the

evidence (or marginal likelihood) for Mj(εMj
), indicates the probability of data DN according to Mj(εMj

).

For the specific choice of Bayesian hierarchical model class, the evidence can be estimated by (20).

However, its calculation requires the evaluation of a high-dimensional integral which is the computationally

challenging step in Bayesian model selection, especially as ε → 0. ABC-SubSim provides a straightforward

approximation for it via the conditional probabilities involved in the Subset Simulation. Indeed, the last

integral in (20) is the probability P (y1:N ∈ D(εMj
)|Mj) that y1:N belongs to D(εMj

) = {y1:N ∈ RNNo :

‖y1:N − ẑ1:N‖≤ εMj
}. This probability can be readily estimated as a by-product of ABC-SubSim by using

(24) and (26). Thus, for a particular tolerance level εMj
and model classMj(εMj

), the evidence is estimated

by:

ÊMj
=
P (y1:N ∈ D(εMj

)|Mj)
VN (εMj

) = 1
VN (εMj

)P
i−1
0 Pi (28)

where i would be such that εi ≤ εMj
< εi−1, in which the intermediate “radii” εi’s are automatically chosen

by ABC-SubSim, and Pi is the fraction of samples generated in D(εi−1) that lie in D(εMj
). Here, VN (ε) is the

volume of the ball centered at ẑ1:N , with radius ε and norm ‖.‖. If D(ε) is defined by using ‖.‖∞ on RNNo ,

then VN (ε) = (2ε)NNo and if is defined by the Euclidean norm, then VN (ε) = πNNo/2/Γ(NNo/2 + 1)εNNo .

It is worth noting that VN (εMj
) is not needed for posterior model class assessment if we choose the same

tolerance level in ABC for each of the L candidate model classes. Wilkinson [22, 23] showed that a standard

ABC posterior gives an exact posterior distribution for a new model under the assumption that the summary

statistics are corrupted with a uniform additive error term. However, formulating standard ABC based on

summary statistics hinders the independent approximation of evidence for each candidate model [30]. Here,

the estimate of the model evidence in (28) is a result of formulating a dynamic problem in terms of a general

hierarchical stochastic state-space model where the likelihood function p(ẑ1:N |y1:N ,M(ε)) is expressed using

the entire data ẑ1:N and ABC-SubSim readily produces an unbiased approximation of the evidence.
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2.4. Treatment of uncertain prediction error model parameters

In reality the parameters specifying the covariance matrix of the uncertain prediction errors are unknown

and they should be learned from the data DN . However, Vakilzadeh et al. [26] found that shrinking the

data-approximation region, D(ε → 0), drives the covariance matrix of the prediction errors to zero. This is

due to the fact that the formulation of the stochastic state-space model has built-in prediction errors such

that a sample of the model prediction of the system output includes a realization of these error signals.

For high-dimensional data vectors, the probability of drawing sequences of random numbers {wn}Nn=1 and

{vn}Nn=1 such that the measured data exactly matches the simulated system output is essentially zero, even

if the measured data is synthetic and generated by adding realizations of the prediction-error signals when

calculating the output from the chosen model for system identification. Therefore, one can conclude that

not only are the parameters specifying the uncertain prediction errors unidentifiable based on the likelihood

function p(ẑ1:N |y1:N ,M(ε)) constructed from the entire data, but also that when ε → 0, the stochastic

input-to-output model (13) reduces to the underlying deterministic model.

To get around this problem, we treat the parameters θw and θv specifying the state and output uncertain

errors as nuisance parameters and eliminate them from the analysis to achieve a posterior distribution for

the structural model parameters θs alone. Vakilzadeh et al. [26] defined appropriate conjugate priors for the

θw and θv and then integrated them out from the posterior distribution (19) and worked with the resulting

marginal posterior distribution for θs. Although the marginalization technique automatically incorporates

the posterior uncertainty induced by the nuisance parameters [31], it relies on choosing appropriate prior

distributions for the nuisance parameters. Here, we present an alternative approach that avoids having to

choose these prior distributions by using Laplace’s method to replace the marginal posterior distribution of

θs by its asymptotic approximation [32], which turns out to be insensitive to the prior distribution adopted

for the nuisance parameters. However, the use of this approximate method to solve the Bayesian problem for

the hierarchical model classM(ε) given by (16) and (17) is restricted to the cases where the state prediction

error wn is suppressed in (8) so that the hierarchical prior PDF in (17) is replaced by:

p(y1:N ,θ|u0:N ,M(ε)) = p(y1:N |u0:N ,θ,M(ε)) p(θ|M(ε)) (29)

Actually, it is quite common in Bayesian inference for dynamic systems that the uncertainty in the system

output is modeled by only an output prediction error vn. Furthermore, we model the covariance matrix

for vn as a time-invariant isotropic diagonal matrix Rn(θv) = σ2INo
giving the scalar nuisance parameter

θv = σ2. Throughout this section, we drop the conditioning on the model class M(ε) since the formulation

is valid for any choice of model class.

For reasons which will become clearer later, we temporarily neglect the measurement error in (14) and

assume that the predictive PDF for the sensor output can be expressed by (13). For data DN , this gives

the more common likelihood function p(ẑ1:N |u0:N ,θ) where vn in (8) is often taken as a combination of

12



measurement and modeling errors. The marginal likelihood function of the model parameters θs is now:

p(ẑ1:N |û0:N ,θs) =
∫
p(ẑ1:N |û0:N ,θs, θv) p(θv) dθv (30)

Our objective here is to develop an asymptotic approximation for this integral. To this end, suppose that

θ̂v(θs) maximizes the likelihood function p(ẑ1:N |u0:N ,θs, θv) for a fixed value of the model parameters θs.

By expanding ln p(ẑ1:N |û0:N ,θs, θv) in a second-order Taylor series about θ̂v(θs), one obtains the following

local approximation [33]:

p(ẑ1:N |û0:N ,θs, θv) = p(ẑ1:N |û0:N ,θs, θ̂v(θs)) exp
(
− 1

2H(θ̂v(θs))[θv − θ̂v(θs)]2
)

(31)

where the Hessian H(θ̂v(θs)) is given by:

H(θ̂v(θs)) = −∂
2 ln p(ẑ1:N |û0:N ,θ)

∂θ2
v

∣∣∣
θv=θ̂v(θs)

(32)

and the MLE (maximum likelihood estimate) of the nuisance parameter θv for a fixed value of the model

parameters θs is equal to the mean prediction error value [33]:

θ̂v(θs) = 1
NNo

‖ẑ1:N − g1:N (θs)‖
2
2 (33)

where g1:N = [gT1 , gT2 , . . . , gTN ]T . Here gn(θs) denotes gn(x̂n, un, θs) from (7) where x̂n is the deterministic

solution of xn = fn(xn−1, ûn−1, θs) from (7). For a large number N of sampling times, and given structural

model parameters θs, p(ẑ1:N |û0:N ,θs, θv) will be very peaked at the optimal parameter θ̂v(θs). Therefore,

Laplace’s method for asymptotic approximation can be applied to the integral in (30) to obtain the following

approximation for the marginal likelihood distribution, which is essentially derived by substituting (31) into

(30) [33, 34]:

p(ẑ1:N |û0:N ,θs) =
√

2πH(θ̂v(θs))
− 1

2 p(θ̂v(θs))p
(
ẑ1:N |û0:N ,θs, θ̂v(θs)

)
[1 +O(N−1)] (34)

Remark 5. The structure of the Hessian matrix of ln p(ẑ1:N |û0:N ,θ) regarding the uncertain parameter

vector θ = [θTs θv]T is block diagonal with one block being an Np×Np matrix corresponding to the structural

model parameters θs and the other block being simply the scalar H(θ̂v(θs)) = 1
2NNoθ̂v(θs)

−2 corresponding

to the scalar nuisance parameter θv [33]. In this setting, Cox and Reid [35] showed that the MLE θ̂v(θs) of

the nuisance parameter can be treated approximately as a constant θ̂v in p(θ̂v(θs)) and H(θ̂v(θs)). We will

show next that using this feature, the posterior distribution of the model parameters θs is approximately

free from the prior adopted for the nuisance parameter θv [32].

By substituting the asymptotic approximation of the likelihood function (34) into Bayes’ Theorem, the

posterior PDF can be approximated by:

p(θs|DN ) ∼=
√

2πH(θ̂v)
− 1

2 p(θ̂v) p(ẑ1:N |û0:N ,θs, θ̂v(θs)) p(θs)∫ √
2πH(θ̂v)

− 1
2 p(θ̂v) p(ẑ1:N |û0:N ,θs, θ̂v(θs)) p(θs) dθs

(35)

13



where ∼= denotes an approximation to O(N−1). Using Remark 5, the asymptotic approximation for the

marginal posterior distribution of the structural model parameters θs can be rewritten as:

p(θs|DN ) ∼=
p(ẑ1:N |û0:N ,θs, θ̂v(θs)) p(θs)∫
p(ẑ1:N |û0:N ,θs, θ̂v(θs)) p(θs) dθs

∝ p(ẑ1:N |û0:N ,θs, θ̂v(θs)) p(θs) (36)

which shows that the prior distribution of the nuisance parameter cancels out. Following the same line of

thought as for ABC methods (see Introduction), the approximation of the marginal posterior distribution

(36) can be augmented to:

p(θs|DN ) ∝ p(ẑ1:N |y1:N , ε) p(y1:N |û0:N ,θs, θ̂v(θs)) p(θs) (37)

By defining p(ẑ1:N |y1:N , ε) = p(e1:N |ε) as the uniform probability distribution given in (18), the ABC

approximate marginal posterior distribution (37) gives the exact posterior PDF for the hierarchical state-space

model class with a uniform measurement error for predictions of the sensor output and no state prediction

errors wn [26].

3. Illustrative examples for Bayesian system identification

The utilization of Bayesian framework for system identification has received increasing attention in recent

years (e.g., [1–3, 24, 33, 36–52]). Here, we study two numerical examples from Bayesian system identification

literature to demonstrate the application of the ABC-SubSim algorithm to model class updating and selection,

with a special focus on the estimation of the model class evidence for different values of the tolerance level ε.

The first example, which is a single degree-of-freedom bilinear oscillator, compares the performance of ABC-

SubSim for Bayesian model class selection with the method presented in Beck and Yuen [2], which provides

an asymptotic approximation for the model evidence in the presence of large amounts of dynamic data. The

second example, which is a three degree-of-freedom nonlinear structure, demonstrates the applicability of

ABC-SubSim to perform Bayesian model class selection for a class of Masing hysteretic models and compares

its behavior with the TMCMC algorithm [36]. Both examples use input and output data that is artificially

generated by subjecting the dynamic model to recorded seismic excitations. For ABC-SubSim, the self-

regulating algorithm presented in [26] is used for both examples with the number of samples in each level

fixed to Nt = 2000 and with the adaptation probability Pa = 0.1 and the optimal acceptance rate α∗ = 0.5.

However, the conditional probability for each level of ABC-SubSim is set differently for the first and second

examples as P0 = 0.2 and P0 = 0.1, respectively. For both examples, our objective is to draw samples from

the posterior p(y1:N ,x1:N ,θ|DN , ε) where y1:N is constrained to lie in a small neighborhood, D(ε), of the

data vector defined by:

D(ε) = {y1:N ∈ RNNo : ‖y1:N − ẑ1:N‖2 ≤ ε} (38)

The model evidence is then estimated as a by-product of ABC-SubSim.
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Example 1: Single degree-of-freedom bilinear hysteretic oscillator under seismic excitation

This example follows the spirit of the first example used in Beck and Yuen [2] where response measurements

are used to select the most plausible model class for different levels of excitation. In their paper, the model

evidence is approximated by using Laplace’s method for asymptotic approximation while we use ABC-SubSim

here. The system is a single degree-of-freedom bilinear hysteretic oscillator with linear viscous damping. The

equation of motion for this oscillator subject to ground acceleration can be represented by:

mz̈(t) + cż(t) + fh(z; k1, k2, zy) = −mu(t) (39)

where z(t) ∈ R is the horizontal displacement vector relative to ground; u(t) ∈ R is the horizontal seismic

ground acceleration; m, c ∈ R denote the mass and linear viscous damping, respectively; fh ∈ R denotes the

hysteretic restoring force; k1 ∈ R is the elastic stiffness; k2 ∈ R is the post-yield stiffness; and zy ∈ R is the

yield displacement. The relationship between the restoring force and the displacement is shown in Figure 1.

The oscillator is assumed to have known mass m = 1 kg. In general, θs = [k1 k2 zy c]T forms the

uncertain structural model parameter vector for the bilinear hysteresis oscillator where the actual values are

defined as k1 = 1.0 N/m, k2 = 0.1 N/m, c = 0.02 N.s/m and zy = 2.0 cm. Samples of the response time

history y1:N for given values of the uncertain parameters and ground acceleration time history are simulated

using the function ‘ODE45’ in Matlab.

k1
1

k2
1

z

zy

fy

fs

Fig. 1 The hysteresis loop for the bilinear oscillator (Example 1).

Three sets of data are studied here with 10, 15, and 20% scaling of the 1940 El Centro earthquake record

(north-south component) as the excitation corresponding to each data set. The earthquake excitation and

displacement of the oscillator are measured for 40 s with sampling frequency of 60 Hz to give N = 2400 data

points. These synthetic data are contaminated with zero-mean Gaussian discrete white noise in which the

variance σ2
v for each data set is selected so that the output prediction error gives a 5% RMS noise-to-signal

ratio over the associated displacement data from the actual system. This gives σv equal to 4.6 × 10−4 cm,

5.9×10−4 cm, and 7.1×10−4 cm for data sets generated using 10, 15, and 20% scaling of the 1940 El Centro
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ẑ
(t
)
(m

)

20% El Centro earthquake

(b)

-0.05

0

0.05

f
h
(t
)
(N

)

10% El Centro earthquake

-0.05

0

0.05

f
h
(t
)
(N

)

15% El Centro earthquake

-0.04 -0.02 0 0.02 0.04

z(t) (m)

-0.05

0

0.05

f
h
(t
)
(N

)

20% El Centro earthquake

Fig. 2 a) Oscillator response measurements for three levels of excitation; b) Oscillator hysteresis loops for

the three levels of excitation (Example 1).

Table 1 Posterior sample mean of parameter values for each model class representing the oscillator and for

different levels of excitations (Example 1), UN denotes Unidentifiable parameter.

Excitation level Model class c(N.s/m) k1(N/m) k2(N/m) zy(cm) σv(cm)

10% El Centro

M1 0.0199 1.0008 — — 0.0005

M2 — 1.0036 — 1.86 0.0010

M3 — 1.0034 UN 1.84 0.0010

15% El Centro

M1 0.0944 0.9661 — — 0.0021

M2 — 0.9978 — 2.10 0.0012

M3 — 1.0141 0.1485 1.98 0.0009

20% El Centro

M1 0.1978 0.9029 — — 0.0061

M2 — 0.9517 — 2.26 0.0039

M3 — 1.0141 0.0950 1.97 0.0008
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earthquake record, respectively. The left panel of Figure 2 demonstrates the synthetic measurements for the

three levels of excitation and the right panel of Figure 2 indicates the corresponding hysteresis loops. This

figure shows that the dynamics of the structure is linear for 10% scaling, mildly nonlinear for 15% scaling,

and strongly nonlinear for 20% scaling of the El Centro earthquake record.

Here, we consider three different model classes: Model classM1 is a linear oscillator in which the uncertain

model parameter vector θs = [k1, c], consisting of the elastic stiffness k1 and viscous damping c. Model class

M2 is a bilinear hysteretic oscillator with post-yield stiffness k2 = 0 (elastoplastic oscillator) and no viscous

damping c = 0. Thus, the model parameter vector θs = [k1, zy], consisting of the elastic stiffness k1 and

yield displacement zy. Model class M3 is a bilinear hysteretic oscillator with no viscous damping c = 0. In

this model class, the uncertain model parameter vector θs = [k1, k2, zy], consisting of the elastic stiffness

k1, post-yield stiffness k2, and yield displacement zy. Note that none of these model classes match the

exact model class used to generate the data. The prior distributions for the model parameters k1, k2, c, zy
are chosen as independent uniform distributions over the intervals (0, 2) N/m, (0, 0.5) N/m, (0, 0.5) N.s/m,

(0, 0.1) m, respectively.

The mean estimates of the model parameters for the three model classes and three different excitation

levels are reported in Table 1. The parameter estimates are the mean of 2000 posterior samples drawn by

self-regulating ABC-SubSim. For model class M1 and for higher levels of excitation, Table 1 shows that

the mean estimates have lower values of the linear stiffness and higher values of the damping coefficient to

represent the hysteretic dissipated energy. Figure 3 shows the 2000 samples drawn in different levels of ABC-

SubSim in the {k1, zy} space when updating model classM2 using data from the 10% El Centro earthquake

record. As shown, the posterior samples are tightly clustered around the value zy = 1.86 cm. This might

seem a counter-intuitive result since when the oscillator is excited with the 10% El Centro earthquake, it

behaves perfectly linear and so one expects zy to be unidentifiable. However, it seems that this value for

zy, which is slightly less than the maximum amplitude of the oscillations (1.875 cm), is an attempt to yield

enough hysteretic dissipative energy to compensate for the lack of viscous damping in the model class M2.

A similar behavior can be observed in Figure 4 for model classM3 where zy is pinned down around 1.84 cm

while k2 is unidentifiable (because there is little post-yield response), which seems to be again an attempt

to generate enough dissipative energy due to yielding to compensate for the lack of viscous damping. It can

be observed in Figure 4 that for the higher levels of excitation, the structure experiences stronger nonlinear

behavior and so the post-yielding stiffness parameter k2 is pinned down more tightly.

Table 2 presents the number of simulation levels m and the final tolerance levels εMj
which are adap-

tively selected by the algorithm to explore the posterior distribution of the parameters of different models

Mj , j = 1, 2, 3, for the three levels of excitation. This table also shows the posterior probability of models

P (Mj(εMj
)|DN ,M) obtained from (26) by evaluation of evidence (27) at the final tolerance levels εMj

and

equal prior probabilities P (Mj |M) = 1/3. According to this result, in the case of 10% scaling of the 1940 El

Centro earthquake record where the structure behaves linearly (see Figure 2b),M1 gives the largest posterior
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Fig. 3 Scatter plot of 2000 samples in the {k1, zy} space that are generated at levels 2, 5 and 11 (in blue) and

their previous intermediate levels (in gray) of ABC-SubSim when updating model class M2 with data from

the 10% El Centro earthquake (Example 1).
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Fig. 4 Scatter plot of 2000 posterior samples in the {k2, zy} space when updating model class M3 for the

intermediate levels (in gray) and the final level (in blue) and for different excitation levels (Example 1).
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Table 2 Posterior probability of different model classes together with final tolerance level and number of

simulation levels for three-story Masing building (Example 2).

10% El Centro 15% El Centro 20% El Centro

Model class M1 M2 M3 M1 M2 M3 M1 M2 M3

Sim. levels (m) 9 9 9 7 9 10 5 7 12

Tol. level (εMj
) 0.0007 0.0014 0.0014 0.0029 0.0016 0.0012 0.0084 0.0054 0.0011

P (Mj(εMj
)|DN ,M) 1 0 0 0 0 1 0 0 1

probability. For the higher levels of excitations, when the dissipated energy is dominated by the hysteretic

dissipative energy, M3 is the most plausible model. This example reflects the important point made by the

famous statement that “all models are wrong, but some are useful” [53] and, furthermore, the “best model”

for the system analysis and response predictions depends on the data that is used for system identification.

One of the difficulties for any ABC algorithm is to select the final tolerance level for which the self-

regulating ABC-SubSim algorithm brings a straightforward solution, as explained in Remark 4. The agree-

ment between the approximate posterior probabilities P (Mj(εMj
)|DN ,M) presented in Table 2 with those

reported by Beck and Yuen [2] shows the validity of the stopping criterion used in self-regulating ABC-SubSim.

To further emphasize the importance of choosing an appropriate final tolerance level, the probability that

y1:N lies in the ball of radius ε around the data vector ẑ1:N and the posterior probability P (Mj(ε)|DN ,M)

for different model classes are depicted versus the tolerance level ε in Figures 5 and 6, respectively. As ε goes

down from 0.1 to εMj
, P (Mj(ε)|DN ,M) varies between the model prior probabilities at ε = 0.1 and the true

model posterior probabilities at εMj
.

Fig. 5 The probability of entering the data-approximating region D(ε) against tolerance level ε (Example 1).
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Fig. 6 The posterior probability of different model classes Mj against tolerance level ε (Example 1).

Example 2: Three-story Masing shear-building under seismic excitation

The second example is taken from Muto and Beck [24] where the Transitional Markov Chain Monte

Carlo (TMCMC) algorithm has been used for Bayesian updating and model selection of the class of Masing

hysteretic structural models. This example considers a three-story shear building with the following equation

of motion:

Mz̈(t) +Cż(t) + fh = −M1u(t) (40)

where z(t) ∈ R3 is the horizontal displacement vector relative to the ground; M , C ∈ R3×3 are the mass

and damping matrices; u(t) is the horizontal ground acceleration; and 1 = [1 1 1]T . The restoring force for

the ith story is given by:

fh,i = ri − ri+1 (41)

where the inter-story shear force-deflection relation is given by the differential equation:

ṙi = ki(żi − żi−1)
[
1−

∣∣∣ ri
ru,i

∣∣∣αi
]

(42)

Here, ki is the small-amplitude inter-story stiffness, ru,i is the story ultimate strength and αi is the elastic-to-

plastic transition parameter. The force-deflection relationship given in (42) defines the initial loading curve

OA in Figure 7. Any other loading curve can be selected according to two extended Masing rules [54–56]:

1. The force-deflection relation for any loading curve other than the initial loading (42) is described by

the differential equation:

ṙi = ki(żi − żi−1)
[
1−

∣∣∣ri − r∗2ru,i

∣∣∣αi
]

(43)

where r∗ is the restoring force at the latest load reversal point. For instance, (43) gives the loading

curve AC in Figure 7 if r∗ = ra.

2. Once an interior loading curve crosses a curve from a previous load cycle, the load deformation continues

that of the previous cycle. For instance, if the curve DE is continued to point C, it follows the force-

deflection relation of curve ABC.
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It should be noted that a wide variety of hysteretic models can be described by using the two extended

Masing rules through the choice of the initial load curve. Thus, the class of Masing hysteretic model with

restoring force-deflection relation (42) used here is only a special class of Masing models.
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Figure 6. Hysteresis loops for transient loading of the extended Masing model [34] 
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is set to 0.03	cm to give 5% RMS noise-to-signal ratio. The simulated data, which are shown in Figure 7, 

corresponds to 500 data points from each story with a sampling rate of 0.02	s. Figure 8 shows the 

hysteresis loops for each story generated by Sylmar ground motion. This figure indicates that the simulated 

structure experiences yielding mainly in the first floor and moderately in the second floor whereas it 

exhibits almost linear behavior in the last floor.  
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Fig. 7 Hysteresis loops for transient loading of the extended Masing model [54].

In this example, the structure has a known story mass of 1.25× 105 kg and a known earthquake ground

acceleration defining the excitation u(t). Similar to [24], the east-west component of the Sylmar ground-

motion record from the County Hospital Parking Lot during 1994 Northridge earthquake in California is

used here as the excitation. The actual values for the model parameters for each story i = 1, 2, 3 are: small-

amplitude inter-story stiffnesses ki = 2.5× 108 N/m, ultimate strengths ru,i = 1.75× 106 N, and elastic-to-

plastic transition parameters αi = 4. The viscous damping matrix C is modeled using Rayleigh damping

C = cMM + cKK with coefficients cM = 0.293 and cK = 2.64 × 10−4. This set of structural parameters

gives the three small-amplitude natural frequencies as ω1 = 3.17 Hz, ω2 = 8.88 Hz and ω3 = 12.83 Hz, and

the modal damping ratios as ζ1 = ζ2 = 0.01 and ζ3 = 0.012.

In this study, we use the fixed-point exponential integrator [57] together with the particular numerical

implementation of the two extended Masing rules that was proposed in [58] to simulate samples of the response

time history y1:N for given values of the uncertain parameters and the Sylmar ground-motion record.

The synthetic response data for system identification is the inter-story drift time histories when the

uncertain parameters are set to their actual values and the standard deviation of the uncertain output error

is set to 0.03 cm to give a 5% RMS noise-to-signal ratio. The simulated data, which are shown in Figure 8,

correspond to 500 data points from each story with a sampling rate of 0.02 s. Figure 9 shows the hysteresis

loops for each story generated by the Sylmar ground motion. This figure indicates that the simulated structure

experiences strong yielding in the first story and moderate yielding in the second story whereas it exhibits

almost linear behavior in the top story.

Four model classes are studied for system identification. For all model classes, the story masses are taken

as known and set to their actual values. Generally, the two parameters, cM and cK , specifying the viscous

damping matrix and the nine parameters of the hysteresis model ki, ru,i and αi, i = 1, 2, 3 in (42), make

the vector of uncertain structural model parameters θs. For model classesM1 andM2, the elastic-to-plastic

transition parameters are constrained to be equal for all three stories whereas they are allowed to vary for
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Fig. 9 Simulated inter-story restoring forces against inter-story drifts (Example 2).
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model classes M3 and M4. The model classes M1 and M3 contain no viscous damping, but model classes

M2 and M4 do and the Rayleigh damping coefficients cM and cK are estimated for these model classes.

Therefore, in contrast to Example 1, a subset of the candidate model classes, i.e., M2 andM4, contains the

model used to generate the data.

The prior distribution over the nine-dimensional parameter space of the hysteresis model is selected to

be the product of nine lognormal PDFs with logarithmic mean value of log(2.5 × 108) for ki, i = 1, 2, 3,

log(2.5 × 106) for ru,i, i = 1, 2, 3 and log(4) for αi, i = 1, 2, 3 and a logarithmic standard deviation of 0.5

for all of them. The prior distributions for the parameters of the viscous damping matrix are defined as

independent uniform PDFs over the interval [0, 1.5] for cM and [0, 1.5× 10−3] for cK .

Table 3 shows the MAP (maximum a posteriori) values and the standard deviations of the uncertain

parameters obtained for all model classes. The MAP value for each parameter is estimated by fitting a

lognormal PDF to the samples drawn from their posterior distribution meaning that this is different from

the posterior sample mean. Figures 10-13 show 2000 samples obtained from the self-regulating ABC-SubSim

algorithm for some of the uncertain parameters of the four model classes.

For model classes M1 and M2, the posterior samples of the small-amplitude stiffnesses are tightly clus-

tered (see Figures 10 and 11). The posterior samples of the ultimate strength for the first story is well-

constrained, for the second story they show slightly higher level of uncertainty and for the third story they

exhibit a high level of uncertainty (see Figures 10 and 11). This phenomenon can be understood by looking

at Figure 9, which demonstrates that a noticeable yielding occurred in the first story. This means that there

is enough information in the response data to estimate the ultimate strength for the first story. On the other

hand, this figure shows a nearly linear behavior for the third story, so the response data only impose a lower

bound on the ultimate strength. These results are very similar to those reported by Muto and Beck [24]. For

model class M2, the posterior distribution for the parameters of the viscous damping matrix reveals a high

level of uncertainty. Presumably, this can be attributed to the fact that the response is less sensitive to the

variation of the parameters of the hysteresis model.

For model classes M3 and M4, the posterior distribution for the small-amplitude stiffnesses are also

compactly clustered but they are not graphically shown here (see Table 3). Both model classes exhibit

an almost similar behavior in the parameter space {ru,i, αi} (see Figures 12 and 13). As expected, the

parameters for the first story, ru,1 and α1, are globally identifiable for both models. For the third story, the

posterior distribution of the parameters ru,3 and α3 shows a large spread over the parameter space with a

clear lower bound. This can be attributed to the fact that the third story does not experience yielding and

the lower bound is the only information that can be extracted from the data. However, the joint posterior

distribution of ru,2 and α2 in model class M3 differs from its counterpart in model class M4 (see Figures

12 and 13). The lack of viscous damping in model class M3 apparently forces the posterior samples in

{α2, ru,2} space to be clustered in a region around a lower value of α2 and a higher value for ru,2, so that

the dissipated hysteretic energy can compensate for the lack of viscous damping. In model class M4, the
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Table 3 The maximum a posteriori parameter values and the standard deviations (in parentheses) obtained

from fitting a lognormal distribution to the posterior samples (Example 2).

Model class M1 M2 M3 M4

k1 (108 N/m) 2.586 (0.026) 2.497 (0.018) 2.545 (0.029) 2.490 (0.015)

k2 (108 N/m) 2.455 (0.044) 2.499 (0.025) 2.539 (0.042) 2.509 (0.034)

k3 (108 N/m) 2.566 (0.054) 2.490 (0.023) 2.545 (0.061) 2.504 (0.025)

ru,1 (106 N) 1.737 (0.004) 1.749 (0.003) 1.746 (0.006) 1.751 (0.003)

ru,2 (106 N) 1.779 (0.064) 1.750 (0.037) 1.924 (0.152) 1.757 (0.054)

ru,3 (106 N) 2.056 (1.014) 2.140 (0.772) 2.358 (0.934) 2.154 (1.083)

α1 3.430 (0.090) 3.981 (0.075) 3.447 (0.145) 4.041 (0.094)

α2 = α1 = α1 2.626 (0.300) 3.863 (0.411)

α3 = α1 = α1 2.552 (2.607) 3.332 (2.047)

cM (s−1) — 0.259 (0.071) — 0.283 (0.069)

cK(10−4s) — 2.295 (1.322) — 2.116 (0.909)

σv(10−4m) 5.293 (0.063) 3.197 (0.064) 5.163 (0.084) 3.176 (0.048)

estimated Rayleigh damping parameters are rather close to their actual values and so the need for a higher

hysteretic dissipation energy is mitigated, explaining why the posterior samples in {α2, ru,2} are clustered

around their actual values. We note that the results presented for models M3 and M4 are to some extent

different from their counterparts reported by Muto and Beck [24]. This difference can be explained by the

fact that simulating the response time history y1:N from a structure with hysteretic restoring forces is very

dependent on the numerical schemes, e.g., type of time integrator used for the numerical implementations,

and since the schemes used in this study are different from those of their study, results can be expected to

be different to some extent.

Table 4 shows the number of simulation levels m and the final tolerance levels εMj
for different model

classes. This table also presents the posterior probability of model classes P (Mj(εMj
)|DN ,M), j = 1, 2, 3, 4

calculated from (26) by evaluation of evidence (27) at the final tolerance levels εMj
and equal prior prob-

abilities P (Mj |M) = 1/4 for the models. It is not surprising that the posterior probability for the model

classes favors model class M2 since it contains the model used to generate the synthetic data and has two

parameters less than model class M4, which also contains the data-generating model. As shown by the

information-theoretic expression for the log evidence in [24], the posterior probability of a model class is

controlled by a trade-off between the posterior average data fit (the posterior mean of the log-likelihood)

and the amount of information extracted from data (the relative entropy of the posterior with respect to the

prior). M2 and M4 give essentially the same average data fit but M2 extracts less information abouts its

parameters.
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Fig. 10 Scatter plot of 2000 posterior samples plotted in {ru,1, α1} (left) and {ru,3, α3} (right) spaces when

updating model class M1 for some intermediate levels (in gray) and the final level (in blue) (Example 2).
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Fig. 11 Scatter plot of 2000 posterior samples plotted in {ru,2, α2} (left) and {cM , cK} (right) spaces when

updating model class M2 for some intermediate levels (in gray) and the final level (in blue) (Example 2).
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Fig. 12 Scatter plot of 2000 posterior samples plotted in {ru,1, α1} (left) and {ru,2, α2} (middle) and {ru,3, α3}

(right) spaces when updating model class M3 for some intermediate levels (in gray) and the final level (in

blue) (Example 2).
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Fig. 13 Scatter plot of 2000 posterior samples plotted in {ru,1, α1} (left) and {ru,2, α2} (middle) and {ru,3, α3}

(right) spaces when updating model class M4 for some intermediate levels (in gray) and the final level (in

blue) (Example 2).
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Table 4 Posterior probability of different model classes together with final tolerance level and number of

simulation levels for three-story Masing building (Example 2).

Model class M1 M2 M3 M4

Sim. levels (m) 10 10 11 12

Tol. level (εMj
) 6.80×10−4 4.25×10−4 7.10×10−4 4.25×10−4

P (Mj(εMj
)|DN ,M) 0 0.982 0 0.018
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Fig. 14 a) The probability of entering the data-approximating region D(ε) against tolerance level ε; b) The

posterior probability of different model classes Mj against tolerance level ε (Example 2).
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Similar to the previous example, the approximate posterior probabilities P (Mj(εMj
)|DN ,M) presented in

Table 4 are in agreement with those reported by Muto and Beck [24] which shows that the self-regulating ABC-

SubSim algorithm selected proper values for the final tolerance levels εMj
. Figures 14(a and b), respectively

show the probability that y1:N falls in the data-approximating region D(ε) and the posterior probability

P (Mj(ε)|DN ,M) for different model classes versus the tolerance level ε. As ε goes down from 0.1 to εMj
,

P (Mj(ε)|DN ,M) varies between the model prior probabilities at ε = 0.1 and the true model posterior

probabilities at εMj
.

It is worth noting that both the parameter vector and the tolerance level are taken to be the same across

models in the traditional ABC approach to model comparison explained in Algorithm 2 [59]. This makes

the estimates of the posterior probability of model classes sensitive to (i) the proposal PDF of the Markov

chain used within the sampling algorithm [21], and (ii) the choice of a final tolerance level ε. The former

dependency should not occur since is not related to the inference problem under study. The choice of a unique

tolerance level ε that works across all models is very delicate, since, as illustrated in Figure 6, a wrong choice

of ε can result in a significant bias in the ABC approximation of the model posterior probabilities. However,

the proposed model selection procedure which is based on the hierarchical state-space formulation of dynamic

models and the self-regulating ABC-SubSim algorithm alleviates these type of difficulties by independently

estimating the model evidence for each of the models under comparison.

4. Concluding remarks

In the current state of the art, ABC methods can only be used for model class selection in a very limited

range of models for which a set of sufficient summary statistics can be found so that it also guarantees

sufficiency across the set of models under study. In this paper, a new ABC model selection procedure has

been presented which broadens the realm of ABC-based model comparison to be able to assess dynamic

models. In the proposed procedure, a dynamic problem is formulated in terms of a general hierarchical

state-space model such that the normalizing constant associated to its exact posterior distribution using the

entire data provides an unbiased estimator of the model evidence as an error tolerance level ε→ 0.

The self-regulating ABC-SubSim provides a straightforward way to estimate the model evidence and, as

a result, the posterior probability of models as a function of the error tolerance level ε. This enables us to

better understand the model choices made in the earlier applications of the ABC-based model comparison

methods. Furthermore, a new solution based on the Laplace’s method of asymptotic approximations is

presented to mitigate the fundamental difficulty of the ABC algorithms to learn the parameters specifying

the uncertain state and output prediction errors in a stochastic state-space model. It has the key advantage

that the approximated marginal distribution of the model parameters is insensitive to the prior adopted for

the uncertain prediction error variance.

Two illustrative examples with synthetic data are selected from the Bayesian system identification liter-

ature to show the estimation of the model class evidences and posterior probabilities obtained by the self-
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regulating ABC-SubSim algorithm. The first example shows the successful application of the self-regulating

ABC-SubSim for Bayesian model class selection when the true system is not among the competing model

classes. The second example shows the capability of the self-regulating ABC-SubSim algorithm to efficiently

explore a posterior distribution with a relatively high-dimensional parameter space.
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