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Abstract We compare the oxidation state and molecular composition of a-pinene-derived secondary
organic aerosol (SOA) by varying the types and surface areas of inorganic seed aerosol that are used to
promote the condensation of SOA-forming vapors. The oxidation state of a-pinene SOA is found to increase
with inorganic seed surface area, likely a result of enhanced condensation of low-volatility organic
compounds on particles versus deposition on the chamber wall. a-Pinene SOA is more highly oxygenated in
the presence of sodium nitrate (SN) seed than ammonium sulfate seed. The relative abundance of
semivolatile monomers and low-volatility dimer components that account for more than half of a-pinene
SOA mass is not significantly affected by the composition of seed aerosol. Enhanced uptake of highly
oxidized small carboxylic acids onto SN seed particles is observed, which could potentially explain the
observed higher SOA oxidation state in the presence of SN seed aerosol. Overall, our results demonstrate that
a combined effect of seed aerosol composition and surface area leads to an increase in the O:C atomic ratio of
a-pinene SOA by as much as a factor of 2.

1. Introduction

Environmental chambers are a principal means to study the formation of secondary organic aerosol (SOA)
from photooxidation of volatile organic compounds (VOCs). Chamber studies are often carried out with seed
particles such as ammonium sulfate to promote the condensation of SOA-forming organic vapors. Under dry
and neutral conditions, inorganic seed particles are assumed to act as an inert medium that is internally well
mixed with the organic components. The effect of acidified seed particles on SOA production has been the
subject of a number of studies, and the importance of acid-catalyzed heterogeneous reactions on particle oli-
gomer content has been widely recognized [Jang et al., 2002, 2003; Surratt et al., 2007; Gaston et al., 2014, and
references herein]. Increasing evidence has also revealed the role of hydrated seed particles on SOA produc-
tion not only through physical dissolution of water-soluble species but also via hydrolysis of reactive inter-
mediates in the aqueous phase [e.g., Nguyen et al., 2014]. Limited studies have investigated the effects of
inorganic seed levels and types on SOA chemical properties [Hao et al., 2007; Lu et al., 2009]. Recent studies
have reported increasing SOA mass corresponding to increasing initial seed surface area, suggesting that
condensation of SOA-forming vapors onto seed particles cannot be simply explained by instantaneous equi-
librium gas-particle partitioning. Particle-phase mass transfer potentially plays an important role in control-
ling the condensation rate of various SOA components [Zhang et al., 2014; Mai et al., 2015; McVay et al., 2016].

Here we report a series of experiments to examine the effects of the level and type of inorganic seed particles
on the chemical composition of SOA from ozonolysis of a-pinene. High-resolution aerosol mass spectrometry
(AMS), ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass
spectrometry (UPLC/ESI-TOFMS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are
employed to probe differences in the average carbon oxidation state (O_S(;) and molecular composition of
a-pinene SOA in the presence of two types of seed particles at varying surface areas.
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2. Experimental

All experiments were performed in Caltech’s dual 24 m® Teflon environmental chambers. Before each experi-
ment, the chamber was flushed for >24h until particle number concentration was < 10cm™> and the
volume concentration was < 0.01 um3 cm>, Temperature, relative humidity, ozone, and NO, were continu-
ously monitored. a-Pinene (~50 ppb) was oxidized by O3 (~100 ppb) in the presence of ammonium sulfate
(AS) or sodium nitrate (SN) seed particles under low (~1x10° pm?cm™3), medium (~3x10% um?cm™3),
and high (~5x 10 um? cm™3) seed surface area, respectively. Seed aerosols were generated by atomizing
an aqueous solution with a constant-rate atomizer and passed directly into the chamber. Experimental con-
ditions and initial seed surface area as measured by a custom-built Scanning Mobility Particle Sizer are sum-
marized in Table S1. Experiments were performed in the presence of cyclohexane, serving as an OH
scavenger, at a mixing ratio of 22 ppm. During each experiment, offline aerosol samples were collected
through a 1 m charcoal denuder with a single-stage Sioutas cascade impactor [Sioutas, 2004] (0.25 um cut
point at 9 L min™" collection flow) and a 25 mm CaF, window as the impaction substrate.

Chamber aerosols were sampled continuously by an AMS. The AMS was operated alternately between V
mode and W mode for 1 min each. Standard AMS data analysis toolkits SQUIRREL v1.56D and PIKA 1.15D
based on Igor Pro (6.32A) were utilized to process the V mode and W mode data, respectively. The
“improved-ambient” elemental analysis method for AMS spectra is utilized in this study [Canagaratna et al.,
2015]. To obtain values of fco; and fcyo required in the improved-ambient method, background corrections
for gas CO,* signal and ">N"*N* fragments were made to all the data sets by sampling the chamber air
through a particle filter before the injection of a-pinene. Pieber et al. [2016] recently found that inorganic salts
can induce CO, production when impinging on the heated tungsten vaporizer utilized by the AMS due to
oxidation of predeposited refractory carbon. The non-OA induced CO,* signal (1%) is close to the lower
bound of the range (0.4% ~ 10%) in Pieber et al. [2016]. The interference is calibrated and evaluated in Text
S1 in the supporting information. Bias in the elemental ratio is not observed, likely because the Caltech
Chamber AMS was never used in field measurements, avoiding contamination by crustal organic materials.
UPLC/ESI-ToFMS and gas chromatography/mass spectrometry (GC/MS) were used to characterize particulate
molecular identities. Details about optimal operation of the instruments can be found in SI S2 and S3.

Flow cell experiments are detailed in Text S4. Briefly, droplets of AS or SN were deposited onto a silicon wafer
coated with Au by an autopipette and placed in a stainless steel cell, drying for > 2 h under high-purity N,
gas. The VOC vapor (acetic acid) at ~1 ppm was introduced to the cell containing the substrate and deposited
materials at a flow of ~1 Lmin~" to react for ~17 h. Particles on the substrate were immediately analyzed by
time-of-flight secondary ion mass spectrometry (ToF-SIMS) to estimate the relative thicknesses of the acetic
acid layer on the surface of the AS and SN particles.

3. Results and Discussion
3.1. Effect of Seed Concentration on Average Carbon Oxidation State (OSc)

Average carbon oxidation state (Oisc) is a measure of the degree of oxidation of atmospheric aerosols [Kroll
et al,, 2011]. Figure 1a summarizes the OS¢ of a-pinene ozonolysis SOA as measured by the AMS in AS- and
SN-seeded experiments at different initial seed surface areas. Decay rates of gas-phase a-pinene are the same
for all experiments (Figure 1b). The SOA formed in the absence of seed aerosol (“nucleation” in Figure 1a)
exhibits the lowest oxidation state among all the experiments. OS¢ increases with seed surface area in both
AS- and SN-seeded experiments. The dependence of OS¢ on the seed surface area can be explained by the
competition between condensation of SOA-forming vapors onto suspended particles and the chamber wall.
The relative importance of these two processes can be evaluated from the estimated timescale to establish
vapor-particle (z, ) and vapor-wall (z,,,) equilibrium partitioning (Figure 2). Details of timescale estimation
are presented in Zhang et al. [2015b] and are also given in Text S5.

Figure 2 shows the estimated vapor-particle equilibrium partitioning timescale (z, ), ranging from ~1 min to
~100min as a function of the particle accommodation coefficient (a) under different initial seed surface
areas. As the seed surface area increases, the timescale for vapor-particle equilibrium partitioning decreases
by a factor of ~5. Also shown in Figure 2 is the predicted vapor-wall equilibrium partitioning timescale (z, )
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Figure 1. (a) Oxidation state (OS¢ = 2x0/C-H/C) as a function of initial seed aerosol surface area in nucleation, AS- and
SN-seeded experiments; (b) GC-FID measured decay of a-pinene under all seed conditions.

for two monomers, i.e., C;oH1603 (pinonic acid) and CgH,,0, (terpenylic acid), and two dimers, i.e., C;9H2507
and C;9H»504. These four species were detected in the offline LC/MS analysis (Figure 3) and can be consid-
ered as representative semivolatile organic compounds (SVOCs) and extremely low volatility organic com-
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Figure 2. Comparison of estimated vapor-particle (z,,) and vapor-wall
(zy,w) equilibration timescale. Green, yellow, and red solid lines represent
vapor-particle equilibration timescale as function of vapor mass accom-
modation coefficients on particles («p) under low, medium, and high
seed conditions, respectively. The blue dashed lines represent vapor-wall
equilibration timescale of SVOCs (light blue, CgH1,04 and C1gH1603,
and ELVOCs (dark blue, C19H5507 and Cy9Hg0g).

pounds (ELVOCs) in the a-pinene SOA
system [Zhang et al, 2015a]. The pre-
dicted timescale associated with vapor-
wall  partitioning of SVOCs (eg.,
~770min and ~450min for CioH;603
and CgH1,04, respectively) significantly
exceeds that estimated for establishing
vapor-particle equilibrium partitioning
(typ ~1-100min). As a consequence,
the condensation of SVOCs onto sus-
pended particles is essentially unaf-
fected by the magnitude of the initial
seed surface area. In contrast, the esti-
mated vapor-wall partitioning timescale
for extremely low volatility organic
compounds (ELVOCs) (e.g., ~40min
and ~35min for C;oH,g0; and
Cq9H2809, respectively) is comparable
to that associated with vapor-particle
equilibrium partitioning. As a result, at
increasing seed surface area, a fraction
of ELVOC vapors that would have
deposited onto the wall condense pre-
ferentially onto suspended particles.
Overall, an increase in the initial seed
surface area results in accelerated
condensation of low volatility organic
compounds and ELVOCs onto particles
potentially increasing OS¢ but with little
effect from most SVOCs.
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Figure 3. Relative abundance of products (defined as the ratio of mass concentration of specific compound to the concen-
tration of pinic acid, [CoH1304] , m/z 185) detected in the (top) AS and (bottom) SN offline extracts under different seed
surface areas. Compounds with formula Cg_1gH12-1603-¢ are monomers and with C4.19H24-2805.1¢ are dimers.

We note that the predicted timescale associated with vapor-wall partitioning of these a-pinene oxidation
products is an order of magnitude larger than those reported by Krechmer et al. [2016]. Chamber operating
conditions can be excluded as the main source of discrepancy based on the measurements during the
Focused Isoprene eXperiment at the California Institute of Technology campaign; see Figures S4 and S7 in
Krechmer et al. [2015]. We tentatively attribute this discrepancy between the behavior of the two chambers
to possible line losses and different ionization schemes of the two Chemical lonization Mass Spectrometers
(CIMS) that were used. The extent to which the CIMS design impacts measured vapor wall loss rates requires
additional study.

3.2. Effect of Seed Composition on Oxidation State of Aerosols

As shown in Figure 1, 0S¢ in SN-seeded experiments exceeded those with AS seed particles. AMS calibration
experiments performed by atomizing solutions of pinic acid mixed with either SN or AS revealed that the OS¢
of the aerosol mixtures are the same, regardless of the seed (Figure S3). The use of nitrate aerosols does not
introduce a bias on the elemental ratios.

Positive matrix factorization (PMF) analysis was performed to investigate the reasons for the observed higher
OS¢ in SN- versus AS-seeded experiments, as PMF analysis has been shown to differentiate wall loss, vapor-
particle partitioning, and chemical conversion [Craven et al., 2012]. For the high AS experiment, three PMF
factors were resolved (Figure 4b; also see PMF analysis in Text S6). Factor 1_so4, the most oxygenated factor,
dominates early in the oxidation, suggesting the prompt formation of low-volatility organics. As the reaction
proceeds, accumulation of less oxygenated SVOCs (Figure 3), identified in offline samples, is favored [Zhang
et al., 2015a]. The temporal profiles of the PMF factors and the offline-detected products suggest that the
prompt partitioning of ELVOCs followed by the partitioning of SVOCs onto the growing aerosol results in
an initial decrease of OSc in a-pinene SOA (Figure 5a). Under low/medium AS surface area experiments, only
2 factors with O:C ratios similar to the semivolatile factors in high-AS surface area experiments are resolved
(Figure S4c). A highly oxidized factor such as factor 1,;_so4 Was not resolved in lower AS surface area experi-
ments, likely owing to the accelerated loss of ELVOCs to the wall, resulting in lower mass concentrations of
the particle-phase ELVOCs.

In the high SN-seeded experiment, the initial partitioning of highly oxygenated species (factor 1y_nos; OSc
=0.2) followed by the less oxygenated ones (factor 2,4 _no3; OSc = —0.23) resulted in the early decrease of
OSc. In contrast to factor 3y so4 in the high-AS experiment, which represents the least oxygenated species,
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Figure 4. Temporal profiles for organic-to-inorganic ratios of three PMF resolved OA factors in high (a) AS- and
(b) SN-seeded experiments.

factor 3y nos in the high-SN experiment is a highly oxidized factor with particle OS¢ of 0.32. Contribution of
factor 3 no3 to the total PMF-resolved organic mass started to increase significantly at 200 min, where a
plateau of total organic mass was reached, to about 80% at 720 min. Meanwhile, factors 1y no3 and
24 nos decreased without any significant change of the overall PMF-resolved organic/inorganic ratio. PMF
analysis suggests that the first condensed species may have been converted to the highly oxidized species
factor 34 nos in the particle phase.

We further compare the molecular composition of a-pinene SOA produced in the presence of AS versus SN
seed particles. Seventeen molecular products, with average OS¢ of —0.5, were identified by offline UPLC/MS
analysis, and these products account for >50% of the a-pinene SOA mass under high aerosol loadings
[Zhang et al., 2015a]. However, the relative abundances of these products in the presence of AS versus SN
seed particles are quite similar, as shown in Figure 3. To our knowledge, only a few classes of species exhibit
positive OS¢ that could potentially elevate the overall oxidation state of a-pinene SOA in the presence of SN
seeds. The highly oxidized organic molecules (HOMs; OS¢ > 0) produced through the autoxidation chemistry
have been widely observed in the a-pinene + O3 system [e.g., Ehn et al., 2014]. Due to their rapid production
rates and extremely low volatilities, they account for an important source of SOA during initial particle
growth [Kirkby et al, 2016]. As more semivolatile oxidation products condense onto the seed particles,
the fraction of HOMs starts to decrease and thus cannot explain the factor 3y nos revealed from PMF
analysis.

Another important class of species with positive OS¢ is small carboxylic acids. Our GC/MS analysis of a-pinene
SOA samples suggests that acetic acid (OS¢ = 0) is present in all the offline samples (Figure S7). In addition, we
found that the C,H,0," ion intensity increases over the entire course of the high SN-seeded experiment

Nucleation b C
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r T T T T T T T T T T | O . 1 T T T T T T T
0 200 400 600 0 200 400 600 0 200 400 600
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Figure 5. (a) OS¢ in high AS-seeded, SN-seeded, and nucleation experiments. Temporal profiles of CXHy+, C,(HyOfr and
C,(HyOz+ ion groups in (b) high AS-seeded and (c) high SN- seeded experiments.
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Figure 6. (a and b) ToF-SIMS images of AS particles and SN particles, respectively, after the total 200 s sputtering. ToF-SIMS images were normalized to the total
intensity. The color scales represent the normalized signal intensities of C and CHO, , representing carboxylic acids, and SO, and NO, ", representing AS and

SN, respectively. The overlaid images show the distribution and coverage of the organic (green) on the surface of AS (red) and SN (blue). (c and d) depth profiles

reconstructed from the areas indicated in Figures 6a and 6b, respectively. The sputtering time is an indicator of the sputtering depth assuming the sputtering rates
for AS and SN particles are the same.

(Figure 5¢). The CO," ion, the characteristic fragment of carboxylic acids, contributes ~87% of the total
C,(H},OZJr ion intensity in the high SN-seeded experiment (Figure S8). These results are consistent with pre-
vious observations of the presence of formic, acetic, and pyruvic acids with OS¢ of 2, 0, and 0.7, respectively,
in a-pinene ozonolysis SOA [Kidd et al., 2014; Koch et al., 2000; Lee et al., 2006; Orlando et al., 2000].

Altogether, the lagged increase of a highly oxidized factor in the PMF results, the higher oxidation state of
SOA, and the presence of small highly oxidized carboxylic acid in SN particles suggests that nitrate-
containing salts may promote SOA aging and increase SOA oxidation state by retaining highly oxygenated
small acids. This observation is consistent with increasing evidence [Shilling et al., 2006; Shilling and Tolbert,
2004; Wang and Laskin, 2014; Wang et al., 2015] of carboxylic acid-nitrate particle-phase or multiphase
vapor-particle reactions, forming low-volatility inorganic salts. Further surface analysis of particles upon
uptake of acetic acid provided additional evidence of the enhanced uptake of small acids on SN particles
versus AS particles by offline ToF-SIMS.

3.3. Surface Analysis of SN and AS Particles After Uptake of Acetic Acid

To examine the potential interactions between small carboxylic acids and SN particles, we conducted uptake
experiments using acetic acid as a proxy for the small carboxylic acids. A custom-made stainless steel reaction
cell with an internal volume of around 30 mL was used, as illustrated in Figure S9 [Wu et al., 2007]. The
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deposited inorganic materials were dried under high-purity N, for > 2 h before being exposed to acetic acid
vapor. Details of flow cell experiments and ToF-SIMS operation are given in Text S4. Figures 6a and 6b show
the negative ion images of the AS and SN particles, respectively, after 200 s of sputtering. The C~ and CHO, ™
ions were selected to represent acetic acid, and the SO, and NO, ™ ions were chosen to represent the AS and
SN particles, respectively. ToF-SIMS ion images clearly show the presence of acetic acid on the AS and SN par-
ticles, suggesting a higher acetic acid coverage on the surface of the SN particles than that of the AS particles.
Figures 6¢c and 6d show the depth profiles of selected ions, which could be used to estimate the relative thick-
nesses of the acetic acid layer on the surface of the AS and SN particles assuming that the sputtering rates for
both particles were similar. The organic signal of the AS surface (green and black lines) decreased to a very
small value within 10, while the inorganic sulfate signal (red line) sharply increased (Figure 6c). For the SN
surface, the organic signal decreased more gradually and became small only after more than 100 s of sputter-
ing (Figure 6d) indicating that the acetic acid layer on the SN surface was much thicker than that on the AS
surface and the surface of SN particles might be much rougher. The uptake experiments were carried out sev-
eral times to ensure the repeatability of the results. The results are consistent with previous work showing
that nitrate particles can efficiently uptake highly oxidized low molecular weight carboxylic acids at low tem-
peratures, i.e., 240K, even when particles are effloresced [Shilling et al., 2006; Shilling and Tolbert, 2004].

4. Summary and Conclusions

We report studies of the formation of SOA from a-pinene + O3 under two different seed aerosol types, ammo-
nium sulfate (AS) and sodium nitrate (SN) at four different seed aerosol concentrations (one of which is

absence of seed, i.e., particle formation by nucleation). We find that for both AS and SN seed particles, OS¢
increases with increasing seed surface area, consistent with increasing condensation of extremely low vola-
tility SOA-forming species. We also observed increased O:C atomic ratios, by as much a factor of 2, in the pre-
sence of concentrated SN seed particles. Positive matrix factorization (PMF) analysis, molecular constituents’
identification, and organic thickness measurements were further performed to explore the main factors
contributing to the unexpectedly high SOA oxidation state. Our results suggest that nitrate-containing seed
particles could potentially increase the overall degree of oxygenation of SOA by retaining highly oxidized
small acids.
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