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Abstract - For stationary sources o n  Polish alpha- 
bets, we describe the family of achievable rate and 
distortion vectors (RI , ,  . . , RL) and (01,. . . , D L )  for a n  
Lresolution source code, where t h e  description at the 
first resolution is given at rate RI and distortion Di, 
the description at the second resolution includes both  
the first description and a refining description of rate 
R2 and distortion D2, and so on. We consider per- 
formance bounds for fixed- and variable-rate source 
codes o n  discrete-time stationary ergodic and  station- 
ary nonergodic sources for any integer number of res- 
olutions L > 1. For L > 1, t h e  results extend previous 
results for discrete mernoryless sources. 

I. INTRODUCTION 

In [l], Rimoldi describes the set of achievable rate- 
distortion vectors for L-resolution source coding on iid sources. 
We extend these results from iid sources to stationary sources 
on complete separable metric spaces (Polish alphabets), find- 
ing the optimal performance theoretically achievable by fixed- 
and variable-rate multi-resolution codes. We use the variable- 
rate and variable-distortion Lagrangian approach used for 
single-resolution codes in [2]. More details appear in [3]. 

11. RESULTS 

Let [A, p] = (A", A", p, T )  be a stationary dynamical system 
with Polish alphabet A. That is, A is a complete separable 
metric space, A i s  the Bore1 a-algebra generated by the open 
sets of A, A" is the set of one-sided sequences z = (z1,22,. . .) 
from A, A" is the a-algebra of subsets of A" generated by 
finite-dimensional rectangles with components in A, T is the 
left shift operator on Am, and p is a measure on (A",d"), 
stationary with respect to T. 

Let p(z1,yl) < 00 be a real-v;alued non?egative distor- 
tion measure for x1 E A, yl E A,  where A is an abstract 
reproduction alphabet. +Assume that p(z1, yl) is continuous 
in $1 for eack yl E A and that there exists a reference 
letter v; E A such that E,p(zl,y;) = d* < 00. Define 

Let QLSN = (Q:), . . . , Q C ) )  be an L resolution, fixed- or 
variable-rate, block quantizer with blocklength N .  For any 
.t E {l,.  . . , L} ,  Q& maps AN onto some finite or countable 

set of codewords {yN}(t) from AN.  Together these codewords 
compose a codebook C& = { (yN, IyN I ) } ( L )  in which each code- 
word y N  has an associated fixed- or variable-length binary 
description with length denoted IyNI. We will assume that 
our description at the (e - 1)th resolution is embedded in 
the description at the eth resolution. The codes are assumed 

p b N ,  YN) = ELl Phi, Yi) 
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uniquely decodable, and if QLVN is a fixed-rate code, then 
\yN\ = ce for ail y N  E c;). 

Let Rfr9L(p) and 77,v'1L(p) be the set of asymptotically 
achievable rate-distortion vectors (RL,  0") for fked- and 
variable-rate coding respectively. Then, by a time-sharing ar- 
gument, Rfr3L(p) and RVr~'(p) are convex sets, which can be 
totally characterized by their support functionals [4, p.1351 
j f ' ( a L , p L , p )  and j v r (aL ,oL ,p ) ,  here called the weighted 
fixed- and variable-rate operational rate-distortion functions, 
where jfr(aL,PL, p) = inf(,L,dL)Eafr,L(p) E:=, (at& +Bere) 

and jV ' (aL ,DL,p )  = i n f ( , L , ~ ~ ) E a v r , ~ ( r ~  cf'l (aide +Po- t ) .  
The Shannon weighted rate-distortion function is defined 

as J(aL,pL,p) = infN J ~ ( a ~ , p ~ , p ) ,  where the Nth-order 
weighted rate-distortion function is defined as J N ( ~ ,  p L ,  p)  = 
inf, CLL,l(aLErNqNp(XN,Yi)+Pel,,(XN; YtlY'-l)) and 
I ( X N ;  YtlYC-') is a conditional mutual information associ- 
ated with the test channel q from AN to (AN)L.  
Stationary Ergodic Sources If p is stationary and ergodic, 
then under the conditions on A and p given above, the follow- 
ing results hold. 
Theorem 1 jfr(aL,PL,p) = J(aL,pL,p). 
Theorem 2 j V r ( a L , P L , p )  = J(aL,PL,p). 
Theorem 3 Rf'>L(p) = Rv'>L(p) .  
Stationary Nonergodic Sources When p is stationary and 
nonergodic, let {pz : x E A"} denote the ergodic decompo- 
sition of p. The ergodic decomposition exists by [5, Lemma 
3.3.1, Lemma 2.4.1, Theorem 7.4.11. Under the conditions 
given above, the following results hold. 
Theorem 4 j f r ( a L , p L , p )  = infRL Sjfr,RL(aL,pL,p,)dp(2). 
Theorem 5 jvr(aL,flL,p) = ~ j v r ( a L , / 3 L , p s ) d p ( z ) .  
Theorem 6 J ( a L , P L , p )  = .7(aL,pL,pz)dp(z). 
Theorem 7 jfr(aL,pL,p) 2 J ( a L , p L , p ) .  
Theorem 8 j V r ( a L , p L , p )  = J ( a L , p L , p ) .  
Theorem 9 Rrr*L(p) 2 RV'lL(p). 
(We use jfrlRL (aL, p L ,  pLz) to signify that each ergodic mode 
is forced to the same rate vector RL.)  
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