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Abstract — For stationary sources on Polish alpha-
bets, we describe the family of achievable rate and
distortion vectors (Ri,...,R.) and (Dy,...,Dy1) for an
L-resolution source code, where the description at the
first resolution is given at rate R; and distortion Di,
the description at the second resolution includes both
the first description and a refining description of rate
R, and distortion D;, and so on. We consider per-
formance bounds for fixed- and variable-rate source
codes on discrete-time stationary ergodic and station-
ary nonergodic sources for any integer number of res-
olutions L > 1. For L > 1, the results extend previous
results for discrete memoryless sources.

I. INTRODUCTION

In [1], Rimoldi describes the set of achievable rate-
distortion vectors for L-resolution source coding on iid sources.
We extend these results from iid sources to stationary sources
on complete separable metric spaces (Polish alphabets), find-
ing the optimal performance theoretically achievable by fixed-
and variable-rate multi-resolution codes. We use the variable-
rate and variable-distortion Lagrangian approach used for
single-resolution codes in [2]. More details appear in [3].

II. RESULTS

Let [A, p] = (A%, A%, 11, T) be a stationary dynamical system
with Polish alphabet A. That is, A is a complete separable
metric space, A is the Borel o-algebra generated by the open
sets of A, A™ is the set of one-sided sequences = = (z1,z2,...)
from A, A™ is the o-algebra of subsets of A* generated by
finite-dimensional rectangles with components in A, T is the
left shift operator on A, and p is a measure on (4, 4%),
stationary with respect to T'.

Let p(z1,71) < oo be a real-valued nonnegative distor-
tion measure for z; € 4, y1 € /i, where A is an abstract
reproduction alphabet. Assume that p(z1,y1) is continuous
in z1 for each y;1 € A and that there exists a reference
letter y} € A such that E,p(z1,y]) = d* < oco. Define
pEN,yN) = L, plas,ve)

Let Q1N = (Qﬁ), ... ,Qé\i)) be an L resolution, fixed- or
variable-rate, block quantizer with blocklength N. For any
te{1,...,L}, Qf; maps A" onto some finite or countable
set of codewords {y™ }(,) from A”. Together these codewords
compose a codebook C(’}r) = {(y"™,|y™ )} in which each code-
word y" has an associated fixed- or variable-length binary
description with length denoted |y"|. We will assume that
our description at the (£ — 1)th resolution is embedded in
the description at the fth resolution. The codes are assumed
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uniquely decodable, and if Q¥'" is a fixed-rate code, then
WV =ceforall gV € Cfl’).

Let R™%(u) and R¥™*(u) be the set of asymptotically
achievable rate-distortion vectors (RY,DT) for fixed- and
variable-rate coding respectively. Then, by a time-sharing ar-
gument, RFL(u) and RY"¥ (1) are convex sets, which can be
totally characterized by their support functionals [4, p.135]
i®(a®, B, p) and j*(a®,B%, 1), here called the weighted
fized- and variable-rate operational rate-distortion functions,
where j(a®, 0%, 1) = inf( o gryepsL(y) Ef=1 {aeds + Bere)
and j** (o, B, 1) = inf( o goyemvn L) Dopey (0ede + Bere) .

The Shannon weighted rate-distortion function is defined
as J(a¥, 8%, u) = infy Jn(a®, B, 1), where the Nth-order
weighted rate-distortion function is defined as Jy(a*, 8%, p) =
infy L 577 (0B ngn p(X N, Y o) +Belug(XN; Yo YY) and
I(XN; YY" ") is a conditional mutual information associ-
ated with the test channel g from AV to (AV)L.

Stationary Ergodic Sources If y is stationary and ergodic,
then under the conditions on A and p given above, the follow-
ing results hold.

Theorem 1 j(ak, 6%, ) = J(a¥, 5%, ).

Theorem 2 j¥" (o, 8%, u) = J(o®, 8%, 1).

Theorem 3 R™L (1) = RV™E ().

Stationary Nonergodic Sources When y is stationary and
nonergodic, let {us : £ € A™} denote the ergodic decompo-
sition of . The ergodic decomposition exists by {5, Lemma
3.3.1, Lemma 2.4.1, Theorem 7.4.1]. Under the conditions
given above, the following results hold.

Theorem 4 57 (o, %, ) = inf pz. [ j™%" (2, B, ) dp(z).
Theorem 5 ;¥ (o", 8%, u) = [ j* (o, BY, uz)dp(z).
Theorem 6 J(a*, B, 1) = [ J(a¥, B%, u2)du(z)-
Theorem 7 j*(a®, 8", 4) > J(o*, 8%, ).

Theorem 8 ;" (a?, A%, i) = J(a, B, 1).

Theorem 9 R™L (1) C R™E(p).

(We use j“‘RL (a®, B, uz) to signify that each ergodic mode
is forced to the same rate vector RL.)
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