A Caltech Library Service

Capturing Complete Spatial Context in Satellite Observations of Greenhouse Gases

Miller, Charles E. and Frankenberg, Christian and Kuhnert, Andreas C. and Spiers, Gary D. and Eldering, Annmarie and Rud, Mayer and Pagano, Thomas S. and Wilson, Daniel W. and Brooks, Cynthia and Jaffe, Daniel T. (2016) Capturing Complete Spatial Context in Satellite Observations of Greenhouse Gases. In: Imaging Spectrometry XXI. Proceedings of SPIE. No.9976. Society of Photo-Optical Instrumentation Engineers (SPIE) , Bellingham, WA, p. 997609. ISBN 978-1-5106-0343-1.

[img] PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Scientific consensus from a 2015 pre-Decadal Survey workshop highlighted the essential need for a wide-swath (mapping) low earth orbit (LEO) instrument delivering carbon dioxide (CO_2), methane (CH_4), and carbon monoxide (CO) measurements with global coverage. OCO-2 pioneered space-based CO_2 remote sensing, but lacks the CH_4, CO and mapping capabilities required for an improved understanding of the global carbon cycle. The Carbon Balance Observatory (CARBO) advances key technologies to enable high-performance, cost-effective solutions for a space-based carbon-climate observing system. CARBO is a compact, modular, 15-30° field of view spectrometer that delivers high-precision CO_2, CH_4, CO and solar induced chlorophyll fluorescence (SIF) data with weekly global coverage from LEO. CARBO employs innovative immersion grating technologies to achieve diffraction-limited performance with OCO-like spatial (2x2 km^2) and spectral (λ/Δλ ≈ 20,000) resolution in a package that is >50% smaller, lighter and more cost-effective. CARBO delivers a 25- to 50-fold increase in spatial coverage compared to OCO-2 with no loss of detection sensitivity. Individual CARBO modules weigh < 20 kg, opening diverse new space-based platform opportunities.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Miller, Charles E.0000-0002-9380-4838
Frankenberg, Christian0000-0002-0546-5857
Eldering, Annmarie0000-0003-1080-9922
Jaffe, Daniel T.0000-0003-3577-3540
Additional Information:© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). Some of this work was supported by NASA ACT grant NNX12AC31G. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Funding AgencyGrant Number
Subject Keywords:Carbon Dioxide (CO2), Methane (CH4), Carbon Monoxide (CO), satellite, remote sensing, wide-field, Low Earth Orbit (LEO), mapping
Series Name:Proceedings of SPIE
Issue or Number:9976
Record Number:CaltechAUTHORS:20170110-155333666
Persistent URL:
Official Citation:Charles E. Miller ; Christian Frankenberg ; Andreas C. Kuhnert ; Gary D. Spiers ; Annmarie Eldering ; Mayer Rud ; Thomas S. Pagano ; Daniel W. Wilson ; Cynthia Brooks ; Daniel T. Jaffe; Capturing complete spatial context in satellite observations of greenhouse gases . Proc. SPIE 9976, Imaging Spectrometry XXI, 997609 (September 19, 2016); doi:10.1117/12.2238766.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:73403
Deposited By: Ruth Sustaita
Deposited On:11 Jan 2017 20:42
Last Modified:11 Nov 2021 05:16

Repository Staff Only: item control page