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Communication Delay Co-Design in H2-Distributed
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Abstract—When designing distributed controllers for large-
scale systems, the actuation, sensing, and communication archi-
tectures of the controller can no longer be taken as given. In
particular, controllers implemented using dense architectures typ-
ically outperform controllers implemented using simpler ones—
however, it is also desirable to minimize the cost of building the
architecture used to implement a controller. The recently intro-
duced Regularization for Design framework poses the controller
architecture/control law co-design problem as one of jointly opti-
mizing the competing metrics of controller architecture cost and
closed-loop performance, and shows that this task can be accom-
plished by augmenting the variational solution to an optimal
control problem with a suitable atomic norm penalty. Although
explicit constructions for atomic norms useful for the design of
actuation, sensing and joint actuation/sensing architectures are
introduced, no such construction is given for atomic norms used
to design communication architectures. This paper describes an
atomic norm that can be used to design communication archi-
tectures for which the resulting distributed optimal controller
is specified by the solution to a convex program. Using this
atomic norm, we then show that in the context of H2-distributed
optimal control, the communication architecture/control law co-
design task can be performed through the use of finite-dimensional
second-order cone programming.

Index Terms—Atomic norm minimization, controller architec-
ture co-design, distributed optimal control, joint actuator/sensor/
communication link placement, quadratic invariance.

I. INTRODUCTION

LARGE-SCALE systems represent an important class of
application areas for the control engineer—prominent

examples include the smart-grid, software-defined networking
(SDN), and automated highways. For such large-scale systems,
designing the controller architecture—placing sensors and ac-
tuators as well as the communication links between them—is
now also an important part of the controller synthesis process.
Indeed, controllers with denser actuation, sensing, and com-
munication architectures will typically outperform those with
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simpler architectures—however, it is also desirable to minimize
the cost of constructing a controller architecture.

In [2], the author of this paper and V. Chandrasekaran address
the problem of jointly optimizing the architectural complexity
of a distributed optimal controller and the closed-loop perfor-
mance that it achieves by introducing the Regularization for De-
sign (RFD) framework. In RFD, controllers with complicated
architectures are viewed as being composed of atomic con-
trollers with simpler architectures—this family of simple con-
trollers is then used to construct various atomic norms [3]–[5]
that penalize the use of specific architectural resources, such as
actuators, sensors, or additional communication links. These
atomic norms are then added as a penalty function to the vari-
ational solution to an optimal control problem (formulated in
the model matching framework), allowing the controller de-
signer to explore the tradeoff between architectural complexity
and closed-loop performance by varying theweight on the atomic
norm penalty in the resulting convex optimization problem.

In [2], we give explicit constructions of atomic norms useful
for the design of actuation, sensing, and joint actuation/sensing
architectures, but do not address how to construct an atomic
norm for communication architecture design. Indeed, construct-
ing a suitable atomic norm for communication architecture
design has substantial technical challenges that do not arise
in actuation and sensing architecture design: we address these
challenges in this paper. We model a distributed controller as a
collection of subcontrollers, each equipped with a set of actu-
ators and sensors, that exchange their respective measurements
with each other subject to communication delays imposed by an
underlying communication graph. Keeping with the philosophy
adopted in RFD [2], we view dense communication architec-
tures, that is, ones with a large number of communication links
between subcontrollers, as being composed of multiple simple
atomic communication architectures, that is, ones with a small
number of communication links between subcontrollers. Thus,
the problem of controller communication architecture/control
law co-design can be framed as the joint optimization of a
suitably defined measure of the communication complexity of
the distributed controller and its closed-loop performance, in
which these two competing metrics are traded off against each
other in a principled manner.

In general, one can select communication architectures that
range in complexity from completely decentralized, that is,
distributed controllers with no communication allowed between
subcontrollers, to essentially centralized and without delay, that
is, distributed controllers with instantaneous communication
allowed between all subcontrollers. However, if we ask that
the distributed optimal controller restricted to the designed
communication architecture be specified by the solution to a
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convex optimization problem, then this limits the simplicity of
the designed communication scheme [6]–[9]. In particular, a
sufficient, and under mild assumptions necessary, condition for
a distributed optimal controller to be specified by the solution
to a convex optimization problem1 is that the communication
architecture allow subcontrollers to exchange information with
each other as quickly as their control actions propagate through
the plant [8]. Although this condition may seem restrictive, it
can often be met in practice by constructing a communication
topology that mimics or is a superset of the physical topology
of the plant. For example, these delay-based conditions may
be satisfied in a smart-grid setting if fiber-optic cables are laid
down in parallel to the transmission lines; in an SDN setting if
control packets are given priority in routing protocols; and in
an automated highway system setting if vehicles are allowed to
communicate wirelessly with nearby vehicles.

When the aforementioned delay-based condition is satisfied
by a distributed constraint, it is said to be quadratically invariant
(QI) [7], [8]. While the resulting distributed optimal control
problem is convex when quadratic invariance holds, it may still
be infinite dimensional. Recently, it has been shown that in the
case of H2-distributed optimal control subject to QI constraints
imposed by a strongly connected communication architec-
ture, that is one in which every subcontroller can exchange
information with every other subcontroller subject to delay,
the resulting distributed optimal controller synthesis problem
can be reduced to a finite-dimensional convex program and,
hence, admits an efficient solution [12], [13].2 In light of these
observations, we look to design strongly connected communi-
cation architectures that induce QI constraint sets. Once this
communication architecture is obtained, the methods from [12]
and [13] can then be used to compute the optimal distributed
controller restricted to that communication architecture exactly.

Related prior work: Regularization techniques based on
atomic norms have been employed to great success in system
identification [14]–[17]. As far as we are aware, the first in-
stance for the use of regularization for the purpose of designing
the architecture of a controller can be found in [18] (these meth-
ods were then further developed in [19]), where an �1 penalty
is used with nonconvex optimization to synthesize sparse static
state feedback controllers with respect to an H2 performance
metric. Other representative examples include the use of �1 reg-
ularization to design sparse treatment therapies [20]; consensus
[21], [22] and synchronization [23] topologies; and the use of
group norm-like penalties to design actuation/sensing schemes
[24]–[26].

Contributions: We show that the communication complexity
of a distributed controller can be inferred from the structure
of its impulse-response elements. We use this observation to
provide an explicit construction of an atomic norm [3]–[5],
which we call the communication-link norm, that can be in-
corporated into the RFD framework [2] to design strongly

1For a more detailed overview of the relationship between information-
exchange constraints and the convexity of distributed optimal control problems,
we refer the reader to [7], [8], [10], [11] and the references therein.

2Other solutions exist to the H2-distributed control problem subject to delay
constraints—we refer the reader to the discussion and references in [13] for a
more extensive overview of this literature.

connected communication graphs that generate QI subspaces.
As argued before, these two structural properties allow for
the distributed optimal controller to be implemented using the
designed communication architecture to be specified by the
solution to a finite-dimensional convex optimization problem
[12], [13]. We also show that by augmenting the variational
solution to the H2-distributed optimal control problem pre-
sented in [12] and [13] with the communication-link norm
as a regularizer, the communication architecture/control law
co-design problem can be formulated as a second-order cone
program. By varying the weight on the communication-link
norm penalty function, the controller designer can use our co-
design algorithm to explore the tradeoff between communica-
tion architecture complexity and closed-loop performance in a
principled way via convex optimization. We use these results to
formulate a communication architecture/control law co-design
algorithm that yields a distributed optimal controller and the
communication architecture on which it is to be implemented.

Paper organization: In Section II, we introduce necessary
operator-theoretic concepts and establish notation. InSection III,
we formulate the communication architecture/control law co-
design problem as the joint optimization of a suitably defined
measure of the communication complexity of a distributed
controller and the closed-loop performance that it achieves. In
Section IV, we show how communication graphs can be used
to generate distributed constraints, and show that if a com-
munication graph that generates a QI subspace is augmented
with additional communication links, the subspace generated
by the resulting communication graph is also QI. We use this
observation and techniques from structured linear inverse prob-
lems [3] in Section V to construct a convex regularizer that
penalizes the use of additional communication links by a dis-
tributed controller, and formulate the co-design procedure. In
Section VI, we discuss the computational complexity of the co-
design procedure and illustrate the usefulness of our approach
with two numerical examples. We end with a discussion in
Section VII.

II. PRELIMINARIES

A. Operator-Theoretic Preliminaries

We use standard definitions of the Hardy spaces H2 and
H∞. We denote the restrictions of H∞ and H2 to the space of
real rational proper transfer matrices Rp by RH∞ and RH2,
respectively. As we work in discrete time, the two spaces are
equal and, as a matter of convention, we refer to this space as
RH∞. We refer the reader to [27] for a review of this standard
material. For a signal f = (f (t))∞t=0, we use f≤d to denote
the truncation of f to its elements f (t) satisfying t ≤ d, i.e.,
f≤d := (f (t))dt=0. We extend the Banach space �n2 to the space

�n2,e :=
{
f : Z+ → R

n|f≤d ∈ �n2 for all d ∈ Z+

}
(1)

where Z+ (Z++) denotes the set of non-negative (positive)
integers. A plant G ∈ Rm×n

p can then be viewed as a linear
map from �n2,e to �m2,e. Unless required, we do not explicitly
denote dimensions and we assume that all vectors, operators,
and spaces are of compatible dimension throughout.
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B. Notation

We denote elements of �2,e with boldface lowercase Latin
letters, elements ofRp (which include matrices) with uppercase
Latin letters, and affine maps from RH∞ to RH∞ with upper-
case Fraktur letters, such as M. We denote temporal indices,
horizons, and delays by lowercase Latin letters.

We denote the elements of the power series expansion of
a map G ∈ RH∞ by G(t), that is, G =

∑∞
t=0(1/z

t)G(t). We
use RH≤d

∞ to denote the subspace of RH∞ composed of finite
impulse response (FIR) transfer matrices of horizon d, that
is, RH≤d

∞ := {G ∈ RH∞| G =
∑d

t=0(1/z
t)G(t)}. Similarly,

we use RH≥d+1
∞ to denote the subspace of RH∞ composed

of transfer matrices with power series expansion elements
satisfying G(t) = 0 for all t ≤ d, that is, RH≥d+1

∞ := {G ∈
RH∞| G =

∑∞
t=d+1(1/z

t)G(t)}. For an element G ∈ RH∞,
we use G≤d to denote the projection of G onto RH≤d

∞ , and
G≥d+1 to denote the projection of G onto RH≥d+1

∞ , that is,
G≤d =

∑d
t=0(1/z

t)G(t) and G≥d+1 =
∑∞

t=d+1(1/z
t)G(t).

Sets are denoted by uppercase script letters, such as S ,
whereas subspaces of an inner product space are denoted by
uppercase calligraphic letters, such as S. We denote the or-
thogonal complement of S with respect to the standard inner
product on RH2 by S⊥. We use the Greek letter Γ to denote
the adjacency matrix of a graph, and use labels in the subscript
to distinguish different graphs, that is, Γbase and Γ1 correspond
to different graphs labeled “base” and “1.” We use Eij to denote
the matrix with the (i, j)th element set to 1 and all others set to
0. We use In and 0n to denote the n× n-dimensional identity
matrix and all zeros matrix, respectively. For a p by q block row
by block column transfer matrix M partitioned as M = (Mij),
we define the block support bsupp(M) of the transfer matrix
M to be the p by q integer matrix with (i, j)th element set
to 1 if Mij is nonzero, and 0 otherwise. Finally, we use the
� superscript to denote that a parameter is the solution to an
optimization problem.

III. COMMUNICATION ARCHITECTURE CO-DESIGN

In this section, we formulate the communication architecture/
control law co-design problem as the joint optimization of a
suitably defined measure of the communication complexity of
the distributed controller and its closed-loop performance. In
particular, we introduce the convex optimization-based solution
to the H2-distributed optimal control problem subject to delays
presented in [12] and [13], and modify this method to perform
the communication architecture/control law co-design task.

A. Distributed H2 Optimal Control Subject to Delays

To review the relevant results of [12] and [13], we introduce
the discrete-time generalized plant G given by

G =

⎡
⎣A B1 B2

C1 0 D12

C2 D21 0

⎤
⎦ =

[
G11 G12

G21 G22

]
(2)

with inputs of dimension p1, p2 and outputs of dimension q1, q2.
As illustrated in Fig. 1, this system describes the four transfer
matrices from the disturbance and control inputs w and u,
respectively, to the controlled and measured outputs z and y,

Fig. 1. Diagram of the generalized plant defined in (2).

respectively. In order to ensure the existence of solutions to the
necessary Riccati equations and to obtain simpler formulas, we
assume that (A,B1, C1) and (A,B2, C2) are both stabilizable
and detectable, and that

D�
12D12 = I, D21D

�
21 = I, C�

1 D12 = 0, B1D
�
21 = 0. (3)

Let S be a subspace that encodes the distributed constraints
imposed on the controller K . For example, when some subcon-
trollers cannot access the measurements of other subcontrollers,
the subspace S enforces corresponding sparsity constraints on
the controller K . Alternatively, when subcontrollers can only
gain access to other subcontrollers’ measurements after a given
delay, the subspace S enforces corresponding delay constraints
on the controller K .

The distributed H2 optimal control problem with subspace
constraint S is then given by

minimize
K∈Rp

∥∥G11 −G12K(I −G22K)−1G21

∥∥2
H2

s.t. K ∈ S
Kinternally stabilizes G (4)

where the objective function measures the H2 norm of the
closed-loop transfer function from the exogenous disturbance
w to the controlled output z, and the first constraint ensures that
the controller K respects the distributed constraints imposed by
the subspace S.

Optimization problem (4) is, in general, infinite dimensional
and nonconvex. In [12] and [13], the authors provide an ex-
act and computationally tractable solution to the optimization
problem (4) when the distributed constraint S is QI [7] with
respect to G22

3 and is generated by a strongly connected
communication graph. We say that a distributed constraint S
is generated by a strongly connected communication graph4 if
it admits a decomposition of the form

S = F ⊕ 1

zd+1
Rp, F = ⊕d

t=1

1

zt
F (t) (5)

for some positive integer d, and some subspaces F (t) ⊂ R
p2×q2 .

In Section IV, we show how a strongly connected communi-
cation graph between subcontrollers can be used to define a
subspace S that admits a decomposition (5).

3A subspace S is said to be QI with respect to G22 if KG22K ∈ S
for all K ∈ S . When quadratic invariance holds, we have that K ∈ S if
and only if K(I −G22K)−1 ∈ S; this key property allows for the convex
parameterization (6) of the distributed optimal control problem (4).

4We consider subspaces S that are strictly proper so that the reader can use
the exact results presented in [13]. The authors of [13] do, however, note that
their method extends to nonstrictly proper controllers at the expense of more
complicated formulas.
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Restricting ourselves to distributed constraints S that are QI
with respect to G22 and that admit a decomposition of the form
(5) allows us to pose the optimal control problem (4) as the
following convex model matching problem:

minimize
Q∈RH∞

‖P11 − P12QP21‖2H2

s.t. C(Q≤d) ∈ F (6)

through the use of a suitable Youla parameterization, where the
Pij ∈ RH∞ are appropriately defined stable transfer matrices
and C : RH≤d

∞ → RH≤d
∞ is an appropriately defined affine

map [13, Section III-B]. It is further shown in [13] that the
solution Q� to the distributed model matching problem (6) with
QI constraint S admitting decomposition (5) is specified in
terms of the solution to a finite-dimensional convex quadratic
program.

Theorem 1 [13, Theor. 3]: Let S be QI with respect to G22

and admit a decomposition as in (5). Let Q� ∈ S ∩ RH∞ be
the optimal solution to the convex model matching problem (6).
Then (Q�)≥d+1 = 0 and

(Q�)≤d = argmin
V ∈RH≤d

∞

‖L(V )‖2H2
s.t. C(V ) ∈ F (7)

where L is a linear map from RH≤d
∞ to RH≤d

∞ , and C is the
affine map from RH≤d

∞ to RH≤d
∞ used to specify the model

matching problem (6). Furthermore, the optimal cost achieved
by Q� in the optimization problem (6) is given by

‖P11‖2H2
+
∥∥L (

(Q�)≤d
)∥∥2

H2
. (8)

Remark 1: The term ‖L((Q�)≤d)‖2H2
in the optimal cost (8)

quantifies the deviation of the performance achieved by the dis-
tributed optimal controller from that achieved by the centralized
optimal controller.

The optimization problem (7) is finite dimensional because
the maps L and C are both finite dimensional (they map the
finite-dimensional space RH≤d

∞ into itself) and act on the finite-
dimensional transfer matrix V ∈ RH≤d

∞ . These maps can be
computed in terms of the state-space parameters of the general-
ized plant (2) and the solution to appropriate Riccati equations,
[13 Section III-B and Section IV-A]. Under the assumptions (3),
the map L is injective and, hence, the convex quadratic program
(7) has a unique optimal solution (Q�)≤d.

As the distributed constraint S is assumed to be QI, the
optimal distributed controller K� ∈ S specified by the solution
to the nonconvex optimization problem (4) can be recovered
from the optimal Youla parameter Q� ∈ S through a suitable
linear fractional transformation [13, Theor. 3].

Remark 2: If the state-space matrix A specified in the gener-
alized plant (2) is of dimension s× s, then the resulting optimal
controller K� admits a state-space realization of order s+ q2d.
As argued in [13], this is at worst within a constant factor of the
minimal realization order.

B. Communication Delay Co-Design via Convex Optimization

Although our objective is to design the communication graph
on which the distributed controller K is implemented, for
the computational reasons described in Section III-A, it is

preferable to solve a problem in terms of the Youla parameter
Q since this leads to the convex optimization problems (6) and
(7). In order to perform the communication architecture/control
law co-design task in the Youla domain, we restrict ourselves to
designing strongly connected communication architectures that
generate QI subspaces, that is, subspaces that are QI and that ad-
mit a decomposition of the form (5). As argued in Section I, this
is a practically relevant class of communication architectures to
consider, and further, based on the previous discussion, it is then
possible to solve for the resulting distributed optimal controller
restricted to the designed communication architecture using the
results of Theorem 1.

Our approach to accomplish the co-design task is to re-
move the subspace constraint C(V ) ∈ F , which encodes the
distributed structure of the controller, from the optimization
problem (7) and to augment the objective of the optimization
problem with a convex penalty function that instead induces
a suitable structure in C(V ). In particular, we seek a convex
penalty function ‖ · ‖comm and horizon d such that the structure
of C(V �), where V � is the solution to

minimize
V ∈RH≤d

∞

‖L(V )‖2H2
+ λ ‖C(V )‖comm (9)

and can be used to define an appropriate QI subspace S that
admits a decomposition of the form (5). Imposing that the
designed subspace S is QI ensures that the structure induced in
C(V �) corresponds to the structure of the resulting distributed
controller K�. Further imposing that the designed subspace
S admits a decomposition of the form (5) ensures that the
distributed optimal controller restricted to lie in the subspace
S can be computed using Theorem 1.

Remark 3: The regularization weight λ ≥ 0 allows the con-
troller designer to tradeoff between closed-loop performance
(as measured by ‖L(V )‖2H2

) and communication complexity
(as measured by ‖C(V )‖comm).

In order to define an appropriate convex penalty ‖ · ‖comm,
we need to understand how a communication graph between
subcontrollers defines the subspace F in which C(V ) is con-
strained to lie in optimization problem (7)—this, in turn, in-
forms what structure to induce in C(V �) in the regularized
optimization problem (9). To that end, in Section IV, we define
a simple communication protocol between subcontrollers that
allows communication graphs to be associated with distributed
subspace constraints in a natural way. Within this framework,
we show that if a communication graph generates a distrib-
uted subspace S that is QI with respect to G22, then adding
additional communication links to this graph preserves the
QI property of the distributed subspace that it generates. We
use this observation to pose the communication architecture
design problem as one of augmenting a suitably defined base
communication graph, namely, a simple graph that generates a
QI subspace, with additional communication links.

IV. COMMUNICATION GRAPHS AND QUADRATICALLY

INVARIANT SUBSPACES

This section first shows how a communication graph con-
necting subcontrollers can be used to define the subspace S in
which the controller K is constrained to lie in the distributed
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optimal control problem (4). In particular, if two subcontrollers
exchange information using the shortest path between them on
an underlying communication graph, then there is a natural way
of generating a subspace constraint from the adjacency matrix
of that graph. Under this information-exchange protocol, we
then define a set of strongly connected communication graphs
that generate subspace constraints that are QI with respect to
a plant G22 in terms of a base and a maximal communication
graph. This approach allows the controller designer to specify
which communication links between subcontrollers are physi-
cally realizable, that is, which communication links can be built
subject to the physical constraints of the system.

A. Generating Subspaces From Communication Graphs

Consider a generalized plant (2) comprised of n sub-
plants, each equipped with its own subcontroller. Let N :=
{1, . . . , n} and label each subcontroller by a number i ∈ N .
For each such subcontroller i, associate a space of possi-
ble control actions Ui = �

p2,i

2,e and a space of possible output
measurements Yi = �

q2,i
2,e , and define the overall control and

measurement spaces as U := U1 × · · · × Un and Y := Y1 ×
· · · × Yn, respectively.

Then, for any pair of subcontrollers i and j, the (i, j)th
block of G22 is the mapping from the control action uj taken
by subcontroller j to the measurement yi of subcontroller i,
that is, (G22)ij : Uj → Yi. Similarly, the mapping from the
measurement yj , transmitted by subcontroller j, to the control
action ui taken by subcontroller i is given by Kij : Yj → Ui.

We then form the overall measurement and control vectors

y=
[
(y1)

� · · · (yn)
�]� , u =

[
(u1)

� · · · (un)
�]�

(10)

leading to the natural block-wise partitions of the plant G22

G22 =

⎡
⎢⎣

(G22)11 · · · (G22)1n
...

. . .
...

(G22)n1 · · · (G22)nn

⎤
⎥⎦ (11)

and of the controller K

K =

⎡
⎢⎣

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

⎤
⎥⎦ . (12)

We assume that subcontrollers exchange measurements with
each other subject to delays imposed by an underlying com-
munication graph—specifically, we assume that subcontroller i
has access to subcontroller j’s measurement yj with the delay
specified by the length of the shortest path from subcontroller j
to subcontroller i in the communication graph. Formally, let Γ
be the adjacency matrix of the communication graph between
subcontrollers, that is, Γ is the integer matrix with rows and
columns indexed by N , such that Γkl is equal to 1 if there
is an edge from l to k, and 0 otherwise. The communication
delay from subcontroller j to subcontroller i is then given by
the length of the shortest path from j to i as specified by

Fig. 2. Three-subsystem chain example.

the adjacency matrix gamma Γ. In particular, we define5 the
communication delay from subcontroller j to subcontroller i to
be given by

cij := min
{
d ∈ Z+ |Γd

ij = 0
}

(13)

if an integer satisfying the condition in (13) exists, and set
cij = ∞ otherwise.

We say that a strictly proper distributed controller K can be
implemented on a communication graph with adjacency matrix
Γ if for all i, j ∈ N , we have that the (i, j)th block of the

controller K satisfies K(t)
ij = 0 for all positive integers t ≤ cij

or, equivalently, that Kij ∈ (1/zcij+1)Rp. In words, this says
that subcontroller j only has access to the measurementyi from
subcontroller i after cij time steps, the length of the shortest
path from j to i in the communication graph, and can only
take actions based on this measurement after a computational
delay of one time step.6 More succinctly, this condition holds if
bsupp(K(t)) ⊆ bsupp(Γt−1) for all t ≥ 1.

If Γ is the adjacency matrix of a strongly connected graph,
then there exists a path between all ordered pairs of sub-
controllers (i, j) ∈ N × N —this implies that there exists a
positive delay d(Γ) after which a given measurement yj is
available to all subcontrollers. In particular, we define the delay
d(Γ) associated with the adjacency matrix Γ to be

d(Γ) := sup
{
τ ∈ Z++ |∃(k, l) ∈ N × N s.t. Γτ−1

kl = 0
}
.

(14)
Using this convention, all measurements y

(t)
j are available to

all subcontrollers by time t+ d(Γ) + 1. When the delay d(Γ)
is finite, we say that Γ is a strongly connected adjacency matrix,
as it defines a strongly connected communication graph.

We define the subspace S(Γ) generated by a strongly con-
nected adjacency matrix Γ to be

S(Γ) := F(Γ)⊕ 1

zd(Γ)+1
Rp (15)

where d(Γ) is as defined in (14), and F(Γ) :=
⊕d

t=1(1/z
t)F (t)(Γ) is specified by the subspaces

F (t)(Γ) :=
{
M ∈ R

p2×q2 |bsupp(M) ⊆ bsupp(Γt−1)
}
.
(16)

It is then immediate that a controller K can be implemented on
the communication graph Γ if and only if K ∈ S(Γ).

Example 1: Consider the communication graph illustrated
in Fig. 2 with a strongly connected adjacency matrix Γ3−chain

given by

Γ3−chain =

⎡
⎣1 1 0
1 1 1
0 1 1

⎤
⎦ . (17)

5See [28, Lemma 8.1.2] for a graph-theoretic justification of this definition.
6This computational delay is included to ensure that the resulting controller

is strictly proper.
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This communication graph generates the subspace

S(Γ3−chain) :=
1

z

⎡
⎣∗ 0 0
0 ∗ 0
0 0 ∗

⎤
⎦⊕ 1

z2

⎡
⎣∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

⎤
⎦⊕ 1

z3
Rp

(18)

where ∗ is used to denote a space of appropriately sized real
matrices. The communication delays associated with this graph
are then given by cij = |i− j| (e.g., c11 = 0, c12 = 1, and
c13 = 2). We also have that d(Γ3−chain) = 2, which is the
length of the longest path between nodes in this graph, and that

F(Γ3−chain) =
1

z

⎡
⎣∗ 0 0
0 ∗ 0
0 0 ∗

⎤
⎦⊕ 1

z2

⎡
⎣∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

⎤
⎦ ⊂ RH≤2

∞ .

�
Thus, given such a strongly connected adjacency matrix Γ,

the distributed optimal controller K� implemented using the
graph specified by Γ can be obtained by solving the optimiza-
tion problem (4) with subspace constraint S(Γ)—however, this
optimization problem can only be reformulated as the convex
programs (6) and (7) if the subspace S(Γ) is QI with respect to
G22 [9].

B. Quadratically Invariant Communication Graphs

The discussion of Sections III and IV-A shows that commu-
nication graphs that are strongly connected and that generate
a subspace (15) that is QI with respect to G22, allow for the
distributed optimal control problem (4) to be solved via the
finite-dimensional convex program (7). In this subsection, we
characterize a set of such communication graphs in terms of a
base QI and a maximal QI communication graph corresponding
to a plant G22. The base QI communication graph defines a sim-
ple communication architecture that generates a QI subspace,
whereas the maximal QI communication graph is the densest
communication architecture that can be built given the physical
constraints of the system.

We assume that the subcontrollers have disjoint measurement
and actuation channels, that is, that B2 and C2 are block-
diagonal, and that the dynamics of the system are strongly
connected, that is, that bsupp(A) corresponds to the adjacency
matrix of a strongly connected graph. We discuss alterna-
tive approaches for when these assumptions do not hold in
Section VII. For the sake of brevity, we often refer to a
communication graph by its adjacency matrix Γ.

Base QI Communication Graph: Our objective is to identify
a simple communication graph, that is, a graph defined by a
sparse adjacency matrix Γbase, such that the resulting subspace
S(Γbase) is QI with respect to G22. To that end, let the base
QI communication graph of plant G22 with realization (2) be
specified by the adjacency matrix

Γbase := bsupp(A). (19)

Notice that under the block-diagonal assumptions imposed on
the state-space parameters B2 and C2, this implies that Γbase

mimics or is a superset of the physical topology of the plant
G22, as bsupp(G(t)

22 ) = bsupp(C2A
t−1B2) ⊆ bsupp(A)t−1.

Define the propagation delay from subplant j to subplant i
of a plant G22 to be the largest integer pij such that

(G22)ij ∈
1

zpij
Rp. (20)

It is shown in [8] that if a subspace S constrains the blocks
of the controller K to satisfy Kkl ∈ (1/zckl+1)Rp, and the
communication delays7 {ckl} satisfy the triangle inequality
cki + cij ≥ ckj , then S is QI with respect to G22 if

cij ≤ pij + 1 (21)

for all i, j ∈ N . An intuitive interpretation of this condition is
thatS is QI if it allows subcontrollers to communicate with each
other as fast as their control actions propagate through the plant.
Since we take the base QI communication graphΓbase to mimic
the topology of the plant G22, we expect this condition to hold
and for S(Γbase) to be QI with respect to G22. We formalize
this intuition in the following lemma.

Lemma 1: Let the plant G22 be specified by state-space
parameters (A,B2, C2), and suppose that B2 and C2 are block
diagonal. Let {pij} denote the propagation delays of the plant
G22 as defined in (20). Assume that Γbase, as specified as
in (19), is a strongly connected adjacency matrix, and let
{bij} denote the communication delays (13) imposed by the
adjacency matrix Γbase. The communication delays {bij} then
satisfy condition (21) and the subspace S(Γbase) is quadrati-
cally invariant with respect to G22.

Proof: The definition of the base QI communication graph
Γbase and the assumption that B2 and C2 are block-diagonal
imply that bsupp(G(t)

22 )⊆ bsupp(At−1)⊆ bsupp(Γt−1
base). This,

in turn, can be verified to guarantee that (21) holds. Thus, it
suffices to show that the communication delays {bkl} satisfy
the triangle inequality bki + bij ≥ bkj for all i, j, k ∈ N . First
observe that: 1) bii + bii ≥ bii and 2) bii + bij ≥ bij , as all
bij ≥ 0. Thus, it remains to show that bki + bij ≥ bkj for i =
j = k. Suppose, seeking contradiction, that

bki + bij < bkj . (22)

Note that by definition (13) of the communication delays and
[28, Lemma 8.1.2], the inequality (22) is equivalent to

min{r|∃ path of length r from i to k}
+min{r | ∃ path of length r from j to i}

< min{r | ∃ path of length r from j to k}. (23)

Notice, however, that we must have

min{r | ∃ path of length r from j to k}
≤ min{r | ∃ path of length r from j to i}
+min{r | ∃ path of length r from i to k} (24)

as the concatenation of a path from j to i and a path from i to k
yields a path from j to k. Combining inequalities (22) and (24)
yields the desired contradiction, proving the result. �

7These are equivalent to the prior definition (13) of communication delays
{ckl}.
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Lemma 1 thus provides a simple means of constructing
a base QI communication graph by taking a communication
topology that mimics the physical topology of the plant G22.

Augmenting the Base QI Communication Graph: The delay
condition (21) suggests that a natural way of constructing QI
communication architectures given a base QI communication
graph is to augment the base graph with additional communi-
cation links, since adding a link to a communication graph can
only decrease its communication delays cij .

Proposition 1: Let Γbase be defined as in (19), and let Γ be an
adjacency matrix satisfying bsupp(Γbase) ⊂ bsupp(Γ). Then,
the generated subspace S(Γ), as defined in (15), is quadratically
invariant with respect to G22.

Proof: Let {bij} and {cij} denote the communication
delays associated with the base QI communication graph Γbase

and the augmented communication graph Γ, respectively. It
follows from the definition of the communication delays (13)
that the support nesting condition bsupp(Γbase) ⊂ bsupp(Γ)
implies that bij ≥ cij for all i, j ∈ N . By Lemma 1, we
have that bij ≤ pij + 1 and, therefore, cij ≤ bij ≤ pij + 1. An
identical argument to that used to prove Lemma 1 shows that
the delays cij satisfy the required triangle inequality, implying
that S(Γ) is QI with respect to G22. �

In other words, the nesting condition bsupp(Γbase) ⊂
bsupp(Γ) simply means that the communication graph Γ can
be constructed by adding communication links to the base QI
communication graph Γbase. It follows that any graph built by
augmenting Γbase with additional communication links gener-
ates a QI subspace (15).

Remark 4: Although we have suggested a specific construc-
tion for Γbase, Proposition 1 makes clear that any strongly
connected graph that generates a subspace constraint that is QI
with respect to G22 can be used as the base QI communication
graph. We discuss the implications of this additional flexibility
in Section VII.

Maximal QI Communication Graph: In order to augment the
base QI communication graph in a physically relevant way, one
must first specify what additional communication links can be
built given the physical constraints of the system. For example,
if two subcontrollers are separated by a large physical distance,
it may not be possible to build a direct communication link
between them. The set of additional communication links that
can be physically constructed is application dependent—we
therefore assume that the controller designer has specified a
collection E of directed edges that define what communication
links can be built in addition to those already present in the
base QI communication graph. In particular, we assume that it
is possible to build a direct communication link from subcon-
troller j to subcontroller i, that is, to build a communication
graph Γbuilt = Γbase + Γ with Γij = 1, only if (i, j) ∈ E .

Given a collection of directed edges E , the maximal QI
communication graph Γmax is given by

Γmax := Γbase +M (25)

where M is a n× n dimensional matrix with Mij set to 1 if
(i, j) ∈ E and 0 otherwise. In other words, the maximal QI
adjacency matrix Γmax specifies a communication graph that
uses all possible communication links listed in the set E , in

addition to those links already used by the base QI communica-
tion graph. Consequently, we say that a communication graph
can be physically built if its adjacency matrix Γ satisfies

bsupp(Γ) ⊆ bsupp(Γmax) (26)

that is, if it can be built from communication links used by the
base QI communication graph and/or those listed in the set E .

QI Communication Graph Design Set: We now define a set
of strongly connected and physically realizable communication
graphs that generate QI subspace constraints as specified in
(15)—in particular, the base and maximal QI graphs correspond
to the boundary points of this set.

Proposition 2: Given a plant G22 and a set of directed edges
E , let the adjacency matrices Γbase and Γmax of the base and
maximal QI communication graphs be defined as in (19) and
(25), respectively. Then, an adjacency matrix Γ corresponds to a
strongly connected communication graph that can be physically
built and that generates a quadratically invariant subspace S(Γ)
of the form (15) if

bsupp(Γbase) ⊆ bsupp(Γ) ⊆ bsupp(Γmax). (27)

Proof: Follows from Prop. 1 and definitions (25) and (26).
�

The following corollary is then immediate.
Corollary 1: Let Γ1 and Γ2 be adjacency matrices that

satisfy the nesting condition (27) and suppose further that
bsupp(Γ1) ⊆ bsupp(Γ2). Let ν•, with • ∈ {base, 1, 2,max}
be the closed-loop norm achieved by the optimal distributed
controller implemented using communication graph Γ•. Then

d(Γbase) ≥ d(Γ1) ≥ d(Γ2) ≥ d(Γmax) (28)

S(Γbase) ⊆S(Γ1) ⊆ S(Γ2) ⊆ S(Γmax) (29)

νbase ≥ν1 ≥ ν2 ≥ νmax. (30)

Proof: Relations (28) and (29) follow immediately from
the hypotheses of the corollary and the definitions of the delays
d(Γ•) and the subspaces S(Γ•) as given in (14) and (15),
respectively. The condition (30) on the norms ν• follows im-
mediately from the subspace nesting condition (29) and the fact
that the optimal norm ν• achievable by a distributed controller
implemented using a communication graph with adjacency ma-
trixΓ• is specified by the optimal value of the objective function
of the optimization problem (4) with distributed constraint
S(Γ•). �

Corollary 1 states that as more edges are added to the
base QI communication graph, the performance of the optimal
distributed controller implemented on the resulting communi-
cation graph improves. Thus, there is a quantifiable tradeoff
between the communication complexity and the closed-loop
performance of the resulting distributed optimal controller.
To fully explore this tradeoff, the controller designer would
have to enumerate the QI communication graph design set
which is composed of adjacency matrices satisfying the nesting
condition (27). Denoting this set by G , a simple computation
shows that |G | = 2|E |—thus, the controller designer has to
consider a set of graphs of cardinality exponential in the number
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of possible additional communication links. This poor scaling
motivates the need for a principled approach to explore the
design space of communication graphs via the regularized
optimization problem (9).

V. COMMUNICATION GRAPH CO-DESIGN ALGORITHM

In this section, we leverage Propositions 1 and 2 as well as
tools from approximation theory [3]–[5] to construct a convex
penalty function ‖ · ‖comm, which we call the communication-
link norm, that allows the controller designer to explore the
QI communication graph design set G in a principled manner
via the regularized convex optimization problem (9). We then
propose a communication architecture/control law co-design
algorithm based on this optimization problem and show that it
indeed does produce strongly connected communication graphs
that generate quadratically invariant subspaces.

A. Communication-Link Norm

Recall that our approach to the co-design task is to induce
a suitable structure in the expression C(V �), where V � is
the solution to the regularized convex optimization problem
(9), employing the yet-to-be-specified convex penalty func-
tion ‖ · ‖comm. We argued that the structure induced in the
expression C(V �) should correspond to a strongly connected
communication graph that generates a QI subspace of the form
(5), and characterized a set of graphs satisfying these properties,
namely, the QI communication graph design set G . To explore
the QI communication graph design set G , we begin with
the base QI communication graph Γbase and augment it with
additional communication links drawn from the set E . The
convex penalty function ‖ · ‖comm used in the regularized opti-
mization problem (9) should therefore penalize the use of such
additional communication links—in this way, the controller
designer can tradeoff between communication complexity and
closed-loop performance by varying the regularization weight
λ in optimization problem (9).

We view distributed controllers implemented using a dense
communication graph as being composed of a superposition of
simple atomic controllers that are implemented using simple
communication graphs, that is, using communication graphs
obtained by adding a small number of edges to the base QI com-
munication graph. This viewpoint suggests choosing the convex
penalty function ‖ · ‖comm to be an atomic norm [3]–[5].

Indeed, if one seeks a solution X� that can be composed as
a linear combination of a small number of atoms drawn from a
set A , then a useful approach, as described in [3], [29]–[34], to
induce such structure in the solution of an optimization problem
is to employ a convex penalty function that is given by the
atomic norm induced by the atoms A [4], [5]. Examples of
the types of structured solutions one may desire include sparse,
group sparse, and signed vectors, and low-rank, permutation
and orthogonal matrices [3]. Specifically, if one desires a so-
lution X� that admits a decomposition of the form

X� =

r∑
i=1

ciAi, Ai ∈ A , ci ≥ 0 (31)

for a set of appropriately scaled and centered atoms A , and a
small number r relative to the ambient dimension, then solving

minimizeX ‖A(X)‖2H2
+ λ‖X‖A (32)

with A(·) an affine map, and the atomic norm ‖ · ‖A given by8

‖X‖A := inf

{∑
A∈A

cA | X =
∑
A∈A

cAA, cA ≥ 0

}
(33)

results in solutions that are both consistent with the data as mea-
sured in terms of the cost function ‖A(X)‖2H2

, and that admit
sparse atomic decompositions, that is, that are a combination of
a small number of elements from A .

We can therefore fully characterize our desired convex
penalty function ‖ · ‖comm by specifying its defining atomic set
Acomm and then invoking definition (33). As alluded to earlier,
we choose the atoms in Acomm to correspond to distributed
controllers implemented on communication graphs that can
be constructed by adding a small number of communication
links from the set of allowed edges E to the base of the
QI communication graph Γbase. In order to avoid introducing
additional notation, we describe the atomic set specified by
communication graphs that can be constructed by adding a
single communication link from the set E to the base QI com-
munication graph Γbase—the presented concepts then extend to
the general case in a natural way. We explain why a controller
designer may wish to construct an atomic set specified by more
complex communication graphs in Section VII.

Atomic Set Acomm: To each communication link (i, j) ∈ E ,
we associate the subspace Eij given by

Eij := S⊥(Γbase) ∩ S(Γbase + Eij). (34)

Each subspace Eij encodes the additional information available
to the controller, relative to the base communication graph
Γbase, that is uniquely due to the added communication link
(i, j) from subcontroller j to subcontroller i. Note that the
subspaces Eij are finite dimensional due to the strong con-
nectedness assumption imposed on Γbase, which leads to the
equality S⊥(Γbase) = F⊥(Γbase) ∩RH≤d(Γbase)

∞ .
Example 2: Consider the base QI communication graph

Γbase illustrated in Fig. 2 and specified by (17). This commu-
nication graph generates the subspace S(Γbase) shown in (18).
We consider choosing from two additional links to augment the
base communication graph Γbase: a directed link from node 1
to node 3, and a directed link from node 3 to node 1. Then, E =
{(1, 3), (3, 1)} and the corresponding subspaces Eij are given by

E31 =
1

z2

⎡
⎣0 0 0
0 0 0
∗ 0 0

⎤
⎦, E13 =

1

z2

⎡
⎣0 0 ∗
0 0 0
0 0 0

⎤
⎦ .

�
The atomic set is then composed of suitably normalized

elements of these subspaces

Acomm :=
⋃

(i,j)∈E

{A ∈ Eij | ‖A‖H2
= 1} . (35)

8If no such decomposition exists, then ‖X‖A = ∞.
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Note that we normalize our atoms relative to the H2 norm since
this norm is isotropic; hence, this normalization ensures that
no atom is preferred over another within the family of atoms
defined by a subspace Eij . The resulting atomic norm, which
we denote the communication-link norm, is defined on elements
X ∈ RH≤d(Γbase)

∞ and is given by9

‖X‖comm = min
Abase,{Aij}∈RH≤d(Γbase)∞

∑
(i,j)∈E

‖Aij‖H2

s.t. X = Abase +
∑

(i,j)∈E

Aij

Abase ∈ F(Γbase)

Aij ∈ Eij ∀(i, j) ∈ E
(36)

when this optimization problem is feasible—when it is not,
we set ‖X‖comm = ∞. Applying definition (36) of the
communication-link norm to the regularized optimization prob-
lem (9) yields the convex optimization problem

minimize
V,Abase,{Aij}∈RH≤d(Γbase)∞

‖L(V )‖2H2
+λ

⎛
⎝ ∑

(i,j)∈E

‖Aij‖H2

⎞
⎠

s.t. C(V ) = Abase +
∑

(i,j)∈E

Aij

Abase ∈ F(Γbase)

Aij ∈ Eij ∀ (i, j) ∈ E . (37)

Recall that in optimization problem (9), our approach to
communication architecture design is to induce structure in the
term C(V ) through the use of the communication-link norm
as a penalty function. Letting (V �, {A�

ij}, A�
base) denote the

solution to the optimization problem (37), we have that each
nonzero A�

ij in the atomic decomposition of C(V ) corresponds
to an additional link from subcontroller j to subcontroller i
being added to the base QI communication graph (in what
follows, we make precise how the structure of C(V �) can
be used to specify a communication graph). As desired, the
communication-link norm (36) penalizes the use of such ad-
ditional links, and optimization problem (37) allows for a
tradeoff between communication complexity (as measured by∑

(i,j)∈E ‖Aij‖H2
) and closed-loop performance (as measured

by ‖L(V )‖2H2
) of the resulting distributed controller through

the regularization weight λ. Note further that A�
base is not

penalized by the communication-link norm, ensuring that the
communication graph defined by the structure of C(V �) has
Γbase as a subgraph.

Remark 5: Optimization problem (37) is finite dimensional
and, hence, can be formulated as a second-order cone program
by associating the finite impulse response transfer matrices
(V,Abase, {Aij}), C(V ) and L(V ) with their matrix represen-
tations. To see this, note that F(Γbase) ⊆ RH≤d(Γbase)

∞ , and that
by the discussion after the definition (34) of the subspaces Eij ,

9We apply definition (33) to the components of X that lie in S⊥(Γbase) to
obtain an atomic norm defined on elements of that space. We then introduce an
unpenalized variable Abase ∈ F(Γbase) to the atomic decomposition so that

the resulting penalty function may be applied to elements X ∈ RH≤d(Γbase)∞ .

The resulting penalty is actually a seminorm on RH≤d(Γbase)∞ but we refer to
it as a norm to maintain consistency with the terminology of [3].

they too satisfy Eij ⊆ RH≤d(Γbase)
∞ . Thus, the horizon d(Γbase)

over which the optimization problem (37) is solved is finite.

B. Co-Design Algorithm and Solution Properties

In this section, we formally define the communication
architecture/control law co-design algorithm in terms of the
optimization problem (37), and show that it can be used to
co-design a strongly connected communication graph Γ that
generates a QI subspace S(Γ) as defined in (15).

The co-design procedure is described in Algorithm 1. The
algorithm consists of first solving the regularized optimiza-
tion problem (37) to obtain solutions (V �, {A�

ij}, A�
base). Us-

ing these solutions, we produce the designed communication
graph Γdes by augmenting the base QI communication graph
Γbase with all edges (i, j) such that A�

ij = 0. In particular,
each nonzero term A�

ij corresponds to an additional edge
(i, j) ∈ E that the co-designed distributed control law will
use—thus, by varying the regularization weight λ, the con-
troller designer can control how much the use of an addi-
tional link is penalized by the optimization problem (37). As
bsupp(Γbase) ⊆ bsupp(Γdes) ⊆ bsupp(Γmax) by construction,
the designed communication graph Γdes satisfies the assump-
tions of Proposition 2—it is therefore strongly connected,
can be physically built, and generates a subspace S(Γdes);
according to (15), that is QI with respect to G22 and that
admits a decomposition of the form (5). The subspace S(Γdes)
thus satisfies the assumptions of Theorem 1, meaning that the
distributed optimal controller K�

des restricted to the designed
subspace S(Γdes) is specified in terms of the solution Q�

des

to the convex quadratic program (7). In this way, the optimal
distributed controller restricted to the designed communication
architecture, as well as the performance that it achieves, can be
computed exactly.

Although the solution V � to optimization problem (37)
could be used to generate a distributed controller that can
be implemented on the designed communication graph Γdes,
we claim that it is preferable to use the solution Q�

des to the
nonregularized optimization problem (7). First, the use of the
communication-link norm penalty in the optimization problem
(7) has the effect of shrinking the solution toward the origin.
This means that the resulting controller specified by V � is less
aggressive, that is, has smaller control gains, than the controller
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specified by the solution to the optimization problem (7) with
subspace constraint F(Γdes).

Second, notice that for two graphs Γij and Γkl obtained by
augmenting the base QI communication graph Γbase with the
communication links (i, j) and (k, l), respectively, it holds that
S(Γij) + S(Γkl) ⊆ S(bsupp(Γij + Γkl)), with the inclusion
being strict in general. In other words, the linear superposition
of the subspaces (15) generated by the two communications
graphs Γij and Γkl is, in general, a strict subset of the subspace
generated by the single communication graph bsupp(Γij +
Γkl). Suppose now that the corresponding solutions A�

ij and
A�

kl to optimization problem (37) are non-zero: then Γdes =
Γbase + Eij + Ekl, but the expression C(V �) lies in the sub-
space given by S(Γij) + S(Γkl). With the previous discus-
sion S(Γij) + S(Γkl) ⊂ S(Γdes) and thus we are imposing
additional structure on the expression C(V �) relative to that
imposed on the solution to the nonregularized optimization
problem (7) with subspace constraint F(Γdes). This can be
interpreted as the controller specified by the structure of C(V �)
not utilizing paths in the communication graph that contain both
links (i, j) and (k, l). These sources of conservatism in the
control law are, however, completely removed if one uses the
solution Q�

des to the nonregularized optimization problem (7).
Thus, we have met our objective of developing a convex

optimization-based procedure for co-designing a distributed
optimal controller and the communication architecture upon
which it is implemented. In the next section, we discuss the
computational complexity of the proposed method and illus-
trate its efficacy on numerical examples.

VI. COMPUTATIONAL EXAMPLES

We show that the number of scalar optimization variables
needed to formulate the regularized optimization problem (37)
scales, up to constant factors, in a manner identical to the
number of variables needed to formulate the nonregularized
optimization problem (7). We then illustrate the usefulness of
our approach via two examples.

A. Computational Complexity

We assume that the number of control inputs p2 and the
number of measurements q2 scale as O(n), where n is the
number of subcontrollers in the system, that is, we assume
that there is an order constant number of actuators and sensors
at each subcontroller. For an element V ∈ RH≤d

∞ , each term
V (t) in its power-series expansion is a real matrix of dimension
O(n) ×O(n) and, thus, V is defined by O(n2d) scalar vari-
ables. The convex quadratic program (7) is therefore specified
in terms of O(n2d) variables.

To describe the number of scalar optimization variables in
the regularized optimization problem (37), we need to take
into account the contributions from V , Abase, and {Aij}. As
per the discussion in the previous paragraph, V and Abase are
composed of, at most, O(n2d) scalar optimization variables. It
can be checked that each Aij has O(d) optimization variables
and, hence, the collection {Aij} contributes O(d|E |) scalar
optimization variables. Each subcontroller can have, at most,
O(n) additional links originating from it and, thus, |E | scales,

at worst, as O(n2). It follows that the regularized optimization
problem (37) can also be specified in terms of O(n2d) scalar
optimization variables.

Finally, we note that the regularized optimization problem
(37) is a second-order cone program (SOCP) with, at most,
O(n2d) second-order constraints. It therefore enjoys favorable
iteration complexity that scales as O(

√
dn) [35], and its per-

iteration complexity is at worst O(d3n6) [36], but is typically
much less when the structure is exploited. In particular, it is not
atypical to solve an SOCP with tens to hundreds of thousands
of variables [37]: noting that d scales at worst as O(n), we
therefore expect our method to be applicable to problems with
hundreds of subcontrollers. Further, as we illustrate in the 20
subcontroller-ring example below, the computational benefits
of our approach compared to a brute force search are already
tangible for systems with tens of subcontrollers.

B. Six-Subcontroller Chain System

Consider a generalized plant (2) specified by a tridiagonal
matrix A6−chain ∈ R

6×6 with randomly generated nonzero en-
tries B2 = C2 = I6, B1 = C�

1 = [I6 06], and D21 = D�
12 =

[06 I6]. The physical topology of the plant G22 is that of a
6-subsystem chain (a 3-subsystem chain is illustrated in Fig. 2)
and, therefore, the base QI communication graph Γ6−chain =
bsupp(A6−chain) also defines a 6-subcontroller chain. We de-
fine the set of edges that can be added to the base graph to be

E = {(i, j) ∈ N × N | |i− j| = 2} (38)

that is, the communication graph/control law co-design task
consists of determining which additional directed communica-
tion links between second neighbors should be added to the
base QI communication graph Γ6−chain to best improve the
performance of the distributed optimal controller implemented
on the resulting augmented communication graph.

In order to assess the efficacy of the proposed method
in uncovering communication topologies that are well suited
to distributed optimal control, we first computed the optimal
closed-loop performance achievable by a distributed controller
implemented on every possible communication graph that can
be constructed by augmenting the base QI communicating
graphΓ6−chain with k = 1, . . . , |E | additional links drawn from
the set E . In particular, we exhaustively explored the QI com-
munication graph set G and computed the achievable closed-
loop norms—these closed-loop norms are plotted as blue circles
in Fig. 3. We then performed the co-design procedure described
in Algorithm 1 for different values of regularization weight λ ∈
[0, 50]. The resulting closed-loop norms achieved by the co-
designed communication architecture/control law are plotted
as a solid blue line in Fig. 3. We also plot the closed-loop
norms achieved by controllers implemented using the base and
maximal QI communication graphs.

We observe that as the regularization weight λ is increased,
and simpler communication topologies are generated by the co-
design procedure. Further, our algorithm is able to successfully
identify the optimal communication topology and the corre-
sponding distributed optimal control law for every fixed number
of additional links.
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Fig. 3. Closed-loop norms achieved by distributed optimal controllers imple-
mented on communication graphs constructed by adding k = 1, . . . , |E | links
to the base QI communication graph Γ6−chain are plotted as circles. The solid
line denotes the performance achieved by distributed optimal controllers im-
plemented on the communication graphs identified by the co-design procedure
described in Algorithm 1. The dotted/dashed lines indicate the closed-loop
norm achieved by the distributed optimal controllers implemented on the base
and maximal QI communication graphs, respectively.

C. 20 Subcontroller-Ring System

Consider a generalized plant (2) specified by a matrix
A20−ring ∈ R

20×20 with the (i, j)th entry set to a nonzero
randomly generated number if |i− j| ≤ 1 where the subtrac-
tion is modulo 20 (e.g., 1− 20 = 1), and 0 otherwise. The
additional state-space parameters are given by B2 = C2 =
I20, B1 = C�

1 = [I20 020], and D21 = D�
12 = [020 I20]. For

the example considered below, |λmax(A20−ring)| = 2.91. The
physical topology of the plant G22 is that of a 20 subsystem
ring, that is, a chain topology with first and last nodes connected
and, therefore, the base QI communication graph Γ20−ring =
bsupp(A20−ring) also defines a 20 subcontroller ring. We again
define the set of edges E that can be added to the base graph
to be those between second neighbors as in (38). In this case,
the QI communication graph set G is too large to exhaustively
explore: in particular, |G | = 240 ≈ 1012. We performed the
co-design procedure described in Algorithm 1 for different
values of regularization weight λ ∈ [0, 1000]. The resulting
closed-loop norms achieved by the co-designed communication
architecture/control law are plotted as a solid blue line in Fig. 4.
We also plot the closed-loop norms achieved by controllers
implemented using the base and maximal QI communication
graphs. We observe again that as the regularization weight λ is
increased, simpler and simpler communication topologies are
designed. Notice that our method selected 10 carefully placed
communication links to add to the base QI communication
graph, leading to a closed-loop performance that is only 2%
higher than that achieved by the optimal controller implemented
using the maximal QI communication graph.

VII. DISCUSSION

Optimal structural recovery: It is shown in [2] that the vari-
ational solution to an H2 optimal control problem augmented
with an atomic norm that penalizes the use of actuators can
succeed in identifying an optimal actuation architecture when
the dynamics of the plant satisfy certain conditions. The numer-

Fig. 4. Solid line denotes the performance achieved by distributed optimal
controllers implemented on the communication graphs identified by the co-
design procedure described in Algorithm 1. The dotted and dashed lines
indicate the closed-loop norm achieved by the distributed optimal controllers
implemented on the base and maximal QI communication graphs, respectively.

ical experiments of Section VI provide empirical evidence that
our approach to communication architecture design identifies
optimally structured controllers as well—it is of interest to
see whether conditions analogous to those of [2] can provide
theoretical support to the empirical success of our approach.

The k- communication-link norm: The communication-link
norm was defined in terms of atoms corresponding to com-
munication graphs constructed by adding a single link to the
base QI communication graph. However, it is possible to
include atoms corresponding to communication graphs aug-
mented with, at most, k-links instead, for any positive in-
teger k; denote the resulting k-communication-link norm by
‖ · ‖k−comm. If the atoms are suitably normalized,10 for all
positive integers k1 and k2 satisfying k1 ≤ k2 it then holds
that ‖G‖k1−comm ≤ ‖G‖k2−comm for all transfer matrices G
satisfying ‖G‖k1−comm < ∞. Geometrically, restricted to the
domain of ‖ · ‖k1−comm, the unit ball of ‖ · ‖k2−comm is an
inner approximation to that of ‖ · ‖k1−comm and may therefore
lead to simpler communication graphs when used as a penalty
function in the regularized optimization problem (9). How
to choose k will likely be informed by the aforementioned
conditions on optimal structure recovery, and by computational
considerations, as the number of elements {Aij} required to
implement the k-communication-link norm scales as O(n2k).

Constructing base QI communication graphs: The structural
assumptions made on (A,B2, C2) in Section IV are needed
to ensure that the base QI communication graph as specified
in (19) is strongly connected and generates a QI subspace.
However, as we note in Remark 4, any strongly connected
communication topology leading to a QI subspace can be
used as the base QI communication graph. Exploring how to
construct base QI communication graphs in a principled way
when the structural assumptions on (A,B2, C2) are relaxed,

10In particular, elements A ∈ Ak−comm constrained to lie in a subspace E
should be normalized as ‖A‖H2

= (card(E) + κ)−(1/2) , where κ > 0 is a
positive constant that controls how much a single atom of larger cardinality is
preferred over several atoms of lower cardinality.
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perhaps utilizing the methods in [38], is an interesting direction
for future work. We emphasize, however, that the rest of the
discussion in Section IV remains valid once a base QI commu-
nication graph is identified even if the structural assumptions
on (A,B2, C2) are relaxed. We also note that these issues are a
consequence of the communication protocol imposed between
subcontrollers—determining alternative communication proto-
cols that allow the structural assumptions to be relaxed is also
an interesting direction for future work.

Scalability: Although we expect the methods presented to be
applicable to systems composed of hundreds of sub-controllers,
it is important that the general approach of the RFD frame-
work be applicable to truly large-scale systems composed of
heterogeneous subsystems. The limits on the scalability of
our proposed method are due to the underlying controller
synthesis method [13], as opposed to being inherent to the
communication-link norm. To that end, we have been pursuing
localized optimal control [39] as a scalable distributed optimal
controller synthesis method—a direction for future work is
to see if the communication architecture co-design can be
incorporated into the localized optimal control framework.
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