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We describe correlator product states, a class of numerically efficient many-body wave functions
to describe strongly correlated wave functions in any dimension. Correlator product states in-
troduce direct correlations between physical degrees of freedom in a simple way, yet provide the
flexibility to describe a wide variety of systems. We show that many interesting wave functions
can be mapped exactly onto correlator product states, including Laughlin’s quantum Hall wave
function, Kitaev’s toric code states, and Huse and Elser’s frustrated spin states. We also outline
the relationship between correlator product states and other common families of variational wave
functions such as matrix product states, tensor product states, and resonating valence bond states.
Variational calculations for the Heisenberg and spinless Hubbard models demonstrate the promise
of correlator product states for describing both two-dimensional and fermion correlations. Even in
one-dimensional systems, correlator product states are competitive with matrix product states for
a fixed number of variational parameters.

How can one efficiently approximate an eigenstate
of a strongly correlated quantum system? In one-
dimensional systems, the density matrix renormaliza-
tion group (DMRG) provides a powerful and system-
atic numerical approach.1,2 However, the accuracy of the
DMRG in two or more dimensions is limited by the one-
dimensional encoding of correlations in the matrix prod-
uct states (MPS) that form the variational basis of the
DMRG.2 Generalizations of MPS to higher dimensions —
tensor network or tensor product states (TPS)3,4,5,6,7,8 —
have been introduced recently, but these engender con-
siderable computational complexity (which does not arise
with MPS). This has made it difficult to practically ex-
tend the success and accuracy of the DMRG to higher
dimensions.

In this article we examine a different class of quan-
tum states: correlator product states (CPS). Unlike MPS
and TPS, which introduce auxiliary degrees of freedom
to generate correlations between physical degrees of free-
dom, CPS correlate the physical degrees of freedom ex-
plicitly. The CPS form has been rediscovered many
times,9,10,11 but the potential of CPS as an alternative
to MPS/TPS for systematically approximating strongly
correlated problems remains largely unexplored. Here
we take up this possibility. CPS share many of the lo-
cal properties of MPS/TPS but appear more suitable for
practical calculations in more than one dimension as well
as for fermion systems. To establish the potential of CPS,
we analyze the relation between CPS and common fam-
ilies of analytic and numerical trial wave functions. We
then discuss the most important properties of CPS: they
permit efficient evaluation of observables and efficient op-
timization. Finally, we present variational Monte Carlo
calculations for both spin and fermion systems. Our CPS
results compare favorably with calculations using other
variational wave functions that contain a similar number
of variational parameters.

Note: As this manuscript was completed we were in-
formed of recent work by Isaev et al. on hierarchical
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Figure 1: Nearest-neighbor 2-site and 2×2 plaquette CPS on a
2D lattice. The CPS weight for a given quantum configuration
|q1q2 . . . qL〉 is obtained by multiplying correlator coefficients
together as in Eq. (2).

mean-field theory12 and by Mezzacapo et al. on entangled
plaquette states13 as well as earlier work on string-bond
states.14 All these studies consider wave functions similar
to CPS and share many of our own objectives. However,
while our current efforts are related, especially to Ref. 13,
we focus on aspects of CPS not addressed in these other
works, such as the relationship with well-known analyti-
cal and numerical wave functions, and we consider differ-
ent physical problems, such as fermion simulations. Thus
we regard our work as complementary rather than over-
lapping.

I. CORRELATOR PRODUCT STATES

Consider a set of quantum degrees of freedom Q ≡
{q1, q2 . . . qL} on a lattice with L sites in one or more
dimensions. Each qi might represent a spin S = 1/2 de-
gree of freedom, where q ∈ {↑, ↓}, or a fermion degree of

http://arxiv.org/abs/0907.4646v3
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freedom, in which case q ∈ {0, 1}. An arbitrary quantum
state can be expanded over all configurations as

|Ψ〉 =
∑

{q}

Ψq1q2...qL |q1q2 . . . qL〉. (1)

A general quantum wave function requires an exponen-
tial number of parameters — one for each configuration.
One way to reduce the complexity of the problem is to im-
pose some structure on the coefficients Ψ(Q). Correlator
product states (CPS) are one example of this approach.
CPS are obtained by associating variational degrees

of freedom directly with correlations between groups of
sites. For example, in the nearest-neighbor 2-site CPS,
a correlator is associated with each neighboring pair of
sites:

|Ψ〉 =
∑

{q}

∏

〈ij〉

Cqiqj |q1 . . . qL〉, (2)

where 〈ij〉 denotes nearest neighbors. The coefficients in
Eq. (1) are given by products of correlator coefficients.
For example, in a one-dimensional lattice, the amplitude
of a configuration is

Ψ(Q) = Cq1q2Cq2q3Cq3q4 . . . CqL−1qL . (3)

Eq. (2) can be extended to higher dimensions simply by
associating correlators with (overlapping) bonds on the
lattice (Fig. 1). The nearest-neighbor 2-site CPS is an
extremely simple CPS. Longer range correlations can be
introduced by removing the nearest neighbor restriction
on pair correlations or by including explicit correlations
among more sites with correlators such as Cq1q2q3 . It is
clear that CPS provide a complete basis: in the limit of
L-site correlators, the CPS amplitudes are precisely the
coefficients of Eq. (1).
When there is a global constraint on the total spin S

or particle number N we can use projected CPS wave
functions. For example, for fixed particle number, the
N -projected nearest-neighbor 2-site CPS is

|Ψ〉 =
∑

{q}

∏

〈ij〉

Cqiqj P̂N |q1 . . . qL〉, (4)

where P̂N ensures that
∑

i qi = N . Such projections
do not introduce any complications in working with CPS
and may be included in both deterministic and stochastic
calculations without difficulty.
It is sometimes useful to write the CPS in a different

form. Each correlator element Cqiqj can be viewed as
the matrix element of a correlator operator Ĉij that is
diagonal in the quantum basis {|qiqj〉}:

〈qiqj |Ĉ
ij |q′iq

′
j〉 = δqiqi′δqjq′jC

qiqj . (5)

The CPS wave function is obtained by acting a string of
commuting correlator operators on a reference state |Φ〉.
For example, a 2-site CPS may be written as

|Ψ〉 =
∏

i>j

Ĉij |Φ〉. (6)

When there are no constraints, the reference state is
taken to be an equally weighted sum over all quantum
configurations: |Φ〉 =

∑

{q} |q1q2 . . . qL〉; otherwise, |Φ〉

is projected to satisfy the constraint. For example, if
particle number is fixed, |ΦN 〉 is an equally weighted sum
over all quantum configurations with particle number N ,

|ΦN 〉 =
∑

{q}

P̂N |q1q2 . . . qL〉. (7)

Note that both projectors and correlators are diagonal
operators in the Hilbert space and commute with one
another: this means that the projection can be applied
directly to the reference state and this simplifies numeri-
cal algorithms using CPS. The operator representation is
also useful when considering extensions to the CPS form
such as alternative reference states.

II. CONNECTION TO OTHER WAVE

FUNCTIONS

Many strongly correlated quantum states can be rep-
resented exactly as correlator product states. CPS also
have much in common with several classes of widely used
variational wave functions: matrix product states, ten-
sor product states, and resonating valence bond states.
In this section, we discuss the connections between these
wave functions.

Huse-Elser wave functions

In their study of frustrated spin systems, Huse and
Elser constructed states in which the quantum ampli-
tudes Ψ(Q) correspond to classical Boltzmann weights
exp(−βE[Q]/2) multiplied by a complex phase.10 The
weights are derived from an effective classical Hamilto-
nian Ĥcl. For example, in the case of pairwise correla-

tions, Ĥcl =
∑

ij ĥ
cl
ij with ĥcl

ij = KijŜ
i
zŜ

j
z . The corre-

sponding wave function can be represented as a 2-site

CPS with Ĉij = exp(−βĥcl
ij/2+ iφ̂ij) where φ̂ij assigns a

complex phase to the pair ij.

For the square and triangular Heisenberg lattices, Huse
and Elser demonstrated that a very compact variational
ground-state could be obtained with a semi-analytic
three-parameter model for Ĥcl (containing up to 3-site
interactions) and an analytically determined phase. Al-
though CPS can represent such highly constrained wave
functions for symmetric systems, it can also serve as the
foundation of a more general numerical method. By al-
lowing correlators to vary freely and by considering hi-
erarchies of larger correlated clusters, we can hope to
construct rapidly converging approximations to arbitrary

strongly correlated quantum states, as the DMRG does
for one-dimensional quantum problems.
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Laughlin wave function

In 1983, Laughlin proposed a variational wave func-
tion to explain the fractional quantum Hall effect.15 The
Laughlin wave function describes a strongly interacting
system with topological order. Like the Huse and Elser
wave functions, Laughlin’s wave function can be associ-
ated with the Boltzmann weights of an effective classical
Hamiltonian and can be represented exactly as a corre-
lator product state.
The Laughlin quantum Hall state at filling fraction

1/m can be written in first quantization as

Ψ(r1, . . . rN ) =

N
∏

λ<µ

(zλ − zµ)
me−α

P

κ
|zκ|

2

(8)

where zλ is the (complex) coordinate of particle λ. (A
Greek subscript indicates the coordinate of a particular
electron. A Roman subscript indicates the coordinate of
a lattice site.) Alternatively, the system can be mapped
onto a discrete set of coordinates z1, . . . , zL with an asso-
ciated set of occupation numbers q1, . . . , qL. Then Eq. (8)
can be exactly expressed as a 2-site CPS in the occupa-
tion number representation

|Ψ〉 =
∑

{q}

∏

i

Cqi
1

∏

i<j

C
qiqj
2 P̂N |q1 . . . qL〉 (9)

C1 =

(

1

e−α|zi|
2

)

(10)

C2 =

(

1 1
1 (zi − zj)

m

)

(11)

The CPS wave function exactly reproduces the Laugh-
lin wave function. It is, in some ways, more general than
Eq. (8). The CPS form could be used to extend the
Laughlin state beyond 2-site correlators while maintain-
ing antisymmetry of the state, or to find a better varia-
tional energy in open or disordered systems.

Toric code

Kitaev’s toric code is another interesting quantum
state with an exact CPS representation. Kitaev proposed
the toric code as a model for topological quantum com-
puting. The Hamiltonian is a sum of site and plaquette
projectors on a square lattice with spins placed on the
bonds. On a torus, the ground state of this Hamiltonian
is 4-fold degenerate with a gap to all other excitations.16

It is an example of a quantum system with topological
order.
The ground state can be obtained from the zero-

temperature Boltzmann weights of a classical Hamilto-

nian Ĥcl
toric =

∑

✷i
ĥ✷i

. The sum is over all plaquettes

✷i, and ĥ✷i
is a product of Ŝz operators associated with

the spins on the edges of the plaquette.4 The amplitudes

of the toric code wave function can be generated by a
CPS with plaquette correlators:

Cijkl

�
=

{

1 if Si
zS

j
zS

k
zS

l
z > 0,

0 if Si
zS

j
zS

k
zS

l
z < 0.

(12)

The exact representation of the toric code and Laugh-
lin’s wave function demonstrate the ability of CPS to
describe systems with topological order.

MPS and TPS

Correlator product states are conceptually related to
matrix and tensor product states. All of these wave func-
tions can easily express entanglement between local de-
grees of freedom. Nonetheless, CPS and MPS/TPS form
different classes of quantum states and one is not a proper
subset of the other.
A matrix product state (MPS) is obtained by approx-

imating the quantum amplitudes Ψ(Q) in Eq. (1) as a
product of matrices, one for each site on the lattice:

Ψ(Q) =
∑

{i}

Aq1
i1i2

Aq2
i2i3

. . . AqL
iLi1

(13)

The “auxiliary” indices {i} are contracted in a one-
dimensional pattern— a matrix product — and this gives
rise to the low computational cost of working with MPS.
However, the one-dimensional structure prevents MPS
from efficiently describing correlations in higher dimen-
sions. Tensor product states (TPS) extend MPS by ap-
proximating the amplitudes Ψ(Q) by more general tensor
contractions. Because of the more complicated contrac-
tion pattern, TPS can in principle describe higher dimen-
sional correlations.4,6,7 Unlike MPS, the TPS contraction
cannot be evaluated efficiently in general. This leads to
the high computational cost of working with TPS.
To demonstrate the relationship between CPS and

MPS/TPS, we consider a simple example of a nearest-
neighbor 2-site CPS on a three-site lattice with periodic
boundary conditions. This CPS amplitudes are

Ψq1q2q3 = Cq1q2Cq2q3Cq3q1 (14)

Applying singular value decomposition to one of the cor-
relators gives

Cqq′ =
∑

i

U q
i σiV

q′

i =
∑

i

U q
i W

q′

i , (15)

where we have absorbed the diagonal matrix σi into W q′

i .
With this decomposition, |Ψ〉 can be mapped to a MPS
of auxiliary dimension 2:

Ψq1q2q3 =
∑

{i}

U q1
i1

(

W q2
i1
U q2
i2

) (

W q3
i2
U q3
i3

)

W q1
i3
. (16)
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This is equivalent to Eq. (13) with Aq
ij = W q

i U
q
j . The

matrices of the resulting MPS (of dimension 2) have a
restricted form. More complicated CPS (e.g., with 3-
site correlators) map to MPS with larger auxiliary di-
mension and more flexible forms for the matrices. (The
dimension of the matrices grows exponentially with the
range or number of sites in the correlator.) An arbitrary

MPS cannot be mapped onto a CPS with less than the
complete basis of L-site correlators. Conversely, a one-
dimensional CPS with long-range correlators (such as the
general 2-site CPS used in the Laughlin state) can only
be represented by a MPS with an auxiliary dimension
that spans the full Hilbert space. These arguments can
be extended to higher dimensions and similar conclusions
hold for the mappings between CPS and TPS. For a given
number of variational degrees of freedom, only a subset
of CPS can be exactly written as MPS/TPS and vice
versa.
While the correlators in the CPS have no auxiliary in-

dices, they could be augmented by additional auxiliary
indices. For example, string-bond states may be consid-
ered one-site correlators with a pair of auxiliary indices.14

n-site correlators can be generalized in an analogous way.
The concept of an area law is sometimes used in the

analysis of wave functions. If the amount of entangle-
ment between a system and its environment scales with
the area of the boundary between the two, the system
is said to obey an area law. Arguments from quantum
information theory suggest that wave functions that sat-
isfy an area law can accurately describe systems (in any
dimension) with a finite correlation length.17 (Some crit-
ical systems with long-range correlations also satisfy an
area law, but others may violate the area law at zero
temperature.)
MPS wave functions satisfy a one-dimensional area law

and have a finite correlation length. (Long-range correla-
tions can be reproduced over a finite range, but they will
eventually decay exponentially.) TPS satisfy area laws
in two or more dimensions. CPS with local correlators
like nearest neighbor pairs or plaquettes also satisfy an
area law, making them promising candidates for systems
with a finite correlation length. CPS with long-range cor-
relators, such as those used in the Laughlin wave func-
tion, are not constrained by an area law and can describe
even more entanglement between system and environ-
ment, obeying a volume law instead.

RVB states

Resonating valence bond (RVB) states are widely used
in strongly correlated quantum problems.18,19 A fermion
RVB state can be written as a product of a Jastrow factor
and a projected BCS wave function

|ΨRVB〉 = e
P

ij Jij n̂in̂j P̂N e
P

ij
λija

†
i
a
†
j |vac〉 (17)

where Jij and λij are commonly taken to be real.

There is a close relationship between CPS and RVB
states. At half-filling, the N -projected 2-site CPS can
be expressed in the form of Eq. (17). Consider a dimer
covering of the lattice. Let λij = 1 for each pair ij that
is connected by a dimer and λij = 0 otherwise. The
corresponding projected BCS state is the CPS reference
|ΦN 〉 defined earlier:

P̂N e
P

i<j
a
†
i
a
†
j |vac〉 = P̂N

∑

{q}

|q1q2 . . . qL〉 = |ΦN 〉. (18)

If the Jastrow factor is allowed to become complex, then
the 2-site correlator Ĉij is fully parameterized as

Ĉij = exp(J0 + J i
1n̂i + Jj

1 n̂j + J ij
2 n̂in̂j), (19)

and the CPS and RVB wave functions are identical.
Despite the existence of a mapping between the two

wave functions, the emphasis of the CPS parameteri-
zation is quite different from that of commonly studied
RVB states. For fermion RVB wave functions where Jij is
real, the Jastrow factor is positive and the nodes of the
fermion wave function are those of the projected BCS
state. In general, such a wave function cannot be exact.
In contrast, the CPS wave function can modify the nodes
of the reference wave function |ΦN 〉 through the complex
Jastrow factor. By using higher order correlators, the
CPS state can therefore become exact. While the most
flexible RVB/CPS form would combine a complex Jas-
trow factor with an arbitrary projected BCS reference,
there are computational advantages to the simpler CPS
reference, including the possibility to efficiently evaluate
observables without the use of a stochastic algorithm.20

III. COMPUTATIONAL COST OF CPS

To be useful in practical calculations, a variational
wave function must allow efficient evaluation of expecta-
tion values and optimization of its parameters.
This combination of properties in matrix product

states is responsible for the success of the density matrix
renormalization group. The expectation value of typi-
cal observables can be evaluated exactly in a time which
is polynomial in the size of the system. Likewise, the
amplitude of a given configuration can also be evaluated
exactly in polynomial time. As shown in Eq. (13), the
amplitude of a configuration is the trace of the product of
L independent m×m matrices, where m is the dimension
of the auxiliary indices {i} and L is the number of lattice
sites. The cost for evaluating the amplitude is O(m3L).
Tensor product states generalize the structure of MPS

to higher dimensions, but numerical efficiency is lost. In
general, TPS amplitudes cannot be evaluated exactly in
polynomial time! Additional renormalization procedures
must be used while performing the contractions, which
introduces an error that depends on the system size. For
fermions, such errors can result in amplitudes or expec-
tation values incompatible with a fermion wave function
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as well as a variational energy below the fermion ground
state, a so-called N -representability problem. As a re-
sult, only certain classes of TPS are capable of efficient
polynomial simulation.
Like MPS, correlator product states allow efficient, ex-

act evaluation of wave function amplitudes and expecta-
tion values. For example, the amplitudes of a pair CPS
are Ψ(Q) =

∏

i<j C
qiqj . The amplitude is a simple prod-

uct of numbers. This is true for any CPS, and thus the
complexity is proportional only to the number of corre-
lators in the ansatz. This is manifestly polynomial in the
system size. In general, evaluation of the amplitude with
n-site correlators will require O(L) multiplications if the
correlators act locally — e.g, nearest neighbors, plaque-
ttes, etc. — and O(Ln) if there are no restrictions.
This property allows efficient Monte Carlo sampling of

expectation values. (Deterministic algorithms can also
be used but will be presented elsewhere.20) Moreover,
constraints such as fixed particle number or total spin
are easily handled within the Monte Carlo algorithm by
limiting the Metropolis walk to states that satisfy these
constraints. The expectation value of an operator is given
by 〈A〉 =

∑

Q P (Q)A(Q), where P (Q) = |Ψ(Q)|2 and

A(Q) =
∑

Q′

〈Q|Â|Q′〉
Ψ(Q′)

Ψ(Q)
. (20)

The sum over Q′ extends over only those Q′ for which
〈Q|Â|Q′〉 6= 0. As long as Â is sparse in the chosen
basis, its expectation value can be evaluated efficiently.
If |Ψ〉 is local (e.g., nearest-neighbor pair CPS), a further

simplification occurs for operators such as a†iaj , a
†
ia

†
jakal,

or Si · Sj . For these operators, most of the factors in
Ψ(Q) and Ψ(Q′) are identical and cancel from the ratio
so that the time required to evaluate the expecation value
is independent of the system size and depends only on the
number of Monte Carlo samples.
As with MPS and TPS, we can take advantage of the

product structure of CPS when minimizing the varia-
tional energy and use an efficient local optimization or
“sweep” algorithm. The energy is minimized with re-
spect to one of the correlators while the others are held
fixed, then repeated for each of the correlators in turn un-
til the energy has converged. This algorithm is described
in more detail in the next section.

IV. SPIN AND FERMION SIMULATIONS

We have implemented a pilot variational Monte Carlo
code to optimize general spin and fermion CPS wave
functions. In Tables I and II we present results for two
models of interacting spins and fermions: (i) the 2D
square Heisenberg model defined by the Hamiltonian

H = J
∑

〈ij〉

Si · Sj , (21)

and (ii) a 1D spinless Hubbard model at half filling. This
model is defined by the Hamiltonian

H =
∑

〈ij〉

−t(a†iaj + a†jai) + Uninj. (22)

Each site can only be occupied or unoccupied, and the
energy U is the cost of placing two fermions on neigh-
boring sites. We studied periodic and open boundary
conditions for both the Heisenberg and Hubbard models.

Optimization method

We optimize the correlators by minimizing the vari-
ational energy with a sweep algorithm. At each step of
each sweep, a target correlator is updated while the other
correlators are fixed. Because the wave function |Ψ〉 is
linear in the target correlator coefficients, the derivatives
of |Ψ〉 with respect to these coefficients define a vector
space for the optimization. For instance, if the target
correlator has elements Cµ, then the vector space is gen-
erated by the basis |Ψ̃µ〉 where

|Ψ̃µ〉 =
∂|Ψ〉

∂Cµ
. (23)

Any vector in this space defines a CPS wave func-
tion: x corresponds to the wave function |Ψ(x)〉 =

/sumµx
µ|Ψ̃µ〉.

It is convenient to work in a slightly different basis
in which one vector x0 corresponds to the current value
of the target correlator and the other vectors xi are or-
thogonal to x0 (but not necessarily to each other). The
updated target correlator will be a linear combination of
the xα where α ∈ {0, i}.
We construct the Hamiltonian Hαβ and the overlap

matrix Sαβ in this space:

Hαβ =〈Ψ(xα)|Ĥ |Ψ(xβ)〉 (24)

Sαβ =〈Ψ(xα)|Ψ(xβ)〉, (25)

where Ĥ is the model Hamiltonian of Eq. (21) or (22).
We then solve the generalized eigenvalue problem

H ·C = λS ·C, (26)

where C is a linear combination of the xα. The eigen-
vector with the lowest eigenvalue defines the optimal tar-
get correlator coefficients C̃µ that give the lowest energy
when all other correlators are fixed. We sweep over all
of the correlators one at a time until the energy stops
decreasing.
This defines a general sweep algorithm for optimizing

CPS. However to converge the sweeps when the Hamilto-
nian and overlap matrix are constructed via Monte Carlo
sampling it is very important to minimize the stochastic
error. Nightingale and Melik-Alaverdian,22 and Toulouse
and Umrigar,23 defined efficient estimators for variational
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Table I: Variational Monte Carlo energies (in units of J) using CPS for the 2D S = 1/2 Heisenberg model, including percent
errors (∆E). CPS[2] denotes nearest-neighbor 2-site correlators and CPS[n×n] denotes plaquette correlators. The “exact” 6×6
and 8×8 energies are obtained from a stochastic series expansion MC calculation using ALPS.

21 Unlike matrix product states,
correlator product states maintain good accuracy as the width is increased.

Lattice CPS[2] ∆E CPS[2×2] ∆E CPS[3×3] ∆E Exact
Periodic Boundary Conditions

4×4 -11.057(1) 1.5% -11.109(1) 1.1% -11.2202(2) 0.1% -11.2285
6×6 -23.816(3) 2.6% -24.052(2) 1.6% -24.313(2) 0.5% -24.441(2)
8×8 -41.780(5) 3.1% -42.338(4) 1.8% -42.711(3) 0.9% -43.105(3)

Open Boundary Conditions

4×4 -8.8960(5) 3.2% -9.0574(4) 1.4% -9.1481(2) 0.5% -9.1892
6×6 -20.811(1) 4.2% -21.176(1) 2.5% -21.510(1) 1.0% -21.727(2)
8×8 -37.846(3) 4.5% -38.511(2) 2.8% -39.109(2) 1.3% -39.616(2)

Table II: Variational Monte Carlo energies (in units of t) for the L-site 1D spinless Hubbard model with repulsion U using
periodic and open boundary conditions, including percent errors (∆E). CPS[n] denotes n-site correlators; DMRG[m] denotes
a DMRG calculation with m renormalised states. Since CPS and DMRG calculations are not directly comparable in terms
of complexity, the approximate number of degrees of freedom per site (d.o.f.) is listed in the bottom row. (The numbers are
exact in the limit of an infinite lattice.) Encouragingly, CPS are competitive with MPS for a comparable number of variational
parameters. Exact energies are from m=500 DMRG calculations.

L U CPS[3] ∆E DMRG[3] ∆E CPS[4] ∆E DMRG[4] ∆E Exact
Periodic Boundary Conditions

12 0 -7.052(1) 5.5% -7.165 4.0% -7.213(1) 3.4% -7.313 2.0% -7.464
12 4 -2.692(2) 4.1% -2.577 8.2% -2.756(1) 1.8% -2.725 2.9% -2.807
12 8 -1.461(1) 1.1% -1.430 3.1% -1.474(1) 0.2% -1.462 1.0% -1.477
24 0 -14.432(2) 5.0% -14.608 3.8% -14.714(2) 3.2% -14.832 2.4% -15.192
24 4 -5.34(1) 5.1% -5.340 5.1% -5.482(1) 2.6% -5.403 4.0% -5.626
24 8 -2.929(2) 0.8% -2.860 3.2% -2.931(1) 0.7% -2.900 1.8% -2.953
36 0 -21.82(1) 4.6% -22.035 3.6% -22.21(1) 2.8% -22.421 1.9% -22.860
36 4 -7.93(3) 6.0% -8.127 3.7% -8.17(1) 3.2% -8.173 3.2% -8.440
36 8 -4.390(2) 0.9% -4.302 2.9% -4.400(1) 0.7% -4.355 1.7% -4.430

Open Boundary Conditions

12 0 -7.204(1) 1.3% -7.185 1.5% -7.274(1) 0.3% -7.265 0.4% -7.296
12 4 -3.748(1) 4.0% -3.787 3.0% -3.887(1) 0.5% -3.894 0.3% -3.905
12 8 -2.847(2) 4.6% -2.920 2.2% -2.971(1) 0.4% -2.981 0.1% -2.984
24 0 -14.593(1) 2.2% -14.609 2.1% -14.767(1) 1.1% -14.838 0.6% -14.926
24 4 -6.32(1) 7.8% -6.543 4.5% -6.687(1) 2.4% -6.803 0.7% -6.851
24 8 -4.287(2) 6.6% -4.414 3.8% -4.498(2) 2.0% -4.576 0.3% -4.590
36 0 -21.978(2) 2.6% -22.035 2.3% -22.260(2) 1.3% -22.421 0.6% -22.562
36 4 -8.83(3) 9.1% -9.323 4.0% -9.36(1) 3.6% -9.625 0.9% -9.713
36 8 -5.660(2) 7.3% -5.873 3.8% -5.934(3) 2.8% -6.078 0.4% -6.104

d.o.f 8 18 16 32

Monte Carlo optimization, and we have used these to con-
struct H and S. For numerical stability, it is important
to monitor the change in the variational parameters and
reject extremely large changes during a single iteration.23

For CPS, this can be achieved by adding a dynamically
adjusted diagonal shift to H that penalizes large changes
away from Cµ: δH00 = 0, δHii > 0. Using this sweep
algorithm, we find that the variational energy of the CPS
converges (within statistical error) in less than 5 sweeps.

To obtain the numbers in Tables I and II, we ran the
linear optimization routine for each system through 3 or
4 sweeps, after which the energy stopped decreasing and
instead fluctuated within a small range of values. We
chose one wavefunction (set of correlators) from the final

sweep and calculated the energy and variance reported in
the tables using a larger number of Monte Carlo samples
than we used during the optimization procedure.

Results

Table I shows the optimized energies obtained for the
2D square Heisenberg model. This model tests the ability
of CPS to describe two-dimensional correlations. When
open boundary conditions are used, the system is not
translation invariant and requires the kind of general pa-
rameterization of the CPS emphasized here rather than
the more restricted forms used by Huse and Elser.10
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The nearest-neighbor 2-site CPS (CPS[2]) has only
four variational parameters per site and gives errors in
the range of 3–5% for open boundary conditions and 1–
3% for periodic boundary conditions. The error is rapidly
reduced by increasing the correlator size. For example,
for the 8×8 periodic model, going from pair to 2×2 to
3×3 plaquettes, the error goes from 3.1% to 1.8% to
0.9%. The rapid convergence of the error with the corre-
lator size is consistent with the results of Mezzacapo et

al. for hardcore boson systems with periodic boundary
conditions.13

As discussed earlier, CPS with local correlators like
those used in Table I satisfy an area law, which allows
them to accurately simulate systems with a finite corre-
lation length. However, the 2D Heisenberg model is gap-
less with long-range correlations, so we expect the error
to increase as the size of the lattice increases. Nonethe-
less, the energetic error of the CPS wave function with a
fixed correlator size grows quite slowly as the lattice size
is increased. This is not true of MPS, in which the num-
ber of variational parameters per site required to achieve
a given accuracy grows rapidly with the width of a 2D
system.

We performed a series of DMRG calculations for the
Heisenberg model on the lattices in Table I with a range
of values of m using ALPS.21 The variational objects in
the DMRG are m×m matrices. For periodic boundary
conditions, m ≈ 35, 250, and 750 are required for 1 per-
cent accuracy on the 4×4, 6×6, and 8×8 lattices respec-
tively. The latter calculation, which utilizes about 1.1
million variational parameters per site (neglecting sym-
metry and conservation of quantum numbers), is to be
contrasted with the much more compact description us-
ing the CPS with 3×3 correlators, which corresponds to
just 512 parameters per site.

The spinless 1D Hubbard model with periodic bound-
ary conditions has nontrivial fermion correlations and
cannot be mapped onto a local spin model. Conse-
quently, this model tests the ability of the CPS to capture
fermion correlations. In Table II we compare 3-site and 4-
site nearest-neighbor CPS energies (CPS[3] and CPS[4])
with DMRG calculations for m = 3 and m = 4 renor-
malised states. DMRG calculations were carried out us-
ing ALPS.21 For open boundary conditions, the error
in the CPS energy is smallest in the noninteracting sys-
tem and largest for an intermediate interaction strength
(U = 4). For periodic boundary conditions, the CPS[4]
errors range from less than 1% for the U=8 case to ap-
proximately 3% for the free fermion system — a difficult
limit for a locally entangled state. The DMRG energies
follow the same trends.

To make a meaningful comparison with the DMRG
results, we also show the approximate number of vari-
ational degrees of freedom per site in each ansatz. A
DMRG[m] wave function has O(2m2L) degrees of free-
dom (2 m×m matrices at each site) whereas the CPS[n]
wave function has O(2nL) degrees of freedom (an n-site
correlator at each site). As a result, the CPS[4] wave

function has a similar complexity to the DMRG[3] state.
Depending on the boundary conditions and the length of
the lattice, the exact number of degrees of freedom may
be less than this estimate. For instance, when L = 12 for
an open chain, the DMRG[3] wave function has about
14.7 parameters per site and the CPS[4] wave function
has 12. Comparing the CPS and DMRG calculations
with similar numbers of variational parameters, we see
that the CPS energies are indeed very competitive, es-
pecially for periodic boundary conditions, where a CPS
includes direct correlations between the ends of the chain.
Minimizing the CPS energy is a nonlinear optimiza-

tion problem and the sweep algorithm may not converge
to the global minimum of the variational energy. We
have repeated the optimization for different initial wave
functions to avoid local minima. The DMRG algorithm
can also converge to a local minimum for m = 3 or 4.
We repeated each of these DMRG calculation 100 times
with the same input and reported the lowest energy ob-
tained in Table II. Although convergence to local min-
ima is possible in both CPS and DMRG calculations, we
believe the results reported in Tables I and II indicate
the competitive accuracy of CPS as a general variational
method.

V. CONCLUSION

In this paper, we evaluated correlator product states
as a route to describing strongly correlated wave func-
tions in any dimension. Our preliminary numerical stud-
ies indicate that CPS can capture both nontrivial fermion
correlations and two-dimensional correlations. Together
with the analysis showing the connections between CPS
and many interesting quantum states, this supports the
intriguing possibility that CPS are sufficiently flexible to
systematically approximate general strongly correlated
spin and fermion problems in two or more dimensions.
Nonetheless, many questions remain to be answered.

For example, how well do CPS reproduce correlation
functions? While properties are harder to obtain ac-
curately than energies in variational calculations, our
view is that so long as successive CPS[n] calculations
form a sufficiently rapidly convergent approximation to
the quantum state of interest, then accurate approxima-
tions to correlation functions can be constructed, as in
the case of DMRG calculations. Detailed investigations
of such questions and the analysis of more complex sys-
tems like the full Hubbard model or the t-J model will
require more sophisticated numerical treatments and al-
ternative numerical techniques such as deterministic eval-
uation methods. We are currently exploring these areas.
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and Elser to our attention, T. Nishino for pointing out
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