Low Complexity Code Design for Lossless and
Near-Lossless Side Information Source Codes*

Qian Zhao Michelle Effros

Abstract

We consider instantaneous side information source code (SISC) design. In
the SISC configuration, the encoder describes source X to the decoder; the
decoder uses this description and side information Y (which is not available at
the encoder) to reconstruct X. Prior work on lossless and near-lossless SISC
design demonstrates that globally optimal design is NP-hard. In this paper,
we introduce a family of polynomial complexity code design algorithms that
approximates the optimal solution for lossless and near-lossless SISCs. The
algorithms may be used to design both Huffman and arithmetic SISCs for an
arbitrary probability mass function p(z,y). Experimental results comparing the
resulting performances to each other and to the theoretical limit are included.

I Introduction

A side information source code (SISC) is a compression algorithm in which the decoder
can use side information not available to the encoder. SISCs are useful, for example,
in sensor networks, where one sensor can use its own sensory input in decoding the
message from another sensor. An SISC comprises an encoder v : X — {0,1}* and
a decoder y~! : {0,1}* x ¥ — X. Suppose that X x Y is finite and (X,Y) €
X x Y has joint, memoryless probability mass function (pmf) p(z,y). Let (7, v~ 1) be
instantaneous; then 7! uses only the first |y(z,)| bits of y(x1)v(z2) - . . to reconstruct
#,. The probability of decoding error is P. = Pr(y™'(y(X),Y) # X). In lossless
SISCs, P. = 0; in near-lossless SISCs, P, is a tiny positive value.

Prior work on SISCs includes sub-optimal [1, 2, 3, 4, 5] and optimal [6, 7, 8] design
algorithms. While the encoding and decoding complexities of optimal SISCs are
low, optimal Huffman SISC design is NP-hard [9]. Optimal Huffman multiple access
source code (MASC) design is also NP-hard by Lemma 1 in the Appendix. Optimal
arithmetic SISC and MASC design seems to have similar complexity problems. We
therefore turn our attention to low complexity code design. Building on [8], we
investigate polynomial time algorithms for lossless and near-lossless SISC design.

*Q. Zhao (qianz@caltech.edu) and M. Effros (effros@caltech.edu) are with the Dept. of Electrical
Engineering, MC 136-93, California Institute of Technology, Pasadena, CA 91125. This material is
based upon work supported by NSF Award No. CCR-9909026 and CCR-0220039 and by Caltech’s
Lee Center for Advanced Networking.

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

Section II treats Alon and Orlitsky’s elegant chromatic entropy bound on opti-
mal SISC rates [2]; we show that the underlying code construction is NP-hard and
therefore is not a viable alternative for sub-optimal code design. Section III intro-
duces a constrained SISC design problem and its polynomial-time optimal solution.
Section IV describes a family of search strategies for the unconstrained problem built
from the design algorithm for the constrained problem. Section V contains experi-
mental results comparing the achievable rates of different low complexity SISC design
algorithms with the optimal solution. Section VI gives a brief summary of results.

II Obtaining Chromatic Entropy is NP-Hard

Since design of optimal lossless SISCs [9] and MASCs (Lemma 1 in the Appendix) is
NP-hard, we consider sub-optimal alternatives. The design used to bound the optimal
SISC rate in [2] seems an attractive alternative. We next consider its complexity.

Associate with each p(z,y) on X x Y a graph G = (X, Ex). Distinct vertices
z,7' € X are connected if and only if p(z, y)p(z’,y) > 0 for some y € Y. Code 7x
is valid if and only if for every edge (z,%') € Ex, {yx(z),vx(a')} satisfies the prefix
condition; a valid code is a lossless instantaneous SISC [8].

A legitimate coloring c colors the vertices of G so that no two connected vertices
have the same color. The entropy of ¢ is H[c(X)] = — Y5 Plc™'(8)]log Plc"*(8)],
where ¢~1(3) describes all symbols with color 8 and P[A] = Z(z’y)e axy P, 9). The
chromatic entropy is H, (G, P) = min H[¢(X)] (the minimum is taken over legitimate
colorings). By [2, Theorem 2], the optimal rate L for an SISC on p(z,y) satisfies

H,(G, P) —log[H,(G, P) + 1] —loge < L < H,(G,P) + 1.

We prove that calculating H, (G, P) is NP-hard by showing that the H, deci-
sion problem is NP-complete. The H, decision problem inputs graph G(V,E) and
marginal pmf P and outputs the answer to “Is H,(G, P) < log,37?” The proof of
Theorem 1 appears in the Appendix.

Theorem 1 H, is NP-complete.

III Constrained SISC Design Algorithms

By [6, 7, 8], optimal SISC design is equivalent to optimal partition design followed
by optimal matched code design. A partition P is a tree structure describing prefix
relationships for an SISC’s descriptions of all z € X. Thus z and z’ sit at the same
node in P if they have identical descriptions, and the node for z is an ancestor of the
node for ' in P if the description of z is a proper prefix of that of z’. A matched code
for P is an SISC with the prefix relationships described by P. Optimal matched code
design for P involves designing optimal entropy codes (e.g., Huffman or arithmetic
codes) on the children of each internal node in P. We use R(P) to denote the expected
rate achieved by the optimal matched code for P. Optimal matched code design
requires only polynomial complexity, so optimal partition design is NP-hard 8].

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

Partition P yields an instantaneous SISC if and only if p(z, y)p(z', y) > 0 for some
z,2' € X and y € Y implies the description of z is not a proper prefix of the descrip-
tion of z'. The above instantaneous SISC is lossless if and only if p(z, y)p(z’,y) > 0
for some z,z' € X and y € Y also implies that the descriptions of z and z' are not
identical. Given a partition P satisfying the first property but not the second, the op-
timal decoder is the MAP decoder y~*(vy(x),y) = arg maxyeg(z) (', y), where G(x)
is the node of P containing z. The resulting error probability is P.(P) = Y _gcp Pe(G),
where for any node G € P, P.(G) = 3_) [>seq P(x,y) — maxqeg p(z, y)].

Given the high complexity of optimal partition design, we temporarily restrict our
attention to defining and solving a constrained partition design problem.

Order alphabet X as @ = {z),...,zn}, where N = |X| and ¢ < j implies z;
precedes z; in the chosen order. An order-constrained partition for O is any P such
that a depth-first search [10] of P can describe X in order O. Since partitions don’t
specify the order of symbols in a node or siblings in the tree and since a depth-first
search doesn’t preserve the structure of P, many partitions can give the same order
and many orders can come from the same partition. The optimal order-constrained
partition for order O and constant A > 0is P(O, A) = arg minp J,(P), where Jy\(P) =
R(P)+AP.(P) and the minimum is taken over partitions with order O. The A-optimal
order is @*()\) = arg ming Jx(P(O, A)). We control P, by varying A.

We focus on near-lossless SISC design in the following descriptions. Since lossless
and near-lossless SISC design differ only in the prefix property, extension to lossless
SISC design is straightforward.

Theorem 2 The worst case complezity in constructing the optimal order-constrained
partition and matched code for a given order {z1,...,zn} is O(N?).

Proof: Fix A, and let G[i, k] = P({xi,...,zx}, A), 7[i, k] = R(G[i, k]), and e[i, k] =
P.(G[i,k]). We use dynamic programming to find G[i,k] forall 1 < k—¢ < N —i.
(Note that G[i,4] = (z;) and 7[i,4] = e[i, 4] = 0 for all ¢.)

Let rm[i, 4, k] and en[i, j, k] denote the rate and error probability resulting from
combining G[i, j] with G[j + 1, k] into G[i, k] using a type-m combination, m = 1,2.
When m = 1, Gli, k] comprises an empty root with children G, j] and G[j + 1, k];
thus e;[s, 4, k] = e[i, j] + e[+ 1, k], and

rili i k] = rli,j] +rlj + 1, k] + P[i, k] in Huffman coding,
WD KL= rfi, 5] + rlj + 1, k] + P[i, k|H(P[i,]/PJi,k]) in arithmetic coding.

where P[i, j] = ZZ:,‘I’X(W) and H(p) = —plogp — (1 — p)log(1 — p). When m = 2,
we build G[i, k] by combining one of G[i, j] and G[j + 1, k] with the root of the other.
Let R(G) be the root of G, C(G) be the children of R(G), and define s[i, j, k] as

i rfi, 7] = 0,7[j + 1,] = 0 and (Gli, 5] UGY + 1,k]) = R(Gi, k)
if 7[4, 5] = 0,7[j + 1, k] > 0 and G[:, j] can join R(G[j + 1, k])
if 7{4, 5] > 0,7[j + 1,k] = 0 and G[j + 1, k] can join R(G[3, j])
G[i, 7] and G[j + 1, k] can’t be joined by type-2 combination,

s, 4, k] =

W -=o

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

where G, G’ can be joined if the resulting partition is valid. Then

(72[i7j7 k]7 62[ia j7 k])

(0, P.(Gli,51UG[5+1,k)) if s[4, j,k] =0
(r[j + 1,k], P.(G[i, i UR(G + 1, k])) + P(C(Gj + 1,k])) if s[i,j,k] =1
(rli, 5], P.(R(G[i,51) UGli +1,k]) + Pe(C(G5 41))) if s[4, j, k] = 2
(00, ©00) if s, j, k] = 3.

Let m* = m*[i,j,k] = argminme(1,2){rmli,J, k] + Aem[i, j,kl} be the optimizing
method and j* = j*[i, k] = argminjeiit1,..k—13{"m=[3,5, k] + Aem+[t, 7, k]} the op-
timizing index. Then r[i,k] = Tm[i,5* k], eli, k] = em[s,5* k], and Gli, k] is the
group described by the type-m* combination of G[7, j*] and G [7* + 1, k).

When the procedure is complete, G[1, N] is the optimal order-constrained partition
on order {z1,...,zx}; 7[1, N] and e[1, N] are its expected rate and error probability.

The number of operations required to calculate 7, [¢, j, k] and en[4, j, k] dominates
the complexity of this algorithm. In calculating s[i, j, k], we need to check whether
subsets of G[i,j] and G[j + 1, k] can be joined, which requires at most min{j — i +
1,k — j} < (k — i)/2 operations (previous join-ability results are stored). Thus the
worst case complexity is 30" Z;Vz_zl Zivzjﬂ(k —1)/2 = O(N*Y). 0

IV Fast SISC Design

Since order-constrained partition optimization requires only polynomial time, optimal
order design is NP-hard. We tackle this combinatorial optimization problem using
simulated annealing (SA) and iterative descent techniques. In the discussion that
follows, we use R(O) = R(P(O, \)) for some fixed A > 0.

Simulated Annealing (SA)
SA [11, 12] attempts to find an optimal solution while avoiding local optima. Applying
SA to optimal order design, gives the following algorithm.

1. Initialize order O and temperature 7.
2. While the outer loop stopping criterion is not satisfied, do the following.

a) While the inner loop stopping criterion is not satisfied, do the following.

i) Choose a random neighbor O’ of O.
ii) If R(O’') < R(0), set O = O".
iii) If R(O') > R(O), set O = (¥ with probability e~ (”(@)-RON/T,
b) Set T = pT (0 < p < 1 to reduce the temperature).

3. Return the best order.

The choices of the initial order and temperature, neighbor definitions, stopping
criteria and parameter p all affect the speed of convergence and final solution of the
SA algorithm. We choose the initial order at random and set the initial temperature

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

T, to make the initial distribution on orders uniform. We set p € [0.9,0.99] and
use the symmetric neighbor relation (switching the positions of two randomly chosen
elements in ©) that achieves the best performance in our tests. We stop the inner
loop if the rate has not decreased for L;, orders in this inner loop and stop the outer
loop if the rate has not decreased for L, outer loop iterations.

Descent Neighbor (DN)

Tterative descent algorithms are a degenerate special case of SA algorithms. In this
case, we define an asymmetrical neighbor (descent neighbor) relationship that guaran-
tees R(O') < R(O) for all neighbors O’ of O. We guarantee this property by defining
the neighbors of O to be all orders ¢ for which P(O,) (the optimal partition for
0) is a legitimate order-constrained partition on O'. The basic DN algorithm is:

1. Choose an initial order O at random.
2. While no more than Lpy orders with identical rates have been chosen, do:

i) Choose a random descent neighbor O’ of O.
ii) If R(O') < R(O), set O = 0"
iii) If R(O') = R(0O), set O = O with probability p,.
iv) Set po = papa (0 < pa < 1).
3. Return R(O).

Given a complexity budget equivalent to testing C orders, we can combat local min-
imality problems by running the DN algorithm k times with k distinct randomly
chosen initial orders. We stop the algorithm once C orders have been tested and
output the best order observed over all of the experiments.

Mixing SA with DN
Various mixtures of SA with DN are also possible. For example:

1. SA + DN: Each time we reach step b) of SA, we run DN starting from O.
(Note: In the inner loop, we stop the SA chain if the rate has not decreased for Lgy
orders in that SA chain and stop the DN chain if the rate has not decreased for Lpy
orders in that DN chain. We stop the outer loop if the rate has not decreased over
Ly outer loops.)

2. DN-merged-in-SA: Change step i) of SA to: choose a random symmetric
neighbor of @ with probability P;, choose a random descent neighbor of O with
probability 1 — P;.

V Experimental Results

We test both lossless and near-lossless SISCs’ performance using the dynamic pro-
gramming algorithm from Section IV. In this paper, we only present lossless SISC’s
results due to space constraint.

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

For lossless SISCs, we use the following sources. Let Gy, = (X, Ex) be a random
graph with N vertices; each pair of vertices is connected with probability ¢ (inde-
pendent of all other pairs). We choose a distribution P[-] on the underlying size-N
alphabet by drawing us, ..., uy uniformly on (0,1) and then normalizing.!

We test the fast algorlthms on Gy, and P using N € {8,16, 32,64,128,256} and
q € {0.1,0.3,0.5,0.7,0.9}. We show the performance of our algorithm as a function
of the number C of orders tested. Since the algorithm involves random order choices,
we run each experiment K times. We measure the performance of the algorithm both
by the fraction of trials in which the algorithm achieves the target rate (the globally
optimal rate when N is small or the best rate from N 4 randomly chosen orders when
N is large) and by the average (over trials) of the code’s rate at the end of a trial.

In Figure 1, we present the experimental results as a function of C for N € {16, 64}
and ¢ € {0.3, 0.7} when a set of generally good parameters is used for each of the
algorithms. Table 1 compares how close the fast algorithm’s results come to the
optimum. Table 2 gives the best rates the fast algorithms obtained for N = 256 and
g € {0.3,0.5,0.7}. Table 3 summarizes the parameters used in Figure 1 and Table 2.

From these figures and tables, we have the following observations:

1. SA is the most successful at avoiding local minima, but its rate of convergence
is slow. When C is N3, the average rate is close to the target rate, but the
probability of hitting the target rate is still very low for N > 16.

2. The rate of DN decreases much faster than that of SA when the complexity
is low. If the DN algorithm is run only once, it usually gets stuck with a
local minimum. By running DN multiple times, we avoid this problem in all of
our experiments and achieve a much better performance than SA. At C =N 3
multiple-run DN achieves performances very close to the optimum. For example,
for N = 16, at C = N3, the probability of hitting the optimal solution is at
least 0.97 and the average rate differs from the optimal rate by at most 0.02%.
Even at C = N? and C = 2N?, the average rates differ from the optimal rate
by at most 2% and 1% respectively.

3. SA+DN and DN-merged-in-SA perform slightly better than SA but worse than
DN for N = 16 and ¢ = 0.3,0.5; they perform better than DN for N = 16 and
g = 0.7. For N = 64 and C < 2N?, DN-merged-in-SA achieves performance
very close to that of DN and both are much better than SA + DN’s; but
as the complexity further increases, DN-merged-in-SA outperforms the others,
especially in terms of the probability of hitting the target rate for ¢ = 0.5,0.7.

VI Summary

We treat lossless and near-lossless SISC design for arbitrary source pmf p(z,y). We
present several algorithms for low complexity sub-optimal design. In our experi-

1By [2], if pmfs p and p' satisfy (1) p(z,y) = 0 if and only if p/(z,y) = 0 and (2) 3°, p(z,y) =
Z p'(z,y) for all z, then the optimal lossless SISCs and expected performances for the two pmfs
are identical. Therefore, we specify only P[z] for all z and not p(z,y) for all (z,y).

TEEE ':a

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE C(S)(%/[CPI%¥%R

Table 1: Closeness to the optimal solution. Ratio = Rgost/Ropt, R fast = average rate
of the fast algorithm over K trials, Prob. = probability of hitting the target rate.

N =16 g=0.3 qg=0.5 g=0.7
Prob. | Ratio | Prob. | Ratio | Prob. | Ratio
C=N? |0.11 1.0701 | 0.02 | 1.0874 | 0.03 | 1.0488
SA C=2N?|0.16 |1.0455|0.03 |1.0610{0.06 | 1.0311
C=N?> |079 |1.0013|0.30 |1.0147 |0.58 | 1.0038
C=N? [0.54 [1.0063]0.20 |1.0222|0.19 | 1.0094
DN C=2N?%|0.71 1.0022 | 0.36 | 1.0121 | 0.40 | 1.0041
C=N3 |1 1 0.97 |1.0002 | 0.99 | 1.000
C=N? |0.31 1.0261 | 0.12 [1.0433 | 0.19 | 1.0173
SA + DN C =2N?|0.57 |1.0084 | 0.21 1.0248 | 0.46 | 1.0055
C=N?% |098 |1 0.83 |1.0015 {1 1
C=N? |0.27 [1.0394{0.06 |1.0460 | 0.31 1.0154
DN-merged-in-SA | C = 2N? [0.37 |1.0213 | 0.11 1.0351 | 0.53 | 1.0050
C=N3 |098 |1 0.67 | 1.0050 099 |1

Table 2: Achievable rates for N = 256, complexity limit C = N2 = 65536.

N =256 q SA DN | SA 4+ DN | DN-merged-in-SA
Huffman Rate | 0.3 | 5.00656 | 4.43684 | 4.38234 4.30231
= 7.75968 0.5 | 5.57978 | 5.09944 | 5.06005 4.96012
0.7 | 6.16025 | 5.61802 | 5.59836 5.53641

ments, the multiple-run DN, SA+DN, and DN-merged-in-SA algorithms yield good
performance. The latter two are better suited for large values of N and C.

VII Appendix

Optimal MASC design is NP-hard
In an MASC, X and Y are independently described by two encoders; the decoder
reconstructs X and Y from the pair of descriptions.

Lemma 1 For a fized partition Py on Y, finding the partition Px on X that opti-
mizes the MASC given Py is NP-hard.

Proof: Given a partition Py on), partition Px yields a lossless, instantaneous MASC
if and only if for any y,7’ € Y such that v (y) is a prefix of vy (y'), the set {7(z) :
€ X A(p(z,y) >0V p(z,y') > 0)} is prefix-free [6, 8]. Thus given Py, we connect
vertices z,z' in G(X, Ex) if and only if 7,2’ € {z € X : p(z,y) > 0 or p(z,y') > 0}
for some y,y' € Y such that vy (y) is a prefix of vy (y'). Thus optimal MASC design

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

]FFF

COMPUTER
SOCIETY

0.9 Eosf
[=
-§’°A5 8.0.3— .
]
[=3 1
+3 0. oo e km—m e PR
3 . '
0. -go.s» \ I' a
g) 0 r
.5 0 ovEr e
= & '
£L 0. EQ" Y.l j—
.So = 1
5" ..60,3— s ;
Qo. 502 L o
n'm [<])
. a o = ° 0 o
- ol 1 .) .
1 2 3 4 5 6
C x10*
25 45-
2,41[[
23}
oL
2.2f
FX13
2
@ 2
o
19
18
o
e R
-
. !) 28 L .) . . .
3500 4000 4500 o 1 2 3 4 5 6
C x 10
(c) N=64,¢=0.3
’[‘ . o > 1r [, Ao A
= === - . !
0.9 -8~ € oo} "
c — [=] '
gosr L# Dosl (i
-
5 [% !
o7 0.7} -
8. -) !
6 = o6l —-—
o =3 |
g’os» 'y ° o 73
= 0 BN o5
gm ’ © £
- 7 Eoar
ga.a- -0 Lot
o [e]
Qozr | a02F
o-
&01- i [
e a ot
. I 1 1 1 1 1 1 i J
500 1000 1500 2000 2500 3000 3500 4000 4500
asp — DN
a4l o SA 5,4‘;
sl -a- SA+DN sal
-*— DN-merged-in—-SA
32t
—— Target Rate sr
aaf
2 3
]
ocC 29
|
28l
i
27f,
\
261\ ©° o. °
- - o
2t s S ~ S ~ S SN a) o °
24 . . L . : L . . , 28 , . . = -
500 1000 1500 2000 2500 3000 3500 4000 4500 0 1 2 3 4 5 6 7
C x10*

(b) N=16,¢=0.7

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

(d) N=64,¢=07

Figure 1: Performance of four fast SISC design algorithms.

TEEE ':a

COMPUTER
SOCIETY

Table 3: Good parameters

SA DN SA + DN | DN-merged-in-SA

Ly,=14 Lpy =16 Lga=4 L,=14

N =16 (K =100) | Ly =16 Pa=10 Lpn =16 Loyt =16
C = 4096 T, = 0.01 Low = 4 P, =07

T, = 0.01 T, = 0.01

N=64 (K=10) | Ly» =256 | Loy = 1024 | Lgs = 256 Lin = 256

N =256 (K=1) | Loy = 256 Pa=0 Lpy =1024 Loy = 256
C = 65536 T, =0.01 Loyt = 256 P, =0.7

T, =0.01 T, =10.01

given Py is the same as optimal SISC design for graph G (X, Ex), which is NP-hard. O

Proof of Theorem 1: H, is NP-Complete.
Proof: Given any coloring on G as a guess, we can always verify in polynomial time
if this coloring has an entropy < log, 3. Thus H, e NP.

We next show that there exists a polynomial reduction of 3C to H,. (Here 3C
denotes the problem “is G colorable with 3 colors?” and is NP-complete [10].) The
input I of 3C is graph G'(V’, E'); we give a polynomial algorithm to construct input
f(I) of H, from I; then we show that G’ is 3-colorable if and only if H, (G, P) < log, 3.

Construct G(V, E) as: V = V' U {v;,vp,v3} = {v1, -, Vi, U1, 00, v} (M = |V)),
E = E" U {(v1,v2), (v1,v3), (v2,v3)}, i.e. vy, vy, v3 form a triangle. Construct P as:
P(v;) =1/3, P(vy) =1/3, P(vs3) =1/3 - 1/M, and P(vj) =1/M?*for j=1,..., M.

Assume G’ is 3-colorable, then G is also 3-colorable. Thus H,(G, P) <log, 3.

Next, assume G’ is K-colorable with K > 3 but not 3-colorable. Then M >4
and G is also K-colorable but not 3-colorable. Let kij,j =1,2,..., K be the number
of vertices in G’ that are colored color ¢;j, and without loss of generality assume
ki > ks > ... > kg. Then a simple minimization gives:

k1 ka1 ks 11 5 [k
HX(G’P)—f(W+§) +f<w+§) +f(W+§_M> +Zf<ﬁ ’
where f(p) = —plogp. The minimal value of H, (G, P) is achieved when the k;’s take

their boundary values: k; = M — (K — 1), k; = 1(2 < j < K). Thus we have
H,(G, P)

min
(G,P) : K—colorable
M-K+1 1 1 1 1 1 1 1
‘f(TJ“%) +f(w+§) +f<W+§"M'> +(K*3)f(m)
Since (a + b) log(a + b) > aloga + blogb, we have
H,(G, P)

min
(G,P) : 4-colorable

min min

H,(G,P) =
K24(g,P) : k-colorable

Proceedings of the Data Compression Conference (DCC’03)
1068-0314/03 $17.00 © 2003 IEEE

]FFF

COMPUTER
SOCIETY

M-3 1 1 1 1 1 1 1
- f(w%) +1(3m+3) +f(zﬁ+§*ﬂ) +1 (3) %
It can be shown that % > 0 and limp;_, o dzf;}f’[) = (, thus dif;?(gM—) < 0.
Since %Ml] M=4 < 0, we have %ﬂl < 0 for M > 4. It can be verified that
limps 00 Hy(M) = log, 3, giving Hy(M) > log, 3 for M > 3.
Thus G’ is 3-colorable if and only if H, (G, P) < log, 3. a

References

[1] H. S. Witsenhausen. The zero-error side information problem and chromatic numbers.
IEEE Transactions on Information Theory, 22:592-593, 1976.

[2] N. Alon and A. Orlitsky. Source coding and graph entropies. IEEE Transactions on
Information Theory, 42(5):1329-1339, September 1996.

[3] A.Kh. Al Jabri and S. Al-Issa. Zero-error codes for correlated information sources. In
Proceedings of Cryptography, pages 17-22, Cirencester,UK, December 1997.

[4] S.S. Pradhan and K. Ramchandran. Distributed source coding using syndromes (DIS-
CUS) design and construction. In Proceedings of the Data Compression Conference,
pages 158-167, Snowbird, UT, March 1999.

[5] Y. Yan and T. Berger. On instantaneous codes for zero-error coding of two correlated
sources. In Proceedings of the IEEE International Symposium on Information Theory,
page 344, Sorrento, Italy, June 2000.

[6] Q. Zhao and M. Effros. Optimal code design for lossless and near-lossless source coding
in multiple access networks. In Proceedings of the Data Compression Conference, pages
263-272, Snowbird, UT, March 2001. IEEE.

[7] Q. Zhao and M. Effros. Lossless source coding for multiple access networks. In Proceed-
ings of the IEEE International Symposium on Information Theory, page 285, Wash-
ington, DC, June 2001.

[8] Q. Zhao and M. Effros. Lossless and near lossless source coding for multiple access
networks. IEEE Transactions on Information Theory, January 2003.

[9] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose. Minimum redundancy zero-error
source coding with side information. In Proceedings of the IEEE International Sympo-
stum on Information Theory, page 282, Washington DC, USA, June 2001.

(10] S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, May 1983.

(12] J. Vaisey and A. Gersho. Simulated annealing and codebook design. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages
1176-1179, April 1988.

]FFF

Proceedings of the Data Compression Conference (DCC’03) C(S)(%/[CPI%¥%R

1068-0314/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

