
PPM Performance with BWT Complexity:

A New Method for Lossless Data Compression �

Michelle E�ros

California Institute of Technology

e�ros@caltech.edu

Abstract

This work combines a new fast context-search algorithm with the lossless
source coding models of PPM to achieve a lossless data compression algorithm
with the linear context-search complexity and memory of BWT and Ziv-Lempel
codes and the compression performance of PPM-based algorithms. Both se-
quential and nonsequential encoding are considered. The proposed algorithm
yields an average rate of 2.27 bits per character (bpc) on the Calgary corpus,
comparing favorably to the 2.33 and 2.34 bpc of PPM5 and PPM� and the 2.43
bpc of BW94 but not matching the 2.12 bpc of PPMZ9, which, at the time of
this publication, gives the greatest compression of all algorithms reported on
the Calgary corpus results page. The proposed algorithm gives an average rate
of 2.14 bpc on the Canterbury corpus. The Canterbury corpus web page gives
average rates of 1.99 bpc for PPMZ9, 2.11 bpc for PPM5, 2.15 bpc for PPM7,
and 2.23 bpc for BZIP2 (a BWT-based code) on the same data set.

I Introduction

The Burrows Wheeler Transform (BWT) [1] is a reversible sequence transformation
that is becoming increasingly popular for lossless data compression. The BWT rear-
ranges the symbols of a data sequence in order to group together all symbols that share
the same (unbounded) history or \context." Intuitively, this operation is achieved by
forming a table in which each row is a distinct cyclic shift of the original data string.
The rows are then ordered lexicographically. The BWT outputs the last character of
each row (which is the character that precedes the �rst character of the given cyclic
shift in the original data string). For a �nite memory source, this ordering groups
together all symbols with the same conditional distribution and leads to a family of
low complexity universal lossless source codes [2, 3].

While the best of the universal codes described in [2, 3] converges to the optimal
performance at a rate within a constant factor the optimum, the performance of these
codes on �nite sequences from sources such as text fails to meet the performance of

�M. E�ros is with the Department of Electrical Engineering (MC 136-93) at the California Insti-
tute of Technology, Pasadena, CA 91125. This material is based upon work partially supported by
NSF Award No. CCR-9909026.

1

some competing algorithms [4]. This failure stems in part from the fact that in
grouping together all symbols with the same context, the BWT makes the context
information inaccessible to the decoder.

Originally, the work described in this paper set out to modify the BWT-based
codes of [2, 3, 4] in order to make the context information accessible to the decoder.
What evolved, however, was e�ectively a variation on the Prediction by Partial Map-
pings (PPM) algorithms of [5, 6]. Thus the work presented here can be viewed either
as a modi�cation of the BWT to include context information or as a modi�cation
of PPM to allow for the computational e�ciency of the BWT. The description that
follows takes the latter viewpoint.

The PPM algorithm and its descendants are extremely e�ective techniques for
sequential lossless source coding. In tests on data sets such as the Calgary and
Canterbury corpora, the performance of PPM codes consistently meets or exceeds the
performance of a wide array of algorithms, including techniques based on the BWT
and Ziv-Lempel style algorithms such as LZ77 [7], LZ78 [8], and their descendants.

Yet despite their excellent performance, PPM codes are far less commonly applied
than algorithms like LZ77 and LZ78. The Ziv-Lempel codes are favored over PPM-
based codes for their relative e�ciencies in memory and computational complexity [9].
Straightforward implementations of some PPM algorithms require O(n2) computa-
tional complexity and memory to code a data sequence of length n. While implemen-
tations requiring only O(n) memory have been proposed in the literature [6, 10], the
high computational complexity (and encoding time) of PPM algorithms, remains an
impediment for their more widespread use.

This paper introduces a new context-search algorithm. While the proposed algo-
rithm could also be employed in Ziv-Lempel and BWT-based codes, its real distinction
is its applicability within PPM-based codes. The PPM code used is a minor variation
on an existing PPM algorithm [10]. Our code achieves average rates of 2:27 and 2:14
bits per character (bpc), respectively, on the Calgary and Canterbury corpora and
is e�cient in both space and computation. The algorithm uses O(n) memory and
achieves O(n) complexity in its search for the longest matching context for each sym-
bol of a length-n data sequence. The O(n) complexity is a signi�cant improvement
over the worst-case O(n2) complexity of a direct context search. Several variations
on the given approach are presented. The variations include both sequential and
non-sequential encoding techniques and allow the user to trade o� encoder memory,
delay, and computational complexity.

The remainder of the paper is organized as follows. Section II contains a review of
PPM algorithms. The review focuses on PPM� [6] and its exclusion-based variation
from [10]. A short introduction to su�x trees and McCreight's su�x tree construction
algorithm [11] follows in Section III. McCreight's algorithm is used in implementa-
tions of Ziv-Lempel [12] and BWT [1] codes. The algorithm description is followed
by a brief discussion of the di�culties inherent in applying McCreight's algorithm
in PPM-based codes. Section IV describes a new method for combining PPM data
compression with a new su�x-tree algorithm. Section V gives experimental results
and conclusions.

2

II PPM Algorithms

The lossless compression algorithms in the PPM family of codes combine sequential
arithmetic source coding (see, for example, [13], [14], or texts such as [9]) with adaptive
Markov-style data models. Given a probability model p(xn) for symbols x1; : : : ; xn
in some �nite source alphabet X , arithmetic coding guarantees a description length
`n(x

n) such that `n(x
n) < � log p(xn)+ 2 for all possible xn = (x1; : : : ; xn) 2 X n [13].

Thus, given a good source model, arithmetic codes yield excellent lossless source
coding performance.

A simple approach to source modeling is the Markov model approach. For any
�nite integer k, a Markov model of order k conditions the probability of the next
symbol on the previous k symbols. Thus we code symbol xn using the probability
p(xnjx

n�1) = p(xnjx
n�1
n�k), where the string xn�1n�k = (xn�k; xn�k+1; : : : ; xn�1) describes

the \context" of past information on which our estimation of likely future events is
conditioned.

In an adaptive code, the probability estimates are built using information about
the previously coded data stream. Thus the encoder may update its probability
estimates pn(ajs) for all a 2 X and all s 2 X k at each time step n in order to better
re
ect its current knowledge of the source. The subscript n on pn(ajs) here makes
explicit the adaptive nature of the probability estimate; pn(ajs) is the estimate of
probability p(ajs) at time n { just before the nth symbol is coded. The estimate
pn(ajs) is based on the n � 1 previously coded symbols in the data stream. Let
Nn(ajs) denote the number of times that symbol a has followed sequence s 2 X k in
the previous data stream, where Nn(ajs) =

Pn�1
i=k+1 1(x

i
i�k = sa) for each a 2 X . If

the probability model pn(ajs) relies only on the conditional symbol counts fNn(ajs) :
a 2 X ; s 2 X kg and if the decoder can sequentially decipher the information sent to
it, then the decoder can track the changing probability model pn by keeping a tally
of symbol counts identical to the one used at the encoder.

PPM source models generalize adaptive Markov source models by replacing the
single Markov model of �xed order k by a collection of Markov models of varying
orders. For example, given some �nite memory constraint M , the original PPM
algorithm uses Markov models of all orders k 2 f�1; 0; : : : ;Mg, where the order
k = �1 model refers to a �xed uniform distribution on all symbols x 2 X . (Typical
values of M for text compression satisfy M � 6 [5, 15].) PPM uses \escape" events
to combine the prediction probabilities of its M + 1 Markov models. The escape
mechanism is employed on symbols that have not previously been seen in a particular
context. Let Esc denote the escape character, and use Y to denote the modi�ed
alphabet X [fEscg. Use Nn(Escjs) to denote the number of distinct symbols that
have followed context s, which equals the number of times an escape was used in the
given context. PPM builds its probability estimate for symbol a at time n recursively.
It begins by �nding the longest context of the given symbol that has previously
appeared in the data stream. It then uses the escape character to back o� to lower
order models if necessary to �nd a model in which symbol a is not novel in the given
context.

3

More precisely, for each a 2 Y and each k 2 f0; : : : ;Mg let

p(n; k; a) =
Nn(ajx

n�1
n�k)P

b2Y Nn(bjx
n�1
n�k)

;

and de�ne

p(n;�1; a) =
1

jX j
;

where jX j is the size of alphabet X . De�ne K(n) to be the length of the largest
context for symbol n that has previously appeared in the given data stream. For each
a 2 X let k(n; a) be the largest k 2 f0; : : : ; K(n)g such that Nn(ajx

n�1
n�k) > 0. The

initial context index K(n) equals zero if the context of symbol n has not previously
appeared in the data stream; the �nal context index k(n; a) is set to �1 if symbol a
has not previously appeared in the given data string. PPM uses probability model

pn(ajx
n�1) = pn(ajx

n�1
n�K(n)) = p(n; k(n; a); a)

K(n)Y

k=k(n;a)+1

p(n; k; Esc):

This model is ine�cient in its normalization of p(n; k; a) for k(n; a) � k < K(n).
By describing an escape character in model k, the encoder tells the decoder that the
observed symbol satis�es the equation Nn(ajs) = 0. As a result, both the encoder and
the decoder may remove from their low order probability estimates all symbols a 2 X
such that Nn(ajs) > 0. Modifying the normalizing constants accordingly improves
system performance, and thus this modi�cation is assumed in the work that follows.

PPM� [6] modi�es PPM by removing the a priori memory constraint M to allow
for unbounded contexts. Models are kept for all contexts of all lengths that have
previously appeared in the data stream. In choosing its initial context, PPM� uses
the shortest matching deterministic context, where a context is deterministic if the
number of symbols that have previously appeared in that context is exactly equal to
one. If no such matching deterministic context exists, then PPM� uses the longest
matching context instead.

In [10], Bunton considers a collection of variations on PPM�. One of those varia-
tions uses the \update exclusion" mechanism of [15]. The update exclusion method
replaces count Nn(ajs) in the calculation of pn(ajs) with a modi�ed count N 0

n(ajs).
While N increments by one each time symbol a is seen in context s 2 X �, N 0 in-
crements by one only if symbol a is either novel in context s or s is a su�x of some
longer context t 2 X � such that jtj = jsj+ 1 and a is novel in context t.

III Su�x Trees

In the original PPM� algorithm [6], the contexts are stored in a \context trie." In [10],
the contexts are stored in a su�x tree. This paper follows an approach closer to that
of the latter work. A su�x tree for data sequence xn = (x1; x2; : : : ; xn) describes all
su�xes of xn. We denote those su�xes by fsig

n
i=1, where si = xni = (xi; : : : ; xn).

Using � to denote a unique end-of-string character, the su�x tree for a �xed string

4

k
�������

�
��

@
@@

PPPPPPP
a

banana� na
�

k k

��@@ @@��
na �

k
na� �

@@
�na�

��
(a)

k
�������

�
��

@
@@

PPPPPPP
a

b� na
�

k k

��@@ @@��b� na
k

b� nab�

nab�@@��b�
* (b)

Figure 1: (a) A su�x tree for the string banana�. (b) A su�x tree for ananab�, or,
equivalently, a \pre�x tree" for �banana.

xn� is uniquely determined by three properties [11]. (1) Each tree arc may represent
any �nite nonempty string s 2 X �. (2) Each internal tree node except for the root
must have at least two children. (3) The strings on sibling arcs must begin with
di�erent characters. The su�x tree for banana� appears in Figure 1(a).

A su�x tree on a string of length n has n leaves and no more than 2n nodes,
giving a linear storage requirement. Each arc string, described by its start and end
points in the original data sequence, is stored at the node to which the given arc
descends. In the implementation of [11], each node contains a single \sibling" pointer
and a single \descendant" pointer to link it to the rest of the tree.

Su�x trees are very popular data structures for use in lossless codes. In particular,
su�x tree implementations of both Ziv-Lempel style codes (e.g., [12]) and BWT-based
codes [1] appear in the literature. In Ziv-Lempel codes, su�x trees may be used to
�nd longest matches in the previously coded data stream. In fact, the su�x tree
for xn records all matches of all lengths in xn. Each match is an internal node of
the tree. The number of times that the match occurs in xn equals the number of
leaves descending from that node. For example, from the context tree in Figure 1(a)
we learn that the substring \a" appears three times in the data string while the
substrings \ana" and \na" each appear twice.

To understand the relationship between su�x trees and the BWT, suppose that
the tree arcs descending from each node in the tree are ordered alphabetically { with
branch \a" falling to the left of branch \b�" and so on. Assuming this lexicographic
ordering of tree arcs, note that the su�x tree gives a lexicographic ordering of all
su�xes of the string xn. Note further that, given the existence of the end-of-string
symbol, the lexicographic ordering of all su�xes is equivalent to the lexicographic
ordering of all cyclic shifts of the original data stream. As a result, if we modify
the su�x tree of Figure 1(a) by adding the symbol xi�1 to the leaf corresponding to
su�x si = (xi; : : : ; xn), then performing the BWT on xn is equivalent to reading o�
the xi�1 values from left to right through the tree. This similarity to the BWT is
not coincidental. Both PPM� and the BWT rely on the same unbounded contexts in
building probability models for use in adaptive arithmetic coding. The key di�erence
between these two algorithms is that PPM� manages to preserve context information
in a manner that is sequentially available to both encoder and decoder, while the
BWT makes this information inaccessible to the decoder (except through explicit or
implicit context description as in some of the algorithms of [2, 3]).

5

The su�x tree implementation of PPM� given in [10] is closely related to the
context trie approach of [6], and the memory required by both algorithms grows
linearly in n. At time n, the encoder stores both the tree structure associated with all
contexts s1; s2; : : : ; sn�1 and a list of K(n)+1 pointers. These K(n)+1 pointers point
to the nth symbol's contexts of lengths 0; 1; : : : ;K(n), all of which are represented by
either states or \virtual states" in the context tree. While the contexts are su�xes
of each other, there is no natural order to their locations in the context tree.

In [11], McCreight introduces an O(n) complexity technique for su�x tree con-
struction. The O(n) complexity is a huge savings over the O(n2) worst-case complex-
ity of direct tree construction. Unfortunately, McCreight's technique is not directly
applicable to PPM�, as the following discussion illustrates.

In [11], su�x tree construction is performed by adding su�xes to the tree one
by one in order of decreasing length. Thus in the example of Figure 1(a), the su�x
\banana�" would be added to the tree �rst, followed by the su�x \anana�", followed
by the su�x \nana�" and so on. While each subsequent su�x could be added to the
tree by simply starting at the root and searching down for the longest match, the time
required by this straightforward approach is superlinear. The two key observation
used in [11] are:

� Context si di�ers from context si+1 in only its �rst character (si = xisi+1).

� The longest match for si is known in searching for the longest match for si+1.

Together, these two observations imply that if the longest match for si in the previous
data string is xis for some s 2 X �, then the longest match for su�x si+1 must begin
with string s. Combining this observation with an e�cient approach for extending s
to �nd the full match for si+1 yields a linear tree construction algorithm.

The e�ciency of McCreight's su�x tree construction technique results from its use
of information about si�1 in adding su�x si to the tree. An unfortunate consequence
of this approach, however, is that su�x tree construction using McCreight's algorithm
requires access to the complete data string. While the complete data string could be
made available to PPM�'s encoder if we assume a nonsequential code, the decoder
does not have the full data string during su�x tree construction. In fact, the decoder
cannot decode the binary source description without access to at least part of the su�x
tree. As a result of this predicament { that the decoder needs the data sequence to
get the su�x tree and needs the su�x tree to get the data sequence { McCreight's
algorithm cannot be directly applied to PPM�.

IV Algorithm

The algorithm considered here is a memory- and computation-e�cient implementa-
tion of PPM�. Like the implementation of [10], the implementation given here uses
su�x trees for storing and computing the information used in PPM�'s probability
model. Unlike the prior implementation, however, the algorithm given here relies on
a su�x tree of the reversed data stream or, equivalently, a \pre�x tree" for the data

6

stream under consideration. (Note, again, the similarities between this approach and
the BWT approach, where string reversal is often employed prior to performance of
the transform.) A su�x tree for the reversed data string ananab�, which is also a
pre�x tree for the data string �banana, appears in Figure 1(b).

Pre�x trees are useful for the following property. All contexts of a given symbol
are nested subsets of a single branch through the pre�x tree. For example, suppose
that we are constructing a pre�x tree as we code each subsequent symbol of a data
string xn, and suppose that the symbols seen so far are \banana". Then the pre�x
tree available for coding the next symbol is the pre�x tree of Figure 1(b). The
contexts for this symbol are: \a", \na", \ana", \nana", \anana", and \banana". All
of these contexts are represented along the branch whose terminating leaf is labeled
by a * in Figure 1(b). The reversed contexts (\a", \an", \ana", \anan", \anana",
and \ananab") label the partial substrings of this branch. Using this approach, we
can replace the earlier list of context pointers by a single context pointer pointing to
the longest context of interest in coding the nth symbol.

As discussed in the previous section, the use of su�x (or, equivalently, pre�x) trees
in implementing the probability models in PPM� is motivated by their space-e�ciency.
The goal here is to develop a fast su�x tree construction algorithm that can be applied
directly within PPM�. Unfortunately, the order in which PPM� makes the su�xes of
the reversed data string available for addition to the su�x tree is exactly opposite the
order in which strings are added to the su�x tree in McCreight's algorithm. More
speci�cally, in PPM�, symbols become available to the decoder sequentially, where
symbol xi can be decoded only after the context tree based on symbols x1; : : : ; xi�1 has
been constructed. Thus using pi to denote the ith pre�x pi = (x1; : : : ; xi) of string x

n,
PPM� requires an algorithm for adding su�xes (of the reversed data stream) in order
from shortest to longest { that is order p1 = sn = (x1); p2 = sn�1 = (x1; x2); : : : ; pn =
s1 = (x1; : : : ; xn). In contrast, McCreight's algorithm adds the longest su�x �rst
and then follows with shorter and shorter su�xes of that original su�x { giving
order s1; s2; : : : ; sn. The following observations parallel the observations on which
McCreight's algorithm is built.

� Pre�x pi di�ers from pre�x pi�1 by only its last character pi = pi�1xi. Thus
the longest context for symbol xi+1, here denoted by sufi(pi), is at most one
character longer than the longest context for symbol xi and can rely on no
characters prior to those found in the context for xi. More precisely, sufi(pi) =
sufi(pi�1xi) = sufi(sufi�1(pi�1)xi).

� Since we add the pre�xes to the tree in order p1; p2; : : :, the longest match for
pre�x pi�1 is known prior to the search for the longest match for pre�x pi.

A strategy similar to that of [11] exploits these observations to decrease the complexity
associated with searching for the longest context for each subsequent symbol. The
basic idea is to add auxiliary links to the data structure. These links provide \short-
cuts" in the search for the longest match. A description of the algorithm follows.

The tree is initialized to a single node corresponding to the length-0 (empty)
string. The initial tree is labeled T0. The su�x tree is then built up one leaf at a

7

time, by adding one pre�x at each time step. After the (i � 1)th addition, the tree
contains pre�xes p1; p2; : : : ; pi�1 and is called Ti�1. Associated with every node in
the tree except for the root and the most recently added leaf (pi�1) is an array of
\short-cut" pointers. The number of elements in a short-cut array equals the number
of symbols seen so far in the corresponding context. The short-cut pointer at node s
for symbol a points to the tree node corresponding to context sa and is created the
�rst time symbol a appears in context s. (Short-cut pointers are not necessary at the
root since the symbol-a short-cut pointer from the root would always point from the
root to the root's child (if any) labeled by \a".)

At time (i� 1), the algorithm visits sufi�1(pi�1) in order to add the leaf for pre�x
pi�1. Thus the algorithm for step i assumes node sufi�1(pi�1) as its starting point.
At step i, the PPM� encoder describes symbol xi using tree Ti�1 and then adds pre�x
pi to the tree. In making this addition, the algorithm begins at node sufi�1(pi�1),
(which is the longest possible context for symbol xi). If symbol xi has previously
appeared in context sufi�1(pi�1), then sufi�1(pi�1) has a short-cut pointer for symbol
xi. Traversing this pointer leads to node sufi(pi) = sufi�1(pi�1)xi. If xi has not
previously appeared in context sufi�1(pi�1) then the algorithm considers a context
one symbol shorter and looks for a context pointer there. This procedure continues
until the algorithm either �nds and traverses a short-cut pointer or ends up at the
root. The �nal node in this procedure is an extension of sufi(pi). The algorithm
creates a node for sufi(pi) if necessary and then adds leaf pi to sufi(pi). Each context
of xi visited along the way is given a short-cut pointer pointing to the new leaf. Since
symbol xi is novel in each such context, the counts N 0(xijs) are incremented for each
of these nodes and each of their parents.

Let ki denote the number of contexts of xi visited in searching for sufi(pi). Finding
the complexity of the tree construction algorithm is equivalent to �nding

Pn
i=1 ki.

Repeated application of the equality jsufi(pi)j = jsufi�1(pi�1)xij � ki accomplishes
that goal, giving �nally

Pn
i=1 ki = n� jsufn(pn)j � n. Thus in total at most n nodes

must be visited in the search for sufi(pi) given sufi�1(pi�1), giving O(n) complexity.
The resulting algorithm is O(n) in memory; the constant here is larger than that

of [10] due to the additional pointers. The motivation for the pointers is the re-
duction, from (worst-case) O(n2) to O(n), in the complexity associated with �nding
the longest context. The same approach could be used in su�x-tree construction for
other algorithms as well, including, for example, PPM.

The given context tree design algorithm may be applied in a number of di�erent
ways to yield a PPM� variant using probability estimates based entirely on the up-
date exclusion counters N 0(ajs). Sequential and non-sequential methods are proposed
here. The sequential approach uses the above algorithm in both its encoder and its
decoder; thus the sequential codes' encoder and decoder use the same procedure to
independently update the tree with each subsequent symbol. A non-sequential ap-
proach, using McCreight's algorithm at the encoder and the above algorithm at the
decoder is also proposed. The algorithms di�er in their memory and computational
complexity, but both algorithms are O(n) in both the memory required to store the
model and the number of computations needed to �nd the longest context of an in-
coming data symbol. Note that the given complexity describes only the complexity

8

Calgary Corpus

File B97 NEW PPM� BW94
(bpc) (bpc) (bpc) (bpc)

bib 1.79 1.84 1.91 2.07
bk1 2.18 2.39 2.40 2.49
bk2 1.86 1.97 2.02 2.13
geo 4.46 4.75 4.83 4.45
news 2.29 2.37 2.42 2.59
obj1 3.68 3.79 4.00 3.98
obj2 2.28 2.35 2.43 2.64
ppr1 2.25 2.32 2.37 2.55
ppr2 2.21 2.33 2.36 2.51
pic 0.78 0.87 0.85 0.83
prgc 2.29 2.34 2.40 2.58
prgl 1.55 1.59 1.67 1.80
prgp 1.53 1.56 1.62 1.79
trns 1.33 1.38 1.45 1.57

AVG 2.18 2.27 2.34 2.43

Canterbury Corpus

File PPMZ9 NEW PPM7 BZIP2
(bpc) (bpc) (bpc) (bpc)

text 2.08 2.18 2.26 2.27
fax 0.79 0.87 0.94 0.78
csrc 1.87 1.95 2.08 2.18
excl 1.01 1.49 0.97 1.01
sprc 2.45 2.67 2.58 2.70
tech 1.83 1.95 2.01 2.02
poe 2.22 2.40 2.46 2.42
html 2.19 2.29 2.35 2.48
lisp 2.25 2.33 2.43 2.79
man 2.87 2.94 3.01 3.33
play 2.34 2.47 2.55 2.53

AVG 1.99 2.14 2.15 2.23

Table 1: Compression results on the Calgary and Canterbury corpora.

associated with �nding the longest matching context but does not include the cost of
moving from the longest context to the shortest deterministic context in PPM�.

V Results and Conclusions

This paper introduces a new implementation of PPM� with update exclusions that
reduces the worst-case O(n2) complexity of the tree update mechanism to O(n). The
new algorithm maintains the O(n) memory of earlier PPM� algorithms but increases
the constant in that term. Table 1 shows the rate results achieved by the proposed
algorithm (labeled as \new") as compared to those of a variety of alternative al-
gorithms. The results for competing algorithms on the Calgary corpus are quoted
from [6] and [10] (B97). The results on the Canterbury corpus are quoted from the
Canterbury corpus web page. While the results given in Table 1 are by no means
exhaustive, they give a reasonable picture of how the performance of the proposed
algorithm compares to current alternatives. While the proposed approach is not the
best possible algorithm in rate performance, it surpasses both PPM� and the BWT-
based codes in compression capabilities using only O(n) complexity in the tree design.

References

[1] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report SRC 124, Digital Systems Research Center, Palo Alto,

9

CA, May 1994.

[2] M. E�ros. Universal lossless source coding with the Burrows Wheeler transform.
In Proceedings of the Data Compression Conference, pages 178{187, Snowbird,
UT, March 1999. IEEE.

[3] M. E�ros. Universal lossless source coding with the Burrows Wheeler transform.
1999. Submitted to the IEEE Transactions on Information Theory June 28,
1999.

[4] M. E�ros. Theory meets practice: universal source coding with the Burrows
Wheeler transform. In Proceedings of the Allerton Conference on Communica-

tion, Control, and Computing, Monticello, IL, September 1999. IEEE.

[5] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and
partial string matching. IEEE Transactions on Communications, 32(4):396{402,
April 1984.

[6] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts
for PPM. In Proceedings of the Data Compression Conference, pages 52{61,
Snowbird, UT, March 1995. IEEE Computer Society.

[7] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, IT-23:337{343, May 1977.

[8] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate cod-
ing. IEEE Transactions on Information Theory, IT-24(5):530{536, September
1978.

[9] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall,
New Jersey, 1990.

[10] S. Bunton. Semantically motivated improvements for PPM variants. The Com-

puter Journal, 40(2/3):76{93, 1997.

[11] E. M. McCreight. A space-economical su�x tree construction algorithm. Jornal
of the ACM, 23(2):262{272, April 1976.

[12] M. Rodeh, V. R. Pratt, and S. Even. Linear algorithm for data compression via
string matching. Journal of the Association for Computing Machinery, 28(1):16{
24, January 1981.

[13] F. Jelinek. Bu�er over
ow in variable length coding of �xed rate sources. IEEE
Transactions on Information Theory, 14:490{501, May 1968.

[14] J. Rissanen and G. G. Langdon Jr. Arithmetic coding. IBM Journal of Research

and Development, 23(2):149{162, March 1979.

[15] A. Mo�at. Implementating the PPM data compression scheme. IEEE Transac-

tions on Communications, 38(11):1917{1921, November 1990.

10

