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Abstract { Consider a multi-resolution source code for describing a stationary
source at L resolutions. The description at the �rst resolution is given at rate R1 and
achieves an expected distortion no greater than D1. The description at the second
resolution includes both the �rst description and a re�ning description of rate R2

and achieves expected distortion no greater than D2, and so on. Recently derived
multi-resolution source coding bounds describe the family of achievable rate and
distortion vectors ((R1; R2; : : : ; RL); (D1; D2; : : : ; DL)). By examining these multi-
resolution rate-distortion bounds, we gain insight into the problem of practical multi-
resolution source coding. These insights lead to a new multi-resolution source code
based on the tree-structured vector quantizer. This paper covers the algorithm, its
optimal design, and preliminary experimental results.

I Introduction

With advances in communications media and technologies come needs for commu-
nications techniques that take full advantage of the capabilities particular to those
technologies. A prime example is the medium of internet communications. With the
growth of internet communications comes an increased need for techniques whereby
a single user can simultaneously communicate the same information to a wide array
of other users with vastly varying bandwidth resources, computational capabilities,
and performance requirements. This application, among others, has inspired a surge
of interest in multi-resolution or progressive transmission source coding.

Multi-resolution source codes are data compression algorithms in which simple,
low-rate source descriptions are embedded in more complex, high-rate descriptions.
Use of multi-rate source codes allows users with severe bandwidth constraints or low
performance requirements to achieve a low quality data representation by only incor-
porating a fraction of the original coded bit stream. Users with greater capabilities or
needs can achieve more precise data representations by using larger fractions of the
same bit stream. Further, users uncertain of their precision needs can progressively
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reconstruct the data to higher and higher accuracy { stopping the communication
process when the desired accuracy is achieved. The world wide web, with its vast
array of users with widely varying computational capabilities, bandwidth, and func-
tional requirements, represents just one example of an application where progressive
source codes can have an enormous impact.

Interest in multi-resolution or progressive transmission source coding has inspired
an enormous amount of research into practical multi-resolution source coding algo-
rithms (e.g., [1, 2, 3, 4]). Theoretical questions regarding the optimal performance
achievable in multi-resolution source coding have, until recently, attracted consid-
erably less attention. Hence there exists a gap in understanding between practical
multi-resolution source codes and the theoretical bounds that govern their perfor-
mance. The aim of this paper is to move towards closing that gap.

A description of multi-resolution source coding theory, including a brief historical
review and description of the multi-resolution source coding theorems for �xed- and
variable-rate multi-resolution source codes, is contained in Section II. Section III
contains a description of a simple, practical multi-resolution source code { the tree-
structured vector quantizer (TSVQ). In section IV, we introduce a new variation of
the TSVQ algorithm which employs the insights of Section II in a new variation of the
practical TSVQ multi-resolution source coding algorithm of Section III. Section V
contains experimental results.

II Multi-Resolution Source Coding Theory

In single-resolution source coding, a source is broken into contiguous vectors of length
N symbols, and each source vector is mapped to a binary description with some
average per-symbol description length, say R. The source coding theorem and its
converse describe the optimal distortion D(R) theoretically achievable at the given
average rate R. Source coding theorems and their converses for stationary ergodic
and stationary nonergodic sources on complete separable metric spaces, known as
Polish alphabets, appear in [5, Theorems 7.2.4, 7.2.5] and [6] respectively.

According to the source coding theorem, given an average rate of R bits per
symbol, the distortion D(R) is achievable in the limit of in�nite vector dimension
(and complexity). Imagine now stripping o� a fraction of the above R bits per symbol
to leave some lower average rate of r bits per symbol. While traditional (single-
resolution) rate-distortion theory bounds by D(r) the optimal distortion theoretically
achievable with these r bits per symbol, the single-resolution source coding theorem
does not prove the achievability of this bound subject to our constraint on the higher
resolution code. Further, given a rate r source code achieving, to arbitrary accuracy,
the distortion-rate bound D(r), the source coding theorem bounds, but does not
prove achievable, the number of bits which, when appended to our rate r description,
would yield a �nal distortion D(R).

In [7], Gray and Wyner bound the optimal rate-distortion performance of a three-
channel communication system with one transmitter and two receivers. Of the three
channels, channel one delivers equal rate to both receivers, channel two delivers rate



only to the �rst receiver, and channel three delivers rate only to the second receiver.
The �rst channel is used for shared information that describes a vector (X;Y ) to
both receivers. The second channel is used for an incremental description of X to
the �rst receiver. The third channel is used for an incremental description of Y to
the second receiver. Under these assumptions Gray and Wyner derive a variety of
rate-distortion bounds, treating memoryless Gaussian and binary sources as special
cases and deriving conditions for achievement of the \Pangloss bound," where all
descriptions simultaneously meet the rate distortion bound associated with their total
rates. When X = Y and the rate of either channel two or channel three is zero,
this problem becomes the multi-resolution source coding problem and the Pangloss
bound becomes the successive re�nement condition later described by Koshelev [8, 9],
where a source is said to be successively re�nable if a code giving a nested two-stage
description of that source can always achieve the rate-distortion bound at both rates.

In [10], Equitz and Cover prove that successive re�nement is achievable for in-
dependent and identically distributed sources if and only if X, X̂1, and X̂2 form a
Markov chain, where we here use X̂1 and X̂2 to represent the high- and low-resolution
reproductions of X respectively. They then go on to give three examples showing
rate-distortion problems that are successively re�nable as well as a counterexample
to show that not all independent identically distributed sources are successively re�n-
able. In [11], Rimoldi generalizes Equitz and Cover's result by �nding the achievable
rate pairs for a given pair of distortions and then generalizing to L-resolution codes
for L > 2. In [12], E�ros derives equations describing the achievable rate-distortion
region for �xed- and variable-rate L-resolution source codes on stationary ergodic and
stationary nonergodic sources with Polish alphabets. The approach taken in deriving
the optimal performance bounds of [12] generalizes the variable rate and distortion
Lagrangian approach made popular by [13] to the multi-resolution problem.

As in the case of single-resolution source coding, the rate-distortion regions achiev-
able by both �xed- and variable-rate multi-resolution source codes is a closed convex
set, describable by its convex hull. The convex hull, in turn, is described by a weighted
sum of the rate and distortion terms associated with each of the L resolutions.

More formally, let (A1;A1; �; T ) be a stationary dynamical system with Polish
alphabet A. That is, let A be a complete separable metric space, let A be the Borel
�-algebra generated by the open sets of A, let A1 be the set of one-sided sequences
x = (x1; x2; : : :) from A, let A1 be the �-algebra of subsets of A1 generated by
�nite-dimensional rectangles with components in A, let T be the left shift operator
on A1, and let � be a measure on the measurable space (A1;A1), stationary with
respect to T . We abbreviate the description of the source to [A; �].

Now for any �xed integer L � 1 and each ` 2 f1; : : : ; Lg, where L is the number
of levels of resolution in our desired multi-resolution source code, let �(`)(x1; y1) <1

be a real-valued nonnegative distortion measure for x1 2 A, y1 2 Â(`), where Â(`) is
the `th of L abstract reproduction alphabets. Assume that �(`)(x1; y1) is continuous

in x1 for each y1 2 Â(`) and that there exists a reference letter y
�(`)
1 2 Â(`) such

that E��(`)(x1; y
�(`)
1 ) = d�(`) < 1. De�ne �(`)(x

N ; yN ) =
PN

i=1 �(`)(xi; yi) Typically

Â(`) = Â and �(`)(x1; y1) = �(x1; y1) for all ` 2 f1; : : : ; Lg and all (x1; y1) 2 A� Â(`).



Given this observation and our desire for notational simplicity, we drop the (`) from
Â, y�1, d

�, and �, but note that the results apply to the most general case.
The achievable rate-distortion region is the set of rate-distortion points that can

be approximated with arbitrary accuracy by a code of arbitrarily high dimension.
Let Qfr(L;N) and Qvr(L;N) denote the class of �xed-rate dimension-N L res-

olution codes and the class of variable-rate dimension-N L resolution codes respec-
tively. (Qfr(L;N) and Qvr(L;N) are described in greater detail in [12].) Then for
any QL;N = (QN

(1); : : : ; Q
N
(L)) 2 Qfr(L;N) [ Qvr(L;N), we denote the expected rate

and distortion of QL;N with respect to stationary source � by

R(�;QL;N ) = (E�jQ
N
(1)(X

N)j; : : : ; E�jQ
N
(L)(X

N)j);

D(�;QL;N ) = (E��(X
N ; QN

(1)(X
N)); : : : ; E��(X

N ; QN
(L)(X

N))):

For any integer N > 0 and any �, the L-resolution �xed-rate achievable rate-distortion

region (for a given rate constraint RL) is

Rfr;L(�) =
[
N

Rfr;L
N (�):

Here Rfr;L
N (�) is the associated N th-order L-resolution �xed-rate achievable rate-

distortion region de�ned as

Rfr;L
N (�) =

�
(rL; dL) : 9QL;N 2 Qfr(L;N) s.t.

1

N
(RL(�;QL;N );DL(�;QL;N )) � (rL; dL)

�
;

where S denotes the closure of S with respect to the Euclidean norm and xk � yk if
and only if xi � yi for all 1 � i � k. The L-resolution variable-rate achievable rate-

distortion region is similarly de�ned over the class of variable-rate multi-resolution
codes. Thus the Nth-order rate-distortion region describes the collection of rate-
distortion pairs (rL; dL) such that there exists an N -dimensional code with per symbol
rate and distortion less than or arbitrarily close (in Euclidean distance) to (rL; dL).

Since Rfr;L(�) and Rvr;L(�) are convex and closed [12], they are entirely charac-
terized by their support functionals [14, p.135] jfr(�L; �L; �) and jvr(�L; �L; �), called
the weighted �xed- and variable-rate operational rate-distortion functions, where

j(frjvr)(�L; �L; �) = inf
(rL;dL)2R(frjvr);L

LX
`=1

(�`d` + �`r`) :

Without loss of generality [12] we restrict our attention to �L; �L � 0. Thus (rL; dL)
is achievable by a �xed-rate code if

PL
`=1(�`d` + �`r`) � jfr(�L; �L; �) and achievable

by a variable-rate code if
PL

`=1(�`d` + �`r`) � jvr(�L; �L; �) for all �L; �L � 0.
The main results from [12] for stationary ergodic sources are as follows. If � is

stationary and ergodic, A is Polish, �(x; y) is continuous in x for each y, and there
exists a reference letter y� such that E��(X; y

�) <1, then the following results hold.

Theorem 1 jfr(�L; �L; �) = J(�L; �L; �).



Theorem 2 jvr(�L; �L; �) = J(�L; �L; �):

Here J(�L; �L; �) called the weighted rate-distortion function, is de�ned as

J(�L; �L; �) = inf
N
JN(�

L; �L; �);

where the N th-order weighted rate-distortion function JN(�
L; �L; �) equals

JN(�
L; �L; �) = inf

q

1

N

LX
`=1

(�`E�N qN�(X
N ;Y`) + �`I�q(X

N ;Y`jY
`�1));

with E�N qN�(X
N ;Y`) and I(X

N ;Y`jY
`�1) denoting the expected distortion and con-

ditional mutual information, respectively, between the source vector XN and its
resolution-` N -dimensional reproduction Y`.

The proof uses random coding arguments reminiscent of those used to prove the
single-resolution source coding theorem and therefore does not immediately yield a
simple algorithm for optimal multi-resolution source code design. Further, achieve-
ment of the above rate-distortion bounds generally requires in�nite dimensional source
codes and thus in�nite complexity and delay. Thus multi-resolution source coding the-
ory does not explicitly provide the practical algorithms needed for applications like
internet communications. We next consider a simple example from the literature of
a multi-resolution code used for practical applications.

III Tree-Structured Vector Quantization

The TSVQ algorithm [15, 16, 1] is an example of a simple multi-resolution source
code. In TSVQ, the unstructured codebook and exhaustive search encoder of the
basic VQ algorithm are replaced with a tree-structured codebook and tree-search
encoder. The TSVQ encoder and decoder both contain copies of a (typically binary)
tree with a single vector codeword at each node. The encoder's search strategy is
greedy. To encode a given source vector, the encoder starts at the root of the tree
and maps the source vector to the child of that node that reproduces the vector to
the lowest distortion. The encoder then moves to that node and repeats the process {
again mapping the source vector to the closest child of the current node. The process
repeats until a leaf is reached. The encoder describes the traversed path using either
the path's natural binary description or an entropy coded version of that description.

The decoder maps path descriptions back to reproduction vectors. Since a code-
word is located at each tree node, partial source descriptions allow for intermediate
reproductions in the process of reconstructing the �nal higher resolution reproduction.

Most TSVQ design algorithms (e.g., [15, 16, 1]) use either top-down or bottom-up
greedy designs. Top-down approaches optimize and �x the low-resolution descrip-
tions then optimize each subsequent higher resolution description. Bottom-up greedy
approaches optimize and �x the low-resolution descriptions �rst and then do the same
for higher and higher resolutions.



For variable-rate codes, which often use trees with leaves of varying depths, the
inclusion of pruning in the tree design results in a code which does not strictly fall
into either the bottom-up or top-down design paradigms. The goal of the tree pruning
algorithm is to choose the optimal sequence of subtrees of a given tree to give the
best possible rate-distortion performance over all of the resolutions. Nonetheless, as
the initial tree to which the tree pruning is applied is typically designed with either a
bottom-up or top-down approach, the overall design process is again greedy in nature.

IV Algorithm

As discussed in Section II, multi-resolution source coding theory provides proofs re-
garding the existence of multi-resolution source codes achieving, to arbitrary accuracy,
the optimal bounds, but does not describe practical multi-resolution source coding
algorithms. In contrast, algorithms like TSVQ as described in Section III provide ex-
plicit practical codes but are di�cult to pin down in terms of \optimal" performance.

By extending our understanding of multi-resolution source coding algorithms,
multi-resolution source coding theory o�ers a variety of lessons useful to the de-
sign of practical progressive transmission codes. First, jfr(�L; �L; �) = J(�L; �L; �) =
jvr(�L; �L; �) implies that on stationary ergodic sources, the achievable rate-distortion
region for �xed-rate multi-resolution source codes is identical to that for variable-
rate multi-resolution source codes. While this fact does not imply that a given L-
dimensional rate-distortion vector (RL; DL) will be achievable at the same coding
dimension or complexity for both families of codes, but only that �xed-rate codes can
potentially o�er the same rate-distortion performance as variable-rate codes given
su�cient computational and memory resources. As fast algorithms like hierarchi-
cal VQ [17] make high dimensional codes increasingly practical, the knowledge that
�xed-rate codes are not fundamentally inferior to variable-rate codes, when combined
with the properties that make �xed-rate source coding attractive (e.g., greater re-
silience to channel errors and removal of the bu�ering problem), makes �xed-rate
multi-resolution source coding a desirable option for a variety of applications.

Second, the convexity of the achievable rate-distortion region and the description
of its convex hull provide a new performance measure for evaluating multi-resolution
source codes. In particular, to design source codes with rate-distortion performance
as close as possible to the convex hull of the achievable rate-distortion region, a code
QL;N should be designed to explicitly minimize the weighted performance measure

�L
D

t(�;QL;N ) + �L
R

t(�;QL;N ):

Thus the Lagrangian approach, crucial to the derivation in [12] of the source coding
theorems, have strong footing in the realm of practical source code design and imple-
mentation. What's more, careful examination of the weighted distortion-rate function
indicates that for any point on the above convex hull, �`=�` equals the negative slope
of the rate-distortion function at distortion D`. Thus in choosing �L; �L, this ratio
should increase as a function of `.



The above proposal di�ers markedly from the sequential minimizations of the
top-down or bottom-up approaches of the previous section. Top-down approaches
sacri�ce high resolution performance for low-resolution performance and are thus most
appropriate when focusing on the low-end user, who values the quality of the low-
rate reproduction over the long term coding performance. Bottom-up approaches,
sacri�ce low resolution performance for high-resolution performance and are thus
best suited for applications where the priority falls with the high-end user, who is
willing to sacri�ce initial reproduction quality for the fastest possible high-resolution
service. Alternate algorithms like those of [18] take this emphasis on the high end
user one step further by combining a bottom-up approach with a full search (rather
than tree search). Between these two extremes lies a continuum of other possibilities
neglected by the vast majority of multi-resolution codes but addressable using the
above Lagrangian approach. We next discuss the design of source codes with arbitrary
priority schedules between the low- and high-resolution coding quality.

The proposed multi-resolution coding performance measure

J�L;�L(�;Q
L;N ) = �L

D
t(�;QL;N) + �L

R
t(�;QL;N):

equals the weighted sum of the distortions and rates of every resolution of a source
code. By using this measure in both code design and implementation, we can optimize
the entire multi-resolution code with respect to a priority schedule of our choosing.
Just as the performance measure D+�R may be interpreted as a Lagrangian for min-
imization of the distortion subject to a constraint on the rate, the above proposed
weighted performance measure likewise has a variety of Lagrangian interpretations
dependent on the choice of �L and �L. In particular, the proposed performance mea-
sure may be viewed as a Lagrangian for minimizing the weighted sum of distortions
subject to a collection of constraints on the rates. The same function could likewise be
interpreted as a Lagrangian for the minimization of the weighted sum of rates subject
to a collection of constraints on the distortions, a minimization of the weighted sum of
rate-distortion Lagrangians, or in fact a minimization of any combination of rates, dis-
tortions, or Lagrangians subject to constraints on the remaining quantities. Thus, for
example, when L = 2, the weighted rate-distortion function can be used to �nd: the
minimal R2 needed to achieve distortion D2 < D1 given (R1; D1) = (R(D1); D1); the
minimal R1 needed to achieve distortion D1 > D2 given that (R2; D2) = (R(D2); D2);
the minimal D1 + �1R1 given that D2 + �2R2 � D2 + �R2(D2); and so on, thereby
encompassing a variety of multi-resolution source coding problems considered by pre-
vious authors into a single formulation. This variety of interpretations illustrates one
of the bene�ts of the Lagrangian approach.

In general, the 2L-dimensional vector (�L; �L) plays a role in multi-resolution
source coding analogous to the role played by � in entropy-constrained vector quan-
tization (ECVQ) [13]. In ECVQ, we design and implement our codes to achieve the
lowest possible value of D + �R. Just as � represents the (negative) slope of the line
tangent to the rate-distortion curve R(D) at the target rate and distortion, (�L; �L)
describes the \angle" of the hyperplane tangent to the achievable rate-distortion re-
gion at the target L-dimensional rate-distortion vector.



To achieve points as close as possible to the bounds discussed in Section II, we use
the given performance measure for both source code design and encoding. The design
algorithm is a variation on the generalized Lloyd algorithm [19] which simultaneously
optimizes all of the codewords in a tree-structured code with respect to the given
performance measure. The algorithm is initialized with an arbitrary tree-structured
codebook along with appropriate �xed- or variable-rate pre�x codes for describing
each possible transition within the given tree. Each iteration in the algorithm is ac-
complished in three steps, enumerated below.
1. Nearest Neighbor Encoding. Optimize the encoder for the given tree-structured
codebook and pre�x codes. The optimal �rst-stage encoder maps each source vector
to the path with the minimal weighted performance.
2. Decoding to the Centroid. Optimize the codebook for the given encoder. Each
codeword in the code is redesigned such that it sits at the centroid (with respect to
the employed distortion measure) of all training data mapped to that codeword.
3. Optimizing the Pre�x Code. Optimize the pre�x codes associated with each tran-
sition. For �xed-rate coding no change occurs. For variable-rate coding, the optimal
pre�x code is the pre�x code mapped to the probability of a given transition.

The design is not performed layer by layer and is not greedy. When run to
convergence, the above algorithm guarantees a locally optimal solution over the entire
tree { a guarantee not made by either top-down or bottom-up greedy approaches.

One unfortunate consequence of the above algorithm is that it employs the weighted
performance measure in its optimal encoder. As a result, the proposed algorithm not
only sacri�ces the linear search complexity from which TSVQ's original popularity
derived, but actually almost doubles the number of codeword distortion calculations
required by a full-search vector quantizer. We therefore propose an alternate in ad-
dition to the above \optimal" scheme. The alternate code is designed using precisely
the algorithm described above but implemented using the traditional greedy TSVQ
encoder rather than the above optimal encoder. The performance of such \hybrid"
codes will be explored in later work.

V Results

For simplicity, we include results from �xed-rate multi-resolution codes only. For
any �xed-rate quantizer QL;N and any stationary source �, �L

R
t(�;QL;N) is con-

stant. Thus, in this scenario, application of the weighted performance measure in
system design is equivalent to optimization of the weighted sum of the distortions
associated with each resolution of a binary tree code. Since it is the relative values
of �1; : : : ; �L which interest us, we restrict our attention to �L such that

P
i �i = 1.

When �L = (1; 0; : : : ; 0), designing a source code to minimize J�L;�L(�;Q
L;N ) is a true

top-down approach, sacri�cing all higher-resolution performances for the best possi-
ble rate-1 performance. When �L = (0; : : : ; 0; 1), designing a source code to minimize
J�L;�L(�;Q

L;N ) is a bottom-up approach, yielding the best possible high-resolution
performance at the possible expense of low-resolution performance as in [18]. Notice
that according to the above discussion for L > 2, neither of these points will sit on
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Figure 1: SQNR vs. rate results for �xed-rate multi-resolution VQ using the weighted
performance measure (dashed lines) and non-embedded VQ (circles) and TSVQ (solid
line).

the convex hull of the rate-distortion region. Values of �L between these extremes
lead to intermediate solutions.

We here report performance results on a test set of 5 medical brain scans using a
code designed on a 20 image training set. The training and test sets do not overlap.
The codes considered use vector dimension 4. The results are shown in Figure 1, where
each dotted line shows the rates and signal to quantization noise ratios (SQNRs)
associated with the above described code for a single value of �L. Distortion is
measured as squared error. A range of �L vectors is shown, not all of which should give
values residing on the convex hull of the rate-distortion region. The solid line shows
the performance of TSVQ while the performance of a (non-embedded) collection of
full search VQs is given by circles. While gains of .5 to .75 dB over TSVQ can be
achieved at some rates with almost no loss at other rates, achieving the performance
of a full search VQ at the higher rates seems to require corresponding losses at lower
rates.
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