
Catalytic N2‑to-NH3 Conversion by Fe at Lower Driving Force: A
Proposed Role for Metallocene-Mediated PCET
Matthew J. Chalkley,† Trevor J. Del Castillo,† Benjamin D. Matson,† Joseph P. Roddy,
and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United
States

*S Supporting Information

ABSTRACT: We have recently reported on several Fe catalysts for N2-to-NH3
conversion that operate at low temperature (−78 °C) and atmospheric pressure
while relying on a very strong reductant (KC8) and acid ([H(OEt2)2][BAr

F
4]).

Here we show that our original catalyst system, P3
BFe, achieves both significantly

improved efficiency for NH3 formation (up to 72% for e− delivery) and a
comparatively high turnover number for a synthetic molecular Fe catalyst (84 equiv
of NH3 per Fe site), when employing a significantly weaker combination of
reductant (Cp*2Co) and acid ([Ph2NH2][OTf] or [PhNH3][OTf]). Relative to the
previously reported catalysis, freeze-quench Mössbauer spectroscopy under
turnover conditions suggests a change in the rate of key elementary steps;
formation of a previously characterized off-path borohydrido−hydrido resting state is also suppressed. Theoretical and
experimental studies are presented that highlight the possibility of protonated metallocenes as discrete PCET reagents under the
present (and related) catalytic conditions, offering a plausible rationale for the increased efficiency at reduced driving force of this
Fe catalyst system.

The reduction of N2 to NH3 is critical for life and is
performed on a massive scale both industrially and

biologically.1 The high stability of the NN triple bond
necessitates catalysts and high-energy reagents/conditions to
achieve the desired transformation.2 Synthetic studies of
catalytic N2-to-NH3 conversion by model complexes are of
interest to constrain hypotheses concerning the mechanism/s
of biological (or industrial) N2-fixation and to map fundamental
catalyst design principles for multielectron reductive trans-
formations.3,4 Interest in Fe model systems that catalyze N2-to-
NH3 conversion has grown in part due to the postulate that one
or more Fe centers in the FeMo-cofactor of FeMo-nitrogenase
may serve as the site of N2 binding and activation during key
bond-breaking and -making steps.5 Previous examples of
synthetic molecular Fe catalysts that mediate N2-to-NH3
conversion operate with high driving force, relying on a very
strong acid (pKa ca. 0) and reductant (E° ≤ −3.0 V vs
Fc+/0).6−9 In contrast, several Mo catalysts have been shown to
facilitate N2-to-NH3 conversion with significantly lower driving
force.10−13 There is thus interest in exploring the viability of Fe-
mediated catalytic N2-to-NH3 conversion under less forcing
conditions from a practical perspective, and to continue
assessing these systems as functional models of biological
nitrogenases, in which 8 ATP are consumed per NH3 formed
providing a total driving force of 58 kcal/mol.2

Herein we demonstrate that catalytic conversion of N2 to
NH3 by P3

BFe+ (P3
B = tris(o-diisopropylphosphinophenyl)-

borane) can be achieved with a significantly lower driving force
by coupling Cp*2Co with [Ph2NH2]

+ or [PhNH3]
+ (Figure 1).

Such conditions additionally afford unusually high selectivity
and catalytic turnover for NH3.

20 Moreover, we note that the
use of milder reagents as reductant (E0; eq 1) and acid (pKa; eq
1) engenders a higher effective bond dissociation enthalpy
(BDEeffective; eq 1).15,21 This may in turn afford access to
proton-coupled electron transfer (PCET) pathways (e.g., FeN2
+ H• → FeN2H) in addition to electron transfer (ET)/proton
transfer (PT) pathways, thus enhancing overall catalytic
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Figure 1. Summary of conditions used for catalytic N2-to-NH3
conversion by P3

BFe+ highlighting the estimated enthalpic driving
force (ΔΔHf).
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efficiency. Theoretical considerations, including DFT calcu-
lations, and experimental details are discussed that suggest the
viability of a decamethylcobaltocene-mediated PCET pathway
in this system; by extension we suggest that metallocene-
mediated (e.g., Cp*2Cr) PCET pathways may be operative in
previously studied Mo and Fe N2-fixing systems that use
metallocene reductants.10−13,20

= + +K E CBDE 1.37(p ) 23.06( )effective a
0

H (1)

Various observations of P3
BFe complexes in the presence of

acids and reductants suggested that this system might be
capable of N2-to-NH3 conversion with lower driving force than
that originally reported. Accordingly, we had observed that the
treatment of P3

BFeN2
− with KC8 and weaker acids (pKa > 0)

led to greater than stoichiometric NH3 formation (e.g., under
unoptimized conditions [2,6-dimethylanilinium][OTf] afforded
2.1 equiv of NH3 per Fe).22 Similarly, the treatment of
P3

BFeN2
− with [H(OEt2)2][BAr

F
4] (HBAr

F
4, BAr

F
4 = tetrakis-

(3,5-bis(trifluoromethyl)phenyl)borate) and weaker reductants
led to modest yields of NH3. For example, under unoptimized
conditions we had observed that decamethylcobaltocene
(Cp*2Co) and HBArF4 afforded 0.6 equiv of NH3 per Fe.

22,23

Most recently, an apparent catalytic response was observed
during a cyclic voltammetry experiment at the P3

BFeN2
0/−

couple (−2.1 V vs Fc+/0) upon addition of excess HBArF4 under
an N2 atmosphere. Electrolytic NH3 generation by P3

BFe+ was
observed at −2.4 V vs Fc+/0 in Et2O,

23 and Na/Hg (−2.4 V vs
Fc+/0 in THF)16 could instead be used for N2-to-NH3
conversion catalysis (albeit less selectively and with low
turnover). Finally, mixing P3

BFe+ with Cp*2Co in Et2O at
−78 °C under N2 generates some P3

BFeN2
− as observed by X-

band EPR and Mössbauer spectroscopy (see the Supporting
Information), suggesting that Cp*2Co is in principle a
sufficiently strong reductant to trigger catalysis by P3

BFe+.
Treatment of P3

BFe+ with Cp*2Co and [Ph2NH2][OTf],
[Ph2NH2][BAr

F
4], or [PhNH3][OTf] in Et2O at −78 °C under

an N2 atmosphere affords catalytic yields of NH3 (Table 1).
Notably, the highest selectivity for NH3 obtained among this
series (72% at standard substrate loading; entry 1) is

significantly improved compared to all previously described
(molecular) Fe catalysts for N2-to-NH3 conversion.20,24

Tripling the initial substrate loading (entry 2) nearly triples
the NH3 production with only modest loss in efficiency for
NH3 (63%). Preliminary attempts to further increase the initial
substrate loading led to substantially decreased efficiency (entry
3). However, substrate reloading experiments (entries 4 and 5)
maintained greater than 50% efficiency for NH3 overall; a
turnover number for NH3 generation via two reloadings has
been achieved as high as 89 in a single run (84 ± 8; entry 5).
This is a high turnover number for a molecular Fe N2-to-NH3
conversion catalyst under any conditions.20,25

The use of the more soluble acid [Ph2NH2][BAr
F
4] (entry 6)

provides significantly lower, but still catalytic, yields of NH3.
This more soluble acid presumably increases background
reactivity with Cp*2Co (see the Supporting Information).
Perhaps more significantly, [PhNH3][OTf] is a considerably
weaker acid than [Ph2NH2][OTf] (Figure 1), but still provides
substantial catalytic yields of NH3 (entries 7 and 8) and at
efficiencies that compare well with those obtained previously
using HBArF4 and KC8 despite a difference in driving force of
nearly 100 kcal/mol.23

We also screened several related phosphine-ligated Fe−N2
and Co−N2 complexes26,27 under the new standard reaction
conditions with [Ph2NH2][OTf] and Cp*2Co (entries 9−11)
but found that none of these other systems were competent
catalysts. While we anticipate that other catalyst systems for N2-
to-NH3 conversion may yet be found that function under the
conditions described herein,20 certain features of the P3

BFe
system correlate with unusually productive catalysis.27

Also significant is that when P3
BFe+ is loaded with 322 equiv

of [Ph2NH2][OTf] and 162 equiv of Cp*2Co in Et2O at −78
°C, very modest levels of N2H4 are detected (<1 equiv per Fe;
see the Supporting Information).9,20 We had previously
reported that catalytic N2 reduction with KC8 and HBArF4
yielded no detectable hydrazine, but observed that if hydrazine
was added at the outset of a catalytic run, it was consumed.6

When 5 equiv of N2H4 were added at the beginning of a
catalytic run (again with 322 equiv of [Ph2NH2][OTf] and 162
equiv of Cp*2Co), only 0.22 equiv of N2H4 (4.4% recovery)
remained after workup. This result indicates that liberated
hydrazine can also be reduced or disproportionated under the
present conditions. That N2H4 is detected to any extent in the
absence of initially added N2H4 under these conditions
indicates that a late N−N cleavage mechanism to produce
NH3 (e.g., alternating or hybrid crossover) is accessible.4,28 A
recent report by Ashley and co-workers describes a phosphine-
supported Fe system for which catalytic hydrazine formation is
kinetically dominant.20 Whether such a pathway is kinetically
dominant in this system is as yet unclear.23,29

The P3
BFe speciation under turnover conditions was probed

via freeze-quench Mössbauer spectroscopy.23 The Mössbauer
spectrum of a catalytic reaction mixture after 5 min of reaction
time (Figure 2) reveals the presence of multiple species
featuring well-resolved sets of quadrupole doublets. The
spectrum is satisfactorily simulated with P3

BFeN2 (δ = 0.55
mm/s, ΔEQ = 3.24 mm/s, 32%; Figure 2, green), P3

BFeN2
− (δ

= 0.40 mm/s, ΔEQ = 0.98 mm/s, 26%; Figure 2, blue),23,30 an
unknown, likely P3

B metalated Fe species (δ = 0.42 mm/s, ΔEQ
= 1.84 mm/s, 18%; Figure 2, yellow), and a final species that is
modeled with δ = 0.96 mm/s and ΔEQ = 3.10 mm/s (24%;
Figure 2, orange). The broad nature of this last signal and its
overlap with other features in the spectrum prevents its precise

Table 1. N2-to-NH3 Conversion with P3
EM Complexes (M =

Fe, Co)a

catalyst
Cp*2Co
(equiv) acid (equiv)

equiv of
NH3/Fe

% yield of
NH3/e

−

1 P3
BFe+ 54 108c 12.8 ± 0.5 72 ± 3

2 P3
BFe+ 162 322c 34 ± 1 63 ± 2

3 P3
BFe+ 322 638c 26.7 ± 0.9 25 ± 1

4b P3
BFe+ [162] × 2 [322] × 2c 56 ± 9 52 ± 9

5b P3
BFe+ [162] × 3 [322] × 3c 84 ± 8 52 ± 5

6 P3
BFe+ 54 108d 8 ± 1 42 ± 6

7 P3
BFe+ 54 108e 7 ± 1 38 ± 7

8 P3
BFe+ 162 322e 16 ± 3 29 ± 4

9 P3
SiFeN2 54 108c 1.2 ± 0.1 6 ± 1

10 P3
BCoN2

− 54 108c 1.1 ± 0.4 6 ± 2
11 P3

SiCoN2 54 108c 0 ± 0 0 ± 0

aThe catalyst, acid, Cp*2Co, and Et2O were sealed in a vessel at −196
°C under an N2 atmosphere followed by warming to −78 °C and
stirring. Yields are reported as an average of at least 2 runs; for
individual experiments see the Supporting Information. bFor these
experiments the reaction was allowed to proceed for 3 h at −78 °C
before cooling to −196 °C and furnishing with additional substrate
and solvent. c[Ph2NH2][OTf].

d[Ph2NH2][BAr
F
4].

e[PhNH3][OTf].
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assignment, but its high isomer shift and large quadrupole
splitting are suggestive of a tetrahedral, S = 2 Fe(II)
complex.31,32 The Mössbauer spectrum of a catalytic reaction
mixture after 30 min was also analyzed (see the Supporting
Information). The spectrum still shows P3

BFeN2 (53%), the
same unknown P3

BFe species (18%), and again a tetrahedral,
high-spin Fe(II) component (22%). However, P3

BFe+ is now
present (δ = 0.75 mm/s, ΔEQ = 2.55 mm/s, 8%) and P3

BFeN2
−

is no longer observed. The reloading experiments described
above provide strong evidence that “P3

BFe” species represent
an “active catalyst” population; interpretation of the relative
speciation via spectroscopy should hence bear on the
mechanism of the overall catalysis.
The appearance of a presumed high-spin (S = 2), tetrahedral

Fe(II) species during catalysis (ca. 25%) might arise via
dechelation of a phosphine arm. This species could represent
an off-path state or a downstream deactivation product.
Interestingly, under the present catalytic conditions we do
not observe the borohydrido−hydrido species P3

B(μ-H)Fe(H)-
(L) (L = N2 or H2); this species was postulated to be an off-
path state during N2-to-NH3 conversion catalysis using HBArF4
and KC8 and was the major component observed at early times
(ca. 60% at 5 min).23 It therefore appears that a larger fraction
of the “P3

BFe” species are in a catalytically on-path state at early
reaction times under these new catalytic conditions.
Additionally, the presence of a significant degree of P3

BFeN2
−

(Figure 2) at an early time point is distinct from conditions
with HBArF4 and KC8.

23 This observation is consistent with the
notion that protonation of P3

BFeN2
− is slowed under the

present conditions, likely as a result of the insolubility of the
triflate salt [Ph2NH2][OTf] and its attenuated acidity relative
to HBArF4.

17,18,33 Clearly, differences in the rates of key
elementary steps under the new conditions described here may
lead to new mechanistic scenarios for N2-to-NH3 conversion.
The improved catalytic efficiency at significantly lower

driving force warrants additional consideration. When using
HBArF4 and KC8 we have previously suggested that
protonation of P3

BFeN2
−, which itself can be generated by

reduction of P3
BFeN2, to produce P3

BFe−NNH is a critical
first step; P3

BFe−NNH can then be trapped by acid to
produce spectroscopically observable P3

BFeN−NH2
+.29

These steps, shown in eqs 2a and 2b, represent an ET−PT
pathway. A PT−ET pathway, where P3

BFeN2 is sufficiently
basic to be protonated to generate P3

BFe−NNH+ as a first
step, followed by ET, is also worth considering (eqs 3a and 3b).
A direct PCET pathway (eq 4), where H atom delivery to

P3
BFeN2 occurs, thus obviating the need to access either

P3
BFeN2

− or P3
BFe−NNH+, needs also to be considered.

+ →− −P FeN e P FeN3
B

2 3
B

2 (2a)

+ → −− +
P FeN H P Fe N NH3

B
2 3

B
(2b)

+ → −+ +
P FeN H P Fe N NH3

B
2 3

B
(3a)

− + → −+ −
 P Fe N NH e P Fe N NH3

B
3

B
(3b)

+ • → − P FeN H P Fe N NH3
B

2 3
B

(4)

Initial PT to P3
BFeN2 to generate P3

BFe−NNH+ (eq 3a) is
unlikely under the present conditions due to the high predicted
acidity of P3

BFe−NNH+ (pKa = −3.7; estimated via DFT;
see the Supporting Information); efficient generation of such a
species seems implausible for acids whose pKa’s are calculated
at 1.4 (Ph2NH2

+) and 6.8 (PhNH3
+) in Et2O (Table 2). We

note that [Ph2NH2][OTf] does not react productively with
P3

BFeN2 at −78 °C in Et2O, as analyzed by Mössbauer
spectroscopy.

Focusing instead on the PCET pathway (eq 4), the DFT-
calculated BDEN−H for P3

BFe−NNH (35 kcal/mol; Table 2;
see the Supporting Information for details)36 is larger than the
effective BDE21 of either Cp*2Co/Ph2NH2

+ or Cp*2Co/
PhNH3

+ (25 and 31 kcal/mol, respectively). This suggests
that PCET (eq 4) is plausible on thermodynamic grounds.
Given that we have employed Cp*2Co in this study, and that
this and also Cp2Co and Cp*2Cr have been effective in other
N2-fixing molecular catalyst systems,10−13,20 we have explored
via DFT several putative metallocene-derived PCET reagents.
Independent studies of H2 evolution from cobaltocene have
invoked a protonated cobaltocene intermediate.37−39 The
observation of a background H2 evolution reaction (HER)
when employing metallocene reductants, but in the absence of
an N2-to-NH3 conversion catalyst, suggests that metallocene
protonation is kinetically competent.13,40 Based on the analysis
we describe below, we propose that protonated metallocenes
may serve as discrete and highly active H• sources for PCET.
We find that the formation of endo- and exo-Cp*Co(η4-

C5Me5H)
+ is predicted to be thermodynamically favorable via

Figure 2. Mössbauer spectrum at 80 K with 50 mT applied parallel
field of a freeze-quenched catalytic reaction (54 equiv of Cp*2Co, 108
equiv of [Ph2NH2][OTf], 1 equiv of P3

B[57Fe]+) after 5 min of
reaction time.

Table 2. Calculated pKa Values and BDEs of Selected
Speciesa

species pKa BDEb

Ph2NH2
+ 1.4c

PhNH3
+ 6.8

lutidinium 14.5
endo-Cp*Co(η4-C5Me5H)

+ 16.8 31
exo-Cp*Co(η4-C5Me5H)

+ 16.8 31
endo-Cp*Cr(η4-C5Me5H)

+ 17.3 37
exo-Cp*Cr(η4-C5Me5H)

+ 12.1 30
P3

BFe−NNH+ −3.7
P3

BFe−NNH 38.7 35
P3

BFeN−NH2
+ 14.4 51

P3
BFeN−NH2 47

[HIPTN3N]Mo−NNH 51
aCalculations were performed using the M06-L34 functional with a
def2-TZVP basis set on Fe and Mo and a def2-SVP basis set on all
other atoms35 (see the Supporting Information). bIn kcal/mol. cpKa
values were calculated in Et2O and reported relative to (Et2O)2H

+.
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protonation of Cp*2Co by either Ph2NH2
+ or PhNH3

+ (−21
and −13 kcal/mol, respectively; Figure 3A).41,42 We have

calculated the BDEC−H’s for both endo- and exo-Cp*Co(η4-
C5Me5H)

+ as 31 kcal/mol (Figure 3B; Table 2), indicating that
they should be among the strongest PCET reagents accessible
in this catalyst cocktail. Indeed, they would be among the
strongest PCET reagents known.21

We anticipate that these species would be extremely unstable
in solution and hence difficult to detect in situ, but via trapping
in the solid state by rapid precipitation from toluene we have
isolated a species whose EPR data and chemical behavior are
consistent with {Cp*Co(η4-C5Me5H)}{OTf}. Accordingly,
slow addition of a toluene solution of Cp*2Co at −78 °C to
triflic acid (HOTf) leads to the instantaneous precipitation of a
purple solid that can be handled only at low temperature. The
purple solid is characterized at 77 K by powder EPR
spectroscopy via its highly structured signal. By contrast, at
this temperature S = 1/2 Cp*2Co does not display a discernible
EPR signal (see the Supporting Information). The new signal
shows strong Co hyperfine coupling and significant g-
anisotropy, consistent with a new S = 1/2 cobalt species
(Figure 4). Furthermore, the resulting EPR signal is slightly
perturbed when this purple solid is instead generated from the
reaction between deuterated triflic acid (DOTf) and Cp*2Co
(see the Supporting Information), suggesting that the acidic
proton is directly associated with the new Co species and
consistent with its assignment as a protonated decamethylco-
baltocene species. Close inspection of these spectra indicates
that they likely represent a mixture of two signals arising from
similar Co-containing complexes. This observation is consistent
with the presence of both endo- and exo-Cp*Co(η4-C5Me5H)

+,
as is to be expected given that they are predicted to be nearly
isoenergetic. Allowing the purple precipitate to warm to room
temperature either as a solid or as a stirred suspension in
toluene leads to the formation of H2 and Cp*2Co

+ (see the
Supporting Information).
To better understand the potential role of PCET in N2-to-

NH3 conversion catalysis by P3
BFe, we have additionally

calculated the N−H bond strengths (Table 2) of several early

stage candidate intermediates, including the aforementioned
P3

BFe−NNH (35 kcal/mol), P3
BFeN−NH2

+ (51 kcal/
mol), and P3

BFeN−NH2 (47 kcal/mol). We conclude that
PCET from Cp*Co(η4-C5Me5H)

+ to generate intermediates of
these types is thermodynamically favorable in each case.43 To
generate the first and most challenging intermediate (eq 5), the
enthalpic driving force for PCET is estimated at ∼4 kcal/mol
(ΔGcalc = −9 kcal/mol). This driving force and, hence, the
plausibility of PCET steps, increase sharply as further
downstream Fe−NxHy intermediates are considered.44−47

η+ * ‐

→ − + *

+

+


P FeN Cp Co( C Me H)

P Fe N NH Cp Co
3

B
2

4
5 5

3
B

2 (5)

Given the prevalence of metallocene reductants in N2-to-
NH3 (or -N2H4) conversion,10−13,20 especially for the well-
studied Mo catalyst systems, it is worth considering metal-
locene-mediated PCET more generally. For instance, a role for
ET/PT steps (or conversely PT/ET) in N2-to-NH3 conversion
catalyzed by [HIPTN3N]Mo (HIPTN3N = [(3,5-(2,4,6-
iPr3C6H2)2C6H3NCH2CH2)3N]

3−, a bulky triamidoamine
ligand) has been frequently posited.48−52 But PCET steps
may play a critical role, too. In the latter context, we note
reports from Schrock and co-workers that have shown that
both acid and reductant are required to observe productive
reactivity with [HIPTN3N]MoN2. These observations are
consistent with PCET to generate [HIPTN3N]Mo−N
NH.52 A PCET scenario has been discussed in the general
context of N2-to-NH3 conversion, where a lutidinyl radical
intermediate formed via ET from Cp*2Cr was suggested as a
PCET reagent that can be generated in situ.40,53 However, our
own calculations predict that the lutidinyl radical should not be
accessible with Cp*2Cr as the reductant (ΔGcalc = +10 kcal/
mol; Figure 3C).54−56 We instead propose protonation of
Cp*2Cr by the lutidinium acid as more plausible (ΔGcalc = −5.3
kcal/mol; Figure 3D) to generate a highly reactive
decamethylchromocene-derived PCET reagent.
While N−H bond strengths have not been experimentally

determined for the [HIPTN3N]Mo system, using available
published data we deduce the N−H bond of [HIPTN3N]Mo−
NNH to be ca. 49 kcal/mol and we calculate it via DFT
(truncated HIPTN3N; see the Supporting Information) as 51
kcal/mol.57 The BDEN−H for this Mo diazenido species is

Figure 3. (A) Calculated free-energy changes for the protonation of
Cp*2Co. (B) DFT optimized structure of endo-Cp*Co(η4-C5Me5H)

+

(methyl protons omitted for clarity). (C) The unfavorable reduction
of 2,6-lutidinium by Cp*2Cr with the calculated free energy change.
(D) The favorable protonation of Cp*2Cr by lutidinium with the
calculated free energy change.

Figure 4. X-band 77 K powder EPR spectrum (red) and simulation
(blue) of the isolated purple precipitate (assigned as endo- and exo-
Cp*Co(η4-C5Me5H)

+) from reaction between Cp*2Co and HOTf at
−78 °C (see the Supporting Information for simulation parameters).
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hence much larger than we predict for P3
BFe−NNH (35

kcal/mol), perhaps accounting for its higher stability.52 A
PCET reaction between endo-Cp*Cr(η4-C5Me5H)

+ (BDEcalc =
37 kcal/mol) and [HIPTN3N]MoN2 to generate [HIPTN3N]-
Mo−NNH and Cp*2Cr

+ would be highly exergonic.
Furthermore, we predict a similarly weak BDEC−H for Cp-
protonated cobaltocene, CpCo(η4-C5H6)

+ (BDEcalc = 35 kcal/
mol). These considerations are consistent with the reported
rapid formation of [HIPTN3N]Mo−NNH using either
Cp*2Cr or Cp2Co in the presence of lutidinium acid.58

To close, we have demonstrated catalytic N2-to-NH3
conversion by P3

BFe+ at a much lower driving force (nearly
100 kcal/mol) than originally reported via combination of a
weaker reductant (Cp*2Co) and acid ([Ph2NH2][OTf] or
[PhNH3][OTf]). Significantly improved efficiency for NH3
formation is observed (up to 72% at standard substrate
loading), and by reloading additional substrate at low
temperature a turnover number that is comparatively high for
a synthetic molecular Fe catalyst (84 ± 8 equiv of NH3 per Fe)
has been achieved. Freeze-quench Mössbauer spectroscopy
under turnover conditions reveals differences in the speciation
of P3

BFe compared to previous studies with HBArF4 and KC8,
suggesting changes in the rates of key elementary steps. Using
DFT calculations we have considered the viability of a
decamethylcobaltocene-mediated PCET pathway as an addi-
tional contributor to the previously formulated ET−PT and
PT−ET pathways. Based on our calculations, we propose that
protonated metallocenes should serve as discrete, very reactive
PCET reagents in N2-to-NH3 conversion catalysis. Further-
more, we present preliminary experimental data that suggests
that protonated decamethylcobaltocene can be accessed
synthetically and that such a species may be a potent PCET
reagent. Indeed, the achievement of high efficiency for N2-to-
NH3 conversion by both P3

BFe and various Mo catalysts that
benefit from metallocene reductants raises the intriguing
possibility that metallocene-based PCET reactivity is a
potentially widespread and overlooked mechanism. Efforts are
underway to experimentally probe such pathways.
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