
Tambar, Kano, and Stoltz, Supporting Information 1

Supplemental materials for:

Progress Toward the Total Synthesis of Saudin:

The Development of a Tandem Stille-Oxa-Electrocyclization Reaction

Uttam K. Tambar, Taichi Kano, and Brian M. Stoltz*

The Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical

Engineering, California Institute of Technology, Pasadena, California 91125, USA

Table of Contents:

Materials and Methods 1

Synthesis of Vinyl Stannane 5c 2

Synthesis of Model Stille Product 9 4

Synthesis of Vinyl Iodides 6a, 14, 15, and 16 4

Synthesis of Tandem Stille-Oxa-Electrocyclization Products 3 and 13a-c           10

Molecular Structure and Crystallographic Data for 13c           13

References           25

NMR Spectra           26

Materials and Methods.  Unless stated otherwise, reactions were performed in flame-dried glassware sealed

with rubber septa under a nitrogen atmosphere using dry, deoxygenated solvents.  Commercially obtained

reagents were used as received.  Solvents were dried by passage through an activated alumina column under

argon.  Liquids and solutions were transferred via syringe.  Reaction temperatures were controlled by an

IKAmag temperature modulator.  Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60

F254 precoated plates (0.25 mm) and visualized using a combination of UV, anisaldehyde, ceric ammonium

molybdate, and potassium permanganate staining.  ICN silica gel (particle size 0.032 - 0.063 mm) was used for

flash chromatography. 1H NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) or a Varian

Inova 500 (at 500 MHz) and are reported relative to Me4Si (δ 0.0). Data for 1H NMR spectra are reported as
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follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 13C NMR spectra were

recorded on a Varian Mercury 300 (at 75 MHz), or a Varian Inova 500 (at 125 MHz) and are reported relative

to Me4Si (δ 0.0). Data for 13C NMR spectra are reported in terms of chemical shift.  IR spectra were recorded

on a Perkin Elmer Spectrum BXII spectrometer and are reported in terms of frequency of absorption (cm-1).

High resolution mass spectra were obtained from the California Institute of Technology Mass Spectral Facility.

Synthesis of Vinyl Stannane 5c

O

O

OH
1. NEt3, THF
    Methyl vinyl ketone

2. p-TsOH, PhH
    100 °C, Dean-Stark

(96% yield, 2 steps)
O

O

O7 5a

Enone 5a.  To a cooled (0 °C) solution of methyl tetronic acid 71 (150 g, 1.31 mol) in THF (1.3 L) was slowly

added Et3N (366 mL, 2.63 mol).  Methyl vinyl ketone 8 (131 mL, 1.58 mol) was then added.  After stirring for

30 minutes, the reaction mixture was washed with 1N HCl.  The organic layer was separated and dried over

Na2SO4 and evaporated to provide the conjugate addition product (242.2 g, 1.31 mol) as a yellow oil, which was

used without further purification: 1H NMR (300 MHz, CDCl3) δ 4.73 (d, J = 16.8 Hz, 1H), 4.63 (d, J = 16.8

Hz, 1H), 2.56 (t, J = 7.2 Hz, 2H), 2.12 (s, 3H), 2.00 (m, 2H), 1.31 (s, 3H).

To a solution of this conjugate addition product (242.2 g, 1.31 mol) in benzene (650 mL) was added p-

TsOH (24.9 g, 131 mol).  The mixture was refluxed with azeotropic removal of H2O.  After stirring for 40

hours, the reaction mixture was cooled to room temperature and concentrated.  The resulting oil was dissolved in

CH2Cl2 (300 mL)  and washed with water (200 mL). The aqueous layer was extracted with CH2Cl2 (2 x 40

mL).  The combined organic layers were dried over Na2SO4. After filtration, the residue was concentrated under

reduced pressure. Purification by flash chromatography (2:1 hexanes/EtOAc eluent) provided enone 5a (211 g,

96% yield over 2 steps) as a clear oil: RF 0.40 (1:3 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 5.88 (s,

1H), 5.01 (dd, J = 14.6, 2.1 Hz, 1H), 4.83 (d, J = 14.6 Hz, 1H), 2.60-2.36 (m, 2H), 2.22-1.92 (m, 2H), 1.45 (s,

3H); 13C NMR (75 MHz, CDCl3) δ 196.4, 177.5, 161.6, 122.2, 68.2, 41.3, 32.6, 29.5, 20.7; IR (film) 2940,

1780, 1676 cm-1; HRMS (EI+) calc'd for [C9H10O3]
+:  m/z 166.0630, found 166.0629.
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Br2, NEt3

(97% yield)
O

O

O

Br

5b
O

O

O5a

Bromoenone 5b.  To a cooled solution (0 °C) of enone 5a (5.0 g, 30 mmol) in CH2Cl2 (60 mL) was added a

solution of Br2 (1.7 ml, 33 mmol) in CH2Cl2 (30 mL) in a dropwise fashion.  Following addition, Et3N (4.6 mL,

33 mmol) was added.  After stirring for 5 minutes, the reaction mixture was washed with water (3 x 50 mL).

The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification by

flash chromatography (3:1 hexanes/EtOAc eluent) provided bromoenone 5b (7.16 g, 97% yield) as a clear oil: RF

0.30 (2:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 5.00 (s, 2H), 2.83-2.77 (m, 2H), 2.33-2.14 (m, 2H),

1.58 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 188.6, 176.7, 160.2, 117.8, 69.4, 45.2, 33.3, 29.5, 21.7; IR (film)

2935, 1782, 1689, 1655 cm-1; HRMS (EI+) calc'd for [C9H9O3Br]+:  m/z 243.9735, found 243.9732.

O

O

O

Br

O

O

O

Bu3Sn(Bu3Sn)2
Pd(PPh3)4

PhMe, 100 °C

(43% yield)

5b 5c

Vinyl stannane 5c.  A solution of bromoenone 5b (5.0 g, 20.4 mmol), (Bu3Sn)2 (20.6 mL, 40.8 mmol),

Pd(PPh3)4 (306 mg, 0.265 mmol), and NaHCO3 (8.57g, 102 mol) in toluene (200 mL) was stirred at -78 °C

under reduced pressure for 30 minutes.  The mixture was then stirred at reflux under N2.  After 24 hours, the

reaction mixture was cooled to room temperature and filtered through a celite plug with pentane washing.  The

filtrate was concentrated to an oil, which was purified by flash chromatography (9:1 hexanes/EtOAc eluent) to

give vinyl stannane 5c as a clear oil (4.0 g, 43% yield): RF 0.45 (3:1 hexanes/EtOAc); 1H NMR (300 MHz,

CDCl3) δ 5.03 (d, J = 14.65 Hz, 1H), 4.79 (d, J = 14.65 Hz, 1H), 2.67-2.47 (m, 2H), 2.23 (ddd, J = 13.3, 5.3,

2.1 Hz, 1H), 2.04 (td, J = 13.3, 6.6 Hz, 1H), 1.66-1.58 (m, 3H), 1.48 (s, 3H), 1.47-1.24 (m, 13H), 1.03-0.86 (m,

14H); 13C NMR (75 MHz, CDCl3) δ 178.4, 169.6, 139.5, 69.9, 42.2, 32.1, 29.2, 28.3, 27.2, 26.8, 21.6, 17.3,

13.7, 11.0; IR (film) 1784, 1654 cm-1; HRMS (FAB+) m/z calc'd for [C21H35O3Sn]+: 455.1608, found 455.1603.
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Synthesis of Model Stille Product 9

O

O

O

Bu3Sn Pd(PPh3)4
CuI

DMF, no light

(85% yield)

OO

I

5c8 9

O

O

O

O O

Enone 9.  To a flask containing Pd(PPh3)4(14 mg, 0.012 mmol), vinyl stannane 5c (50 mg, 0.12 mmol), and

vinyl iodide 82 (30 mg, 0.12 mmol) was added DMF (2.5 mL).  CuI (17.5 mg, 0.09 mmol) was added, and the

flask was covered in Aluminum foil.  After stirring for 9 hours, the mixture was diluted with water (10 mL) and

extracted with Et2O (3 x 10 mL).  The combined organic layers were dried over Na2SO4. After filtration, the

residue was concentrated under reduced pressure. Purification by flash chromatography (1:1 hexanes/EtOAc

eluent) provided enone 9 (25.5 mg, 85% yield): RF 0.25 (1:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ

6.62 (ddd, J = 12.2, 1.9, 0.8 Hz, 1H), 6.15 (d, J = 12.2 Hz, 1H), 5.02 (dd, J = 15.0, 2.0 Hz, 1H), 4.72 (dd, J =

15.0, 0.7 Hz, 1H), 3.69 (s, 3H), 2.77-2.53 (m, 2H), 2.32-2.11 (m, 2H), 1.61 (s, 3H); 13C NMR (75 MHz,

CDCl3) δ 195.4, 177.9, 165.5, 158.7, 136.0, 128.7, 125.6, 77.7, 68.6, 51.9, 42.0, 33.0, 29.9, 21.0; IR (film) 2952,

1781, 1722, 1675, 1197, 1179 cm-1; HRMS (EI+) calc'd for [C13H14O5]
+:  m/z 250.0841, found 250.0844.

Synthesis of Vinyl Iodides 6a, 14, 15, and 16

O

O

O

OH
MgBr

THF, 0 °C

(99% yield)10 11

Alcohol 11.  A 3-neck flask was connected to an addition funnel.  ! !The flask was charged with 3-furaldehyde 10

(17.3 mL, 200 mmol) and THF (170 mL), and the solution was cooled (0 °C).  A 0.5M solution of ethynyl

magnesium bromide (500 mL, 250 mmol) was slowly added  from the addition funnel over 2 hours.  Following

addition the cold bath was allowed to warm to room temperature, and the mixture was stirred for 5 hours.  The

reaction mixture was quenched with a saturated aqueous solution of NH4Cl (500 mL).  The mixture was

extracted with Et2O (2 x 400 mL).  The combined organic layers were dried over MgSO4, filtered, and

concentrated under reduced pressure. Purification by flash chromatography (2:1 hexanes/EtOAc eluent)

provided alcohol 11 (25.41 g, 99% yield) as a clear oil: RF 0.25 (3:1 hexanes/EtOAc); 1H NMR (300 MHz,

CDCl3) δ 7.50 (t, J = 0.8 Hz, 1H), 7.37 (t, J = 1.7 Hz, 1H), 6.48 (d, J = 0.8 Hz, 1H), 5.35 (d, J = 1.3 Hz, 1H),
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3.14 (s, 1H), 2.58 (d, J = 2.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 143.7, 140.4, 126.0, 109.2, 83.2, 73.5,

57.0; IR (film) 3293, 1505, 1158, 1021 cm-1; HRMS (EI+) calc'd for [C7H6O2]
+:  m/z 122.0368, found 122.0367.

OO

I1. Dess-Martin Periodinane
    CH2Cl2

2. LiI, AcOH, MeCN

(43% yield, 2 steps) 6a

O

OH

11

Vinyl Iodide 6a.  To a cooled (0 °C) solution of Dess-Martin Periodinane (1.91 g, 4.50 mmol) in CH2Cl2 (18

mL) was added alcohol 11 (500 mg, 4.09 mmol) in CH2Cl2 (3 mL).  After 1 hour the reaction was quenched by

addition of a 1:1 mixture of saturated aqueous NaHCO3 and saturated aqueous Na2S2O3 (20 mL).  The mixture

was extracted with CH2Cl2 (3 x 20 mL).  The combined organic layers were dried over Na2SO4, filtered, and

concentrated under a slight reduction of pressure (produced by a water aspirator) while submerged in a cold bath

(0 °C).  The resulting oil was purified by flash chromatography on silica gel (3:1 petroleum ether/ether eluent) to

provide the volatile ynone product (442 mg, 3.68 mmol) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 8.19

(m, 1H), 7.46 (m, 1H), 6.83 (m, 1H), 3.26 (d, J = 1.2 Hz, 1H).

To a solution of the volatile ynone (5 g, 41.6 mmol) and LiI (6.13 g, 45.8 mmol) in MeCN (42 mL) was

added concentrated AcOH (2.63 mL, 45.8 mmol).  Following addition, the mixture was stirred for 2 hours and

then poured onto ice water (75 mL).  Solid K2CO3 was added until bubbling ceased, and the mixture was

extracted with Et2O (2 x 75 mL).  The combined organic layers were dried over MgSO4. After filtration, the

residue was concentrated under reduced pressure. Purification by flash chromatography (10:1 pentane/ether

eluent) provided vinyl iodide 6a (5.46 g, 43% yield over 2 steps) as a yellow solid: RF 0.29 (5:1 pentane/ether);
1H NMR (300 MHz, CDCl3) δ 8.07 (dd, J = 1.4, 0.8 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.47 (dd, J = 1.9, 1.4

Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 6.85 (dd, J = 1.9, 0.8 Hz, 1H); 13C NMR (75 MHz, C6D6) δ 183.0, 147.7,

144.8, 133.9, 129.0, 109.3, 91.6; IR (film) 3130, 1655, 1295 cm-1; HRMS (EI+) calc'd for [C7H5O2I]
+:  m/z

247.9335, found 247.9346.
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HO 1. TBDPSCl, DMAP
    NEt3, CH2Cl2

2. n-BuLi, THF, -78 °C
2. 3-Furaldehyde
4. Jones' reagent

(51% yield. 4 steps)

TBDPSO

O

O

17 18

Ynone 18.  To a solution of alcohol 17 (1.73 mL, 22.9 mmol), t-butyldiphenylsilyl chloride (5.72 g, 22 mmol),

and DMAP (98 mg, 0.8 mmol) in CH2Cl2 (20 mL) was added a Et3N (3.1 mL, 022 mmol).  After stirring for 1

hour, the reaction was washed with H2O (20 mL).  The organic layer was dried over MgSO4, filtered, and

concentrated.  The crude product was dissolved in benzene and concentrated to azeotropically remove water,

and the resulting protected alcohol was taken on to the next step without further purification.

The product from the previous step was dissolved in THF (40 mL) and cooled to -78 °C. A 2.5 M

solution of n-butyllithium in hexanes (8.8 mL, 22 mmol) was slowly added.  After 20 minutes, 3-furaldehyde

(1.9 mL, 22 mmol) was slowly added.  Following addition, the mixture was warmed to room temperature and

stirred for 10 minutes.  The reaction was quenched with 1N Hcl (40 mL).  The mixture was concentrated to

remove THF, and the resulting solution was extracted with ether (2 x 30 mL).  The combined organic layers were

dried over Na2SO4, filtered, and concentrated, and the resulting coupled alcohol was taken onto the next step

without further purification.

The product from the previous step was dissolved in acetone (40 mL) and cooled to 0 °C. To this

solution was added a 2.67 M solution of Jones' reagent (15 mL, 40 mmol).  After stirring for 10 minutes, i-PrOH

(5 mL) was added to quench the remaining oxidant.  The reaction was diluted with ether (100 mL) and extracted

with a 1:1 mixture of brine and saturated aqueous NaHCO3 (100 mL).  The organic layer was dried over

Na2SO4, filtered, and concentrated. Purification by flash chromatography (30:1 hexanes/EtOAc eluent) provided

ynone 18 (4.47 g, 51% yield): RF 0.56 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.10 (dd, J = 1.3,

0.8 Hz, 1H), 7.75-7.66 (m, 5H), 7.48-7.35 (m, 6H), 6.81 (dd, J = 1.9, 0.8 Hz, 1H), 3.88 (t, J = 6.6 Hz, 2H), 2.68

(t, J = 6.5 Hz, 2H), 1.08 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 171.3, 150.6, 144.6, 135.7, 135.0, 133.4, 130.1,

129.8, 129.4, 128.0, 127.9, 108.6, 90.6, 80.8, 61.7, 27.0, 26.8, 23.4, 19.4; IR (film) 2931, 2858, 2217, 1642,

1428, 1308, 1164, 1112 cm-1; HRMS (EI+) calc'd for [C25H26O3Si]+:  m/z 402.1651, found 402.1664.
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O

O

I

TBDPSO

TBDPSO

O

O

LiI, AcOH

MeCN, 70 °C

(57% yield)

18 14

Vinyl Iodide 14.  To a solution of ynone 18 (402 mg, 1.0 mmol) and LiI (147 g, 1.1 mmol) in MeCN (1.0 mL)

was added concentrated AcOH (63 µL, 1.1 mmol).  Following addition, the mixture was refluxed for 20 hours.

The mixture was concentrated and purified by flash chromatography (50:1 to 4:1 hexanes/EtOAc eluent) to

provide vinyl iodide 14 (302 mg, 57% yield): RF 0.45 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, C6D6) δ 7.75-

7.68 (m, 4H), 7.45 (dd, J = 1.3, 0.8 Hz, 1H), 7.25-7.19 (m, 6H), 6.77 (t, J = 1.7 Hz, 1H), 6.72 (t, J = 1.1 Hz,

1H), 6.68 (dd, J = 1.9, 0.8 Hz, 1H), 3.71 (t, J = 6.0 Hz, 2H), 2.61 (dt, J = 5.9, 0.9 Hz, 2H), 1.10 (s, 9H); 13C

NMR (75 MHz, C6D6) δ 182.5, 147.4, 144.7, 136.4, 136.3, 135.6, 134.1, 132.0, 130.5, 130.2, 129.2, 128.5,

128.2, 113.6, 109.6, 62.7, 51.2, 27.4, 27.3, 27.1, 19.8, 19.6; IR (film) 2930, 2857, 1662, 1591, 1428, 1157, 1112

cm-1; HRMS (FAB+) calc'd for [C25H28O3SiI]+:  m/z 531.0853, found 531.0856.

O OTBDPS
1. CBr4, PPh3
2. n-BuLi, -78 °C
    HMPA, THF

3.

(44% yield, 3 steps)

O
N

O

TBDPSO

O

O

19

20

21

MeO

Ynone 21.  To a cooled (0 °C) solution of PPh3 (8.53 g, 32.5 mmol) in CH2Cl2 (10 mL) was added a solution of

CBr4 (5.4 g, 16.3 mmol) in CH2Cl2 (4 mL).  After 10 minutes aldehyde 193 (2.66 g, 8.13 mmol) in CH2Cl2 (6

mL) was slowly added.  Following addition, the reaction was stirred for 4 hours at 0 °C.  A spatula full of celite

was added to the reaction mixture, which was then slowly poured onto a stirring solution of celite in petroleum

ether (500 mL).  The mixture was filtered, and the filtrate was concentrated and purified by flash

chromatography on silica gel (20:1 petroleum ether/EtOAc eluent) to provide the vinyl dibromide (3.46 g, 91%

yield) as a clear oil: 1H NMR (300 MHz, CDCl3) δ 7.66 (m, 4H), 7.41 (m, 6H), 6.27 (d, J = 8.7 Hz, 1H), 3.55

(m, 2H), 2.69 (m, 1H), 1.06 (s, 9H), 1.04 (d, J = 6.9 Hz, 3H).

To a cooled (-78 °C) solution of the resulting vinyl dibromide (2.29 mg, 4.91 mmol) in THF (25 mL) was

slowly added a 2.5 M solution of n-butyllithium in hexanes (4.3 mL, 10.8 mmol).  After 15 minutes the mixture

was warmed to 0 °C.  Following addition, the reaction was stirred for 30 minutes at this temperature and then
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cooled back to -78 °C. HMPA (2.5 µL) was added, and the mixture was stirred for 20 minutes.  The reaction

was then warmed to -40 °C, and a solution of Weinreb amide 204 (1.73 g, 11.1 mmol) in THF (12.5 mL) was

slowly added.  The cold bath was allowed to warm to room temperature, and after 2.5 hours the reaction was

quenched with saturated aqueous NH4Cl (50 mL).  The mixture was extracted with ether (3 x 50 mL).  The

combined organic layers were dried over MgSO4, filtered, and concentrated. Purification by flash

chromatography (15:1 hexanes/EtOAc eluent) provided ynone 21 (989.2 mg, 48% yield, 44% yield over 2

steps) as a clear oil: RF 0.54 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.08 (dd, J = 1.3, 0.8 Hz,

1H), 7.70-7.65 (m, 4H), 7.47-7.34 (m, 7H), 6.80 (dd, J = 1.9, 0.8 Hz, 1H), 3.78 (dd, J = 9.8, 6.1 Hz, 1H), 3.67

(dd, J = 9.7, 6.5 Hz, 1H), 2.95-2.82 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H), 1.07 (s, 9H); 13C NMR (75 MHz,

CDCl3) δ 171.4, 150.6, 144.6, 135.8, 133.4, 133.4, 130.1, 129.4, 128.0, 108.6, 95.1, 80.6, 77.4, 67.0, 29.7, 27.0,

19.5, 16.7; IR (film) 2932, 2858, 2215, 1643, 1113 cm-1; HRMS (EI+) calc'd for [C26H27O3Si]+:  m/z 415.1730,

found 415.1727.

O

O

I

TBDPSO

TBDPSO

O

O

LiI

AcOH

(74% yield)

21 15

Vinyl Iodide 15.  To a solution of ynone 21 (387 mg, 0.929 mmol) in concentrated AcOH (10 mL) was added

LiI (250 mg, 1.86 mmol).  Following addition, the mixture was stirred for 10 hours and then poured onto ice

water (50 mL).  Solid K2CO3 was added until bubbling ceased, and the mixture was extracted with Et2O (4 x 50

mL).  The combined organic layers were dried over Na2SO4. After filtration, the residue was concentrated under

reduced pressure. Purification by flash chromatography (20:1 hexanes/EtOAc eluent) provided vinyl iodide 15
(373.5 mg, 74% yield) as a yellow oil: RF 0.50 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, C6D6) δ 7.78-7.71

(m, 4H), 7.54 (dd, J = 1.3, 0.8 Hz, 1H), 7.27-7.20 (m, 6H), 6.83 (d, J = 0.8 Hz, 1H), 6.79 (t, J = 1.7 Hz, 1H),

6.70 (dd, J = 1.9, 0.8 Hz, 1H), 3.68 (dd, J = 10.2, 7.6 Hz, 1H), 3.51 (dd, J = 10.1, 5.1 Hz, 1H), 2.31-2.19 (m,

1H), 1.12 (s, 9H), 0.82 (d, J = 6.6 Hz, 3H); 13C NMR (75 MHz, C6D6) δ 183.4, 147.7, 144.7, 136.5, 136.3,

136.3, 134.3, 134.1, 131.1, 130.5, 130.5, 130.5, 129.0, 128.5, 123.4, 109.6, 67.9, 51.2, 27.4, 27.4, 19.9, 17.9; IR

(film) 2931, 2858, 1664, 1590, 1156, 1112 cm-1; HRMS (FAB+) calc'd for [C26H30O3SiI]+:  m/z 545.1009, found

545.0997.
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OH
1. n-BuLi, THF, -78 °C
2. 3-Furaldehyde
    -78 °C to rt

3. Jones Reagent
Acetone, 0 °C

(37% yield)

O

O

O

22 23

Ynone 23.  Alcohol 22 (3.14 mL, 40 mmol) was dissolved in THF (80 mL) and cooled to -78 °C. A 2.5 M

solution of n-butyllithium in hexanes (32 mL, 80 mmol) was slowly added.  After 20 minutes, 3-furaldehyde

(3.63 mL, 42 mmol) was slowly added.  Following addition, the mixture was warmed to room temperature and

stirred for 10 minutes.  The reaction was quenched with 1N HCl (100).  The mixture was concentrated to

remove THF, and the resulting solution was extracted with ether (2 x 100 mL).  The combined organic layers

were dried over Na2SO4, filtered, and concentrated.  The resulting coupled alcohol was taken onto the next step

without further purification.

The product from the previous step was dissolved in acetone (100 mL) and cooled to 0 °C. To this

solution was added a 2.67 M solution of Jones' reagent (35 mL, 93 mmol).  After stirring for 10 minutes, i-PrOH

(5 mL) was added to quench the remaining oxidant.  The reaction was diluted with ether (150 mL) and extracted

with a 1:1 mixture of brine and saturated aqueous NaHCO3 (150 mL).  The organic layer was dried over

Na2SO4, filtered, and concentrated. Purification by flash chromatography (9:1 hexanes/EtOAc eluent) provided

ynone 23 (2.37 g, 37% yield): RF 0.37 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.19 (dd, J = 1.6,

0.8 Hz, 1H), 7.49 (t, J = 1.7 Hz, 1H), 6.83 (dd, J = 1.9, 0.8 Hz, 1H), 2.48 (s, 3H); 13C NMR (75 MHz, CDCl3)

δ 183.1, 169.4, 151.4, 145.4, 128.6, 108.3, 83.6, 83.0, 32.8; IR (film) 3133, 1681, 1641, 1556, 1510, 1305, 1200,

1156 cm-1; HRMS (EI+) calc'd for [C9H6O3]
+:  m/z 162.0317, found 162.0321.

O

O

O

O

O

I

O

LiI, AcOH

MeCN, 70 °C

(25% yield)
23 16

Vinyl Iodide 16.  To a solution of ynone 23 (2.37 g, 14.6 mmol) and LiI (2.15 g, 16.1 mmol) in MeCN (160

mL) was added concentrated AcOH (922 µL, 1.1 mmol).  Following addition, the mixture was refluxed for 20

hours.  The mixture was concentrated and purified by flash chromatography (6:1 hexanes/EtOAc eluent) to

provide vinyl iodide 16 (1.0 g, 25% yield): RF 0.27 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, C6D6) δ 6.86

(dd, J = 1.3, 0.8 Hz, 1H), 6.65 (dd, J = 2.0, 1.5 Hz, 1H), 6.50 (s, 1H), 6.41 (dd, J = 2.1, 0.8 Hz, 1H), 2.21 (s,

3H); 13C NMR (75 MHz, C6D6) δ 198.8, 180.7, 148.5, 144.8, 135.4, 127.4, 118.1, 109.2, 25.6; IR (film) 3134,

1706, 1654, 1576, 1512, 1156 cm-1; HRMS (EI+) calc'd for [C9H7O3I]
+:  m/z 289.9440, found 289.9432.
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Synthesis of Tandem Stille-Oxa-Electrocyclization Products 3 and 13a-c

O

O

I O
Bu3Sn

O
O

Pd(PPh3)4
CuI

DMF, no light

(60% yield)

6a 5c 3

O

O

O
O O

Polycycle 3. To a mixture containing Pd(PPh3)4 (1.16 g, 1.0 mmol), vinyl stannane 5c (9.0 g, 20.0 mmol), and

vinyl iodide 6a (6.13 g, 24.7 mmol) was added DMF (100 mL).  Freshly recrystalized CuI (3.81 g, 20.0 mmol)

was added, and the flask was cooled to -78 °C under vacuum.  The reaction mixture was kept in the dark.  After

30 minutes of degassing, the mixture was allowed to warm to room temperature under N2.  After stirring for 12

hours, the mixture was diluted with water (200 mL) and extracted with Et2O (2 x 200 mL).  The combined

organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure.  Purification by flash

chromatography (3:2 hexanes/EtOAc eluent) provided polycycle 3 (3.37g, 60% yield) as an orange solid: RF

0.31 (1:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.64 (s, 1H), 7.45 (m, 1H), 7.35 (d, J = 6.6 Hz, 1H),

6.54 (m, 1H), 5.89 (d, J = 6.6 Hz, 1H), 4.80 (d, J = 11.1 Hz, 1H), 4.08 (d, J = 11.1 Hz, 1H), 2.51 (m, 2H), 2.06

(m, 2H), 1.49 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 193.4, 178.8, 153.6, 144.4, 143.1, 134.5, 120.8, 118.0,

107.2, 99.2, 85.6, 71.6, 44.5, 32.9, 27.7, 14.3; 3131, 2947, 1782, 1673, 1561, 1526, 1160, 1015 cm-1; HRMS

(EI+) calc'd for [C16H14O5]
+:  m/z 286.0841, found 286.0838.

O

O

I

O
Bu3Sn

O
O

Pd(PPh3)4

DMF, CuI

92% yield

TBDPSO

14 5c 13a

O

O

O
O O

TBDPSO

Polycycle 13a.  Vinyl stannane 5c (1.78 g, 3.90 mmol) and vinyl iodide 14 (2.07 g, 3.90 mmol) were subjected

to the tandem Stille-oxa-electrocyclization conditions, as described above for the synthesis of polycycle 3.

Purification by flash chromatography (3:1 hexanes/EtOAc eluent) provided polycycle 13a (2.05g, 3.59 mmol) as

an orange solid: RF 0.26 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.71 (s, 1H), 7.66-7.61 (m, 4H),

7.45-7.32 (m, 7H), 6.46 (d, J = 2.1 Hz, 1H), 5.82 (s, 1H), 4.74 (d, J = 11.1 Hz, 1H), 3.97-3.88 (m, 3H), 3.10

(dt, J = 2.4, 6 Hz, 2H), 2.68-2.37 (m, 2H), 2.04-2.00 (m, 2H), 1.54 (s, 3H), 1.07 (s, 9); 13C NMR (75 MHz,

CDCl3) δ 194.7, 179.2, 151.5, 144.3, 143.1, 135.6, 133.7, 133.6, 129.7, 172.7, 120.7, 113.9, 107.3, 105.5, 86.5,

71.53, 63.3, 44.9, 36.6, 35.0, 27.8, 26.9, 19.3, 14.9; IR (film) 2932, 2858, 1785, 1659, 1112 cm-1; HRMS

(FAB+) m/z calc'd for [C34H37O6Si]+: 569.2359, found 569.2346.
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O

O

I

TBDPSO

15

O
Bu3Sn

O
O

Pd(PPh3)4

DMF, CuI

78% yield
5c 13b

O

O

O
O O

TBDPSO

Polycycle 13b (2 diastereomers).  Vinyl stannane 5c (611 mg, 1.34 mmol) and vinyl iodide 29 (665 mg, 1.22

mmol) were subjected to the tandem Stille-oxa-electrocyclization conditions, as described above for the

synthesis of polycycle 3.  Purification by flash chromatography (3:1 hexanes/EtOAc eluent) provided a 1:1

diastereomeric mixture of polycycle 23 (554 mg, 78% yield) as an orange oil. Diastereomer 1: RF 0.27 (3:1

hexanes/EtOAc); 1H NMR (300 MHz, C6D6) δ 7.71-7.63 (m, 4H), 7.28 (d, J = 0.8 Hz, 1H); 7.21-7.18 (m, 6H),

6.85 (t, J = 1.7 Hz, 1H), 6.15 (s, 1H), 6.06 (dd, J = 1.9, 0.8 Hz, 1H), 5.74 (s, 1H), 4.80-4.66 (m, 1H), 4.28 (d, J

= 11.0 Hz, 1H), 3.69-3.55 (m, 2H), 3.30 (d, J = 11.0 Hz, 1H), 2.31-2.04 (m, 2H), 1.54-1.43 (m, 2H), 1.40 (s,

3H), 1.18-1.10 (m, 2H), 1.06 (s, 9H); 13C NMR (125 MHz, C6D6) δ 195.2, 178.8, 153.7, 152.3, 144.5, 143.4,

136.3, 136.2, 134.3, 134.2, 130.4, 130.3, 128.7, 128.5, 128.4, 128.3, 121.7, 116.5, 107.9, 99.8, 87.3, 71.0, 67.6,

45.5, 36.2, 36.0, 28.4, 27.3, 19.8, 15.6, 15.4; IR (film) 2930, 1784, 1654, 1522, 1110 cm-1; HRMS (FAB+) calc'd

for [C35H39O6Si]+:  m/z 583.2516, found 583.2534. Diastereomer 2: RF 0.23 (3:1 hexanes/EtOAc); 1H NMR

(300 MHz, C6D6) d 7.84-7.75 (m, 4H), 7.28-7.20 (m, 6H), 6.83 (t, J = 1.8 Hz, 1H), 6.14 (s, 1H), 6.07 (t, J = 1.1

Hz, 1H), 5.93 (s, 1H), 4.72-4.62 (m, 1H), 4.47 (d, J = 11.0 Hz, 1H), 3.91 (d, J = 5.8 Hz, 2H), 3.48 (d, J = 11.0

Hz, 1H), 2.15-1.99 (m, 2H), 1.44-1.36 (m, 2H), 1.30 (s, 3H), 1.16 (s, 9H), 1.05 (d, J = 6.9 Hz, 3H); 13C NMR

(125 MHz, C6D6) d 194.7, 178.7, 155.2, 152.3, 144.6, 143.5, 136.5, 136.4, 134.3, 134.3, 130.5, 121.7, 115.2,

107.7, 101.0, 87.5, 74.9, 71.1, 68.6, 45.3, 36.2, 35.8, 33.4, 28.0, 27.6, 27.5, 20.0, 15.9, 15.2; IR (film) 2931,

1784, 1657, 1515, 1112 cm-1; HRMS (FAB+) calc'd for [C35H39O6Si]+:  m/z 583.2516, found 583.2533.

O

O

I

O O
Bu3Sn

O
O

Pd(PPh3)4

DMF, CuI

88% yield
16 5c 13c

O

O

O
O O

O

Polycycle 13c.  Vinyl stannane 5c (1.57 g, 3.45 mmol) and vinyl iodide 16 (1.0 g, 3.45 mmol) were subjected to

the tandem Stille-oxa-electrocyclization conditions, as described above for the synthesis of polycycle 3.

Purification by flash chromatography (2:1 hexanes/EtOAc eluent) provided polycycle 13c (1.0g, 88% yield) as

an orange solid: RF 0.26 (3:1 hexanes/EtOAc); RF 0.24 (1:1 hexanes/EtOAc); 1H NMR (300 MHz, C6D6) δ 6.78

(t, J = 1.7 Hz, 1H), 6.18 (s, 1H), 5.90 (dd, J = 1.9, 0.8 Hz, 1H), 5.36 (s, 1H), 4.19 (d, J = 11.4 Hz, 1H), 3.20 (d,
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J = 11.2 Hz, 1H), 2.17 (s, 3H), 1.95-1.88 (m, 2H), 1.40-1.22 (m, 2H), 1.18 (s, 3H); 13C NMR (75 MHz, C6D6)

δ 201.9, 192.8, 178.1, 154.9, 149.9, 145.1, 144.8, 144.2, 107.7, 98.3, 86.3, 70.5, 44.8, 33.4, 29.1, 27.7, 26.6,

14.4; IR (film) 3135, 2918, 1782, 1705, 1668, 1560, 1519, 1499, 1161 cm-1; HRMS (EI+) calc'd for [C18H16O6]
+:

m/z 328.0947, found 328.0946.
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Molecular Structure and Crystallographic Data for 13c

Figure S01.  Pyran 13c is shown with 50% probability ellipsoids.  Crystallographic data have been deposited

at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge,

by quoting the publication citation and the deposition number 201414.

13C
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Table 1.  Crystal data and structure refinement for13C (CCDC 201414).
Empirical formula C18H16O6

Formula weight 328.31
Crystallization Solvent Hexanes/ethylacetate
Crystal Habit Fragment
Crystal size 0.28 x 0.22 x 0.15 mm3

Crystal color Yellow
Data Collection

Preliminary Photos Rotation
Type of diffractometer Bruker SMART 1000
Wavelength 0.71073 Å MoKα
Data Collection Temperature 98(2) K
θ range for 7975 reflections used
in lattice determination 2.26 to 28.15°
Unit cell dimensions a = 12.3799(11) Å

b = 7.2521(7) Å β= 101.892(2)°
c = 17.2138(15) Å

Volume 1512.3(2) Å3

Z 4
Crystal system Monoclinic
Space group P21/n
Density (calculated) 1.442 Mg/m3

F(000) 688
Data collection program Bruker SMART v5.054
θ range for data collection 1.86 to 28.22°
Completeness to θ = 28.22° 94.4 %
Index ranges -15 ≤ h ≤ 16, -9 ≤ k ≤ 9, -22 ≤ l ≤ 21
Data collection scan type ω scans at 5 φ settings
Data reduction program Bruker SAINT v6.022
Reflections collected 21320
Independent reflections 3525 [Rint= 0.0530]

Absorption coefficient 0.109 mm-1

Absorption correction None
Max. and min. transmission 0.9838 and 0.9701
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Table 1 (cont.)
Structure solution and Refinement

Structure solution program SHELXS-97 (Sheldrick, 1990)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Difference Fourier map
Structure refinement program SHELXL-97 (Sheldrick, 1997)
Refinement method Full matrix least-squares on F2

Data / restraints / parameters 3525 / 0 / 281
Treatment of hydrogen atoms Unrestrained
Goodness-of-fit on F2 1.948
Final R indices [I>2σ(I),  2658 reflections] R1 = 0.0425, wR2 = 0.0689
R indices (all data) R1 = 0.0606, wR2 = 0.0710
Type of weighting scheme used Sigma
Weighting scheme used w=1/σ2(Fo2)
Max shift/error 0.000
Average shift/error 0.000
Largest diff. peak and hole 0.376 and -0.393 e.Å-3

Special Refinement Details
Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of fit

(S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2.
The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is not
relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically about
twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix.  The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between
esds in cell parameters are only used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell esds is
used for estimating esds involving l.s. planes.
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Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement
parameters (Å2x 103) for 13C (CCDC 201414).  U(eq) is defined as the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________

x y z Ue q
________________________________________________________________________________
O(1) 7557(1) -202(1) -1544(1) 32(1)
O(2) 9763(1) 1794(1) -583(1) 23(1)
O(3) 9007(1) 2746(1) 3057(1) 27(1)
O(4) 8289(1) 483(1) 2230(1) 22(1)
O(5) 7079(1) 2940(1) 971(1) 18(1)
O(6) 3873(1) 3651(2) 1211(1) 39(1)
C(1) 6423(1) 1692(2) -309(1) 20(1)
C(2) 7531(1) 1661(2) -435(1) 18(1)
C(3) 8392(1) 1951(2) 179(1) 17(1)
C(4) 9524(1) 2132(2) 62(1) 18(1)
C(5) 10385(1) 2853(2) 743(1) 22(1)
C(6) 10145(1) 2438(2) 1559(1) 21(1)
C(7) 8975(1) 3043(2) 1635(1) 17(1)
C(8) 8765(1) 2161(2) 2391(1) 21(1)
C(9) 8083(1) 134(2) 1380(1) 20(1)
C(10) 8135(1) 2030(2) 997(1) 17(1)
C(11) 6232(1) 2420(2) 372(1) 18(1)
C(12) 5164(1) 2845(2) 541(1) 18(1)
C(13) 4133(1) 2958(2) 1(1) 22(1)
C(14) 3386(1) 3403(2) 410(1) 23(1)
C(15) 4958(1) 3270(2) 1271(1) 25(1)
C(16) 7661(1) 1354(2) -1282(1) 22(1)
C(17) 7785(2) 2990(2) -1776(1) 29(1)
C(18) 8853(1) 5134(2) 1645(1) 22(1)
________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for  13C (CCDC 201414).
_______________________________________________________________________________
O(1)-C(16) 1.2118(16)
O(2)-C(4) 1.2302(15)
O(3)-C(8) 1.2008(15)
O(4)-C(8) 1.3562(17)
O(4)-C(9) 1.4550(16)
O(5)-C(11) 1.3639(15)
O(5)-C(10) 1.4564(16)
O(6)-C(15) 1.3551(18)
O(6)-C(14) 1.3979(19)
C(1)-C(11) 1.3495(19)
C(1)-C(2) 1.433(2)
C(1)-H(1) 0.947(14)
C(2)-C(3) 1.3548(18)
C(2)-C(16) 1.5151(19)
C(3)-C(4) 1.4630(19)
C(3)-C(10) 1.5061(18)
C(4)-C(5) 1.507(2)
C(5)-C(6) 1.5238(19)
C(5)-H(5A) 1.013(14)
C(5)-H(5B) 0.982(15)
C(6)-C(7) 1.5453(19)
C(6)-H(6A) 0.963(14)
C(6)-H(6B) 1.007(14)
C(7)-C(8) 1.5191(19)
C(7)-C(10) 1.5352(18)
C(7)-C(18) 1.524(2)
C(9)-C(10) 1.5325(19)
C(9)-H(9A) 0.956(15)
C(9)-H(9B) 1.028(14)
C(11)-C(12) 1.4439(19)
C(12)-C(15) 1.367(2)
C(12)-C(13) 1.4186(19)
C(13)-C(14) 1.313(2)
C(13)-H(13) 0.963(14)
C(14)-H(14) 0.706(15)
C(15)-H(15) 0.951(15)
C(16)-C(17) 1.487(2)
C(17)-H(17A) 0.951(18)
C(17)-H(17B) 1.000(17)
C(17)-H(17C) 0.990(17)
C(18)-H(18A) 1.024(15)
C(18)-H(18B) 0.972(15)
C(18)-H(18C) 0.986(15)

C(8)-O(4)-C(9) 109.86(10)
C(11)-O(5)-C(10) 116.28(10)
C(15)-O(6)-C(14) 105.53(12)
C(11)-C(1)-C(2) 118.85(14)
C(11)-C(1)-H(1) 118.0(8)
C(2)-C(1)-H(1) 122.5(8)
C(3)-C(2)-C(1) 120.16(13)
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C(3)-C(2)-C(16) 123.44(13)
C(1)-C(2)-C(16) 116.37(12)
C(2)-C(3)-C(4) 121.86(12)
C(2)-C(3)-C(10) 116.87(12)
C(4)-C(3)-C(10) 121.25(12)
O(2)-C(4)-C(3) 121.49(13)
O(2)-C(4)-C(5) 120.57(13)
C(3)-C(4)-C(5) 117.86(12)
C(4)-C(5)-C(6) 114.14(12)
C(4)-C(5)-H(5A) 105.8(8)
C(6)-C(5)-H(5A) 110.0(8)
C(4)-C(5)-H(5B) 108.1(8)
C(6)-C(5)-H(5B) 109.9(8)
H(5A)-C(5)-H(5B) 108.6(11)
C(5)-C(6)-C(7) 112.68(12)
C(5)-C(6)-H(6A) 109.4(8)
C(7)-C(6)-H(6A) 108.0(8)
C(5)-C(6)-H(6B) 107.4(8)
C(7)-C(6)-H(6B) 110.9(8)
H(6A)-C(6)-H(6B) 108.5(11)
C(8)-C(7)-C(10) 101.65(11)
C(8)-C(7)-C(18) 111.96(12)
C(10)-C(7)-C(18) 115.50(12)
C(8)-C(7)-C(6) 106.35(11)
C(10)-C(7)-C(6) 108.23(11)
C(18)-C(7)-C(6) 112.29(12)
O(3)-C(8)-O(4) 121.56(13)
O(3)-C(8)-C(7) 128.07(13)
O(4)-C(8)-C(7) 110.30(11)
O(4)-C(9)-C(10) 105.25(11)
O(4)-C(9)-H(9A) 107.7(9)
C(10)-C(9)-H(9A) 111.4(9)
O(4)-C(9)-H(9B) 111.4(8)
C(10)-C(9)-H(9B) 110.5(8)
H(9A)-C(9)-H(9B) 110.5(11)
O(5)-C(10)-C(3) 110.50(10)
O(5)-C(10)-C(7) 106.03(10)
C(3)-C(10)-C(7) 116.40(11)
O(5)-C(10)-C(9) 107.60(11)
C(3)-C(10)-C(9) 113.81(11)
C(7)-C(10)-C(9) 101.72(11)
C(1)-C(11)-O(5) 121.35(13)
C(1)-C(11)-C(12) 126.13(13)
O(5)-C(11)-C(12) 112.43(11)
C(15)-C(12)-C(13) 106.02(13)
C(15)-C(12)-C(11) 125.81(13)
C(13)-C(12)-C(11) 128.15(13)
C(14)-C(13)-C(12) 107.52(14)
C(14)-C(13)-H(13) 124.6(9)
C(12)-C(13)-H(13) 127.9(9)
C(13)-C(14)-O(6) 110.62(15)
C(13)-C(14)-H(14) 136.8(13)
O(6)-C(14)-H(14) 112.3(13)
O(6)-C(15)-C(12) 110.27(14)
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O(6)-C(15)-H(15) 117.5(9)
C(12)-C(15)-H(15) 132.2(9)
O(1)-C(16)-C(2) 118.03(13)
O(1)-C(16)-C(17) 123.07(14)
C(2)-C(16)-C(17) 118.53(13)
C(16)-C(17)-H(17A) 108.8(10)
C(16)-C(17)-H(17B) 111.6(9)
H(17A)-C(17)-H(17B) 108.0(14)
C(16)-C(17)-H(17C) 112.2(9)
H(17A)-C(17)-H(17C) 107.1(13)
H(17B)-C(17)-H(17C) 108.9(13)
C(7)-C(18)-H(18A) 109.3(8)
C(7)-C(18)-H(18B) 111.6(8)
H(18A)-C(18)-H(18B) 110.3(12)
C(7)-C(18)-H(18C) 108.4(8)
H(18A)-C(18)-H(18C) 109.7(12)
H(18B)-C(18)-H(18C) 107.5(12)
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Table 4.   Anisotropic displacement parameters  (Å2x 104 ) for 13C (CCDC
201414).  The anisotropic displacement factor exponent takes the form: -
2π2  [ h2  a*2U 1 1  + ... + 2 h k a* b* U1 2 ]
______________________________________________________________________________

U11 U22 U33 U23 U13 U12

______________________________________________________________________________
O(1) 418(7) 297(6) 249(6) -92(5) 72(5) -20(5)
O(2) 260(6) 276(6) 180(6) 23(4) 93(5) 30(5)
O(3) 301(6) 360(6) 136(6) -24(5) 30(5) 22(5)
O(4) 269(6) 256(6) 146(5) 28(4) 46(4) -23(5)
O(5) 162(5) 229(5) 155(5) -18(4) 26(4) 11(4)
O(6) 329(7) 498(8) 371(7) 25(6) 133(6) 42(6)
C(1) 194(8) 211(8) 173(8) 14(6) 1(7) -24(6)
C(2) 248(8) 126(7) 164(8) 9(6) 48(6) 5(6)
C(3) 213(8) 148(7) 151(7) 7(6) 39(6) 16(6)
C(4) 236(8) 154(7) 168(8) 44(6) 59(6) 28(6)
C(5) 194(9) 256(9) 220(8) 8(7) 61(7) -4(7)
C(6) 186(8) 250(9) 167(8) 1(6) 13(7) -14(7)
C(7) 167(8) 212(8) 135(7) -3(6) 22(6) 0(6)
C(8) 167(8) 257(8) 195(8) 10(6) 34(6) 40(6)
C(9) 216(9) 234(8) 152(8) 7(6) 42(7) -15(7)
C(10) 154(7) 188(7) 165(7) 7(6) 45(6) 26(6)
C(11) 197(8) 162(7) 161(7) 31(6) 19(6) -21(6)
C(12) 206(8) 160(7) 184(8) 13(6) 40(6) -20(6)
C(13) 241(9) 205(8) 216(9) 33(6) 25(7) -47(7)
C(14) 113(9) 313(9) 256(9) 79(7) 35(7) 21(7)
C(15) 195(9) 326(9) 236(9) 5(7) 47(7) 30(7)
C(16) 189(8) 270(9) 177(8) -14(6) 15(6) 19(7)
C(17) 360(11) 336(10) 175(9) 44(7) 42(8) 8(9)
C(18) 228(9) 234(8) 207(9) -31(7) 36(7) -18(7)
______________________________________________________________________________
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Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement
parameters (Å2x 10 3) for 13C (CCDC 201414).
________________________________________________________________________________

x y z Uiso
________________________________________________________________________________
H(1) 5805(11) 1389(18) -713(8) 19(4)
H(5A) 10412(11) 4230(20) 661(8) 28(4)
H(5B) 11101(12) 2324(19) 701(8) 25(4)
H(6A) 10670(12) 3082(19) 1959(8) 23(4)
H(6B) 10250(11) 1070(20) 1653(8) 19(4)
H(9A) 7364(13) -399(19) 1229(8) 28(4)
H(9B) 8668(12) -733(19) 1235(8) 22(4)
H(13) 3987(12) 2801(19) -567(9) 28(4)
H(14) 2817(13) 3610(20) 328(9) 27(5)
H(15) 5430(12) 3399(19) 1778(9) 27(4)
H(17A) 7096(15) 3620(20) -1906(10) 47(5)
H(17B) 8001(13) 2630(20) -2283(10) 44(5)
H(17C) 8333(13) 3880(20) -1492(9) 38(5)
H(18A) 8984(11) 5666(19) 1121(9) 26(4)
H(18B) 8131(13) 5499(19) 1731(8) 25(4)
H(18C) 9410(12) 5627(19) 2091(9) 27(4)
________________________________________________________________________________
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