Group 3 Dialkyl Complexes with Tetradequate (L, L, N, O; L = N, O, S)
Monoanionic Ligands – Synthesis and Reactivity

Smaranda C. Marinescu, Theodor Agapie, Michael W. Day, and John E. Bercaw*

Supporting Information

Table of Contents

Figure 1. 1H NMR spectra of 7a and 8a at room temperature…………………………1
Figure 2. Variable temperature 1H NMR spectroscopy studies of 7a…………………………2
Figure 3. 1H NMR spectrum of 11 at -45 °C…………………………………………………3
Figure 4. 1H- 1H COSY spectrum of 11 at -45 °C…………………………………………4
Figure 5. DEPT spectrum of 11 at -45 °C……………………………………………………5
Figure 6. 1H NMR spectrum of 12……………………………………………………………..6
Figure 7. HETCOR spectrum of 12…………………………………………………………….7
Figure 8. DEPT spectrum of 12………………………………………………………………….8
Figure 9. Kinetic studies of the conversion of 11 to 12 in toluene-d_8 at 0 °C……………9
Figure 10. 1H NMR spectroscopy studies of 15………………………………………………10
Figure 11. 1H NMR spectroscopy studies of 15 in the presence of ethylene………………11
Table 1. Polymerization trials of the metal dialkyl complexes……………………………….11
Figure 12. 1H NMR spectrum of 10……………………………………………………………….12
Figure 13. Eyring plot for Si(CH$_3$)$_2$Ph in 10 (toluene-d_8, 300 MHz)…………………12
Figure 14. Eyring plot for OCH$_3$ in 10 (toluene-d_8, 300 MHz)……………………….13
Figure 1. 1H NMR spectra of 7a and 8a at room temperature.

Figure 2. Variable temperature 1H NMR spectroscopy studies of 7a.
Figure 3. 1H NMR spectrum of 11 at -45 °C.
Figure 4. 1H- 1H COSY spectrum of 11 at -45 °C.
Figure 5. DEPT spectrum of 11 at -45 °C.
Figure 6. 1H NMR spectrum of 12.
Figure 7. HETCOR spectrum of 12.
Figure 8. DEPT spectrum of 12.
Figure 9. Kinetic studies of the conversion of 11 to 12 in toluene-d_8 at 0°C. Both the disappearance of 11 (blue squares) and the formation of 12 (red circles) were followed over time by measuring the integrals for baseline separated proton peaks at δ 8.08 ppm (2H), and δ 5.01 ppm (1H), respectively. Equation used: $y = I_f + (I_i - I_f)\exp(-kt)$.
Figure 10. 1H NMR spectroscopy studies of 15.
Figure 11. 1H NMR spectroscopy studies of 15 in the presence of ethylene.

![Diagram](image)

MAO = methyl aluminum oxide

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>Productivity (Kg PE·mol M$^{-1}$·h$^{-1}$·bar$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M = Y, L = OCH$_3$, R = CH$_2$Si(CH$_3$)$_2$Ph (7a)</td>
<td>1.4, 2.0</td>
</tr>
<tr>
<td>2</td>
<td>M = Y, L = NEt$_2$, R = CH$_2$Si(CH$_3$)$_2$Ph (7b)</td>
<td>1.1, 0.9</td>
</tr>
<tr>
<td>3</td>
<td>M = Sc, L = OCH$_3$, R = CH$_2$Si(CH$_3$)$_2$Ph (8a)</td>
<td>0.9, 0.8</td>
</tr>
<tr>
<td>4</td>
<td>M = Sc, L = SCMe$_3$, R = CH$_2$Si(CH$_3$)$_2$Ph (8b)</td>
<td>2.5, 2.5</td>
</tr>
<tr>
<td>5</td>
<td>M = Y, L = OCH$_3$, R = CH$_2$Si(CH$_3$)$_3$ (9)</td>
<td>0.9, 1.0</td>
</tr>
<tr>
<td>6</td>
<td>M = Sc, L = OCH$_3$, R = CH$_2$Si(CH$_3$)$_3$ (10)</td>
<td>1.3, 0.6</td>
</tr>
</tbody>
</table>

Table 1. Polymerization trials of the metal dialkyl complexes. Conditions: 1.67 μmol catalyst, 500 equiv. MAO, 5 mL solvent (chlorobenzene), 5 bar, 1 h.
Figure 12. 1H NMR spectrum of 10.

Figure 13. Eyring plot for Si(CH$_3$)$_3$ in 10 (toluene-d_8, 300 MHz).
Figure 14. Eyring plot for OCH$_3$ in 10 (toluene-d_8, 300 MHz).