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Vexing Expectations
Harris Nover and Alan Hájek

We introduce a St. Petersburg-like game, which we call the ‘Pasadena game’, in which
we toss a coin until it lands heads for the first time. Your pay-offs grow without
bound, and alternate in sign (rewards alternate with penalties). The expectation of
the game is a conditionally convergent series. As such, its terms can be rearranged to
yield any sum whatsoever, including positive infinity and negative infinity. Thus, we
can apparently make the game seem as desirable or undesirable as we want, simply
by reordering the pay-off table, yet the game remains unchanged throughout. For-
mally speaking, the expectation does not exist; but we contend that this presents a
serious problem for decision theory, since it goes silent when we want it to speak. We
argue that the Pasadena game is more paradoxical than the St. Petersburg game in
several respects.

We give a brief review of the relevant mathematics of infinite series. We then con-
sider and rebut a number of replies to our paradox: that there is a privileged order-
ing to the expectation series; that decision theory should be restricted to finite state
spaces; and that it should be restricted to bounded utility functions. We conclude
that the paradox remains live.

1. The Pasadena paradox

It’s your lucky day. We offer you at no charge the following game, which
with winking homage to a more famous game that inspired it, we will
call the Pasadena game. We toss a fair coin until it lands heads for the
first time. We have written on consecutive cards your pay-off for each
possible outcome. The cards read as follows:

(Top card) If the first heads is on toss #, we pay you $.

(nd top card) If the first heads is on toss #, you pay us $.

(rd top card) If the first heads is on toss #, we pay you $/.

(th top card) If the first heads is on toss #, you pay us $.

…
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In general, the nth top card informs you that if the coin lands heads for
the first time on the nth toss, we pay you $(�)n- ²n⁄n, where a negative
sign in front of an amount indicates that you pay us that amount. 

Rational as you are, you value the game according to its expected
utility, the sum of the utilities for each of the possible outcomes
weighted by their corresponding probabilities. Identifying (for now)
dollar amount with utility, you naively compute the expected utility of
the game as an infinite sum. (In section  we will review the mathemat-
ical background that we presuppose; until then we hope that you either
know the relevant mathematics, or will take what we say on faith.) 

EU(game) = ½�²⁄₂ ¹⁄₂ + ²⁄₃  ¹⁄₂ +…+ (�)n- ²n⁄n ¹⁄₂n +…
= �½ + ⅓ � ¼ +…
= ln .

The expectation is the familiar alternating harmonic series, whose
value is well known. Since ln �, you regard the game as favourable,
and you agree to play. 

It’s your unlucky day. By accident, we drop the cards, and after pick-
ing them up and stacking them on the table, we find that they have
been rearranged. No matter, you say—obviously the game has not
changed, since the pay-off schedule remains the same. The game, after
all, is correctly and completely specified by the conditionals written on
the cards, and we have merely changed the order in which the condi-
tionals are presented. As it happens, the consecutive cards read:

(Top card) If the first heads is on toss #, we pay you $.

(nd top card) If the first heads is on toss #, you pay us $.

(rd top card) If the first heads is on toss #, you pay us $.

(th top card) If the first heads is on toss #, you pay us $⁶⁴⁄₆.

(th top card) If the first heads is on toss #, you pay us $.

(th top card) If the first heads is on toss #, you pay us $¹⁰²⁴⁄₁₀.

(th top card) If the first heads is on toss #, we pay you $⁸⁄₃.

(th top card) If the first heads is on toss #, you pay us $⁴⁰⁹⁶⁄₁₂

…
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Now they are ordered so that a single ‘we pay you’ card is followed by a
run of five ‘you pay us’ cards (corresponding to negative pay-offs for
you), this pattern repeated ad infinitum. You now calculate: 

EU(game) =  + (� ½� ¼ � ¹⁄₆ � ⅛ � ¹⁄₁₀)
+ ⅓ + (� ¹⁄₁₂ � ¹⁄₁₄ � ¹⁄₁₆ � ¹⁄₁₈ � ¹⁄₂₀)
+ ¹⁄₅ + (�¹⁄₂₂ � … .

The series has one positive term of the alternating harmonic series fol-
lowed by five negative terms, ad infinitum. In general, if we rearrange
the alternating harmonic series, writing alternately p positive terms fol-
lowed by q negative terms, the resulting series converges to ln  +
½ ln(p/q). (See Apostol , p. .) With p =  and q = 5, this equals
ln  + ½ ln(¹⁄₅)� � .. Thus, the expected utility is apparently nega-
tive. The game suddenly looks unfavourable to you. 

It’s the luckiest day of your life. A gust of wind blows the cards off the
table. You pick them up and stack them up again, this time in another
order. Obviously, we have no complaint against you, for the cards
themselves and thus the game itself again have not changed. But now
they read, in order:

There are ever-lengthening runs of ‘we pay you’ cards, interspersed
with single ‘you pay us’ cards. Indeed, the runs of positive pay-offs are
always just long enough that your expectation apparently has a very
interesting property: 

EU(game) = () + (⅓ + ¹⁄₅ +…+ ¹⁄₄₁ � ½) + (¹⁄₄₃ +… � ¼) +…

(Top card) If the first heads is on toss #, we pay you $.

(nd top card) If the first heads is on toss #, we pay you $⁸⁄₃.

(rd top card) If the first heads is on toss #, we pay you $³²⁄₅.

(st top card) If the first heads is on toss #, we pay you $²/₄₁.

(nd top card) If the first heads is on toss #, you pay us $.

(rd top card) If the first heads is on toss #, we pay you $²/₂₅.

…
…
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Each bracket contains a quantity that is at least as large as , and this
pattern persists forever. So the sum is at least as large as  +  +  + … .
That is, the expected utility is infinite. To your utter delight, you think
that the game is not only favourable to you; it is better than any finite
reward, however large. It is as good as it gets. 

It is the unluckiest day of your life. Clumsy fellows that we are, we
drop the cards again. Reassembling them this time, they form ever-
lengthening runs of negative pay-offs. And worse than the second
ordering, this time the resulting expectation series can be bracketed so
that each bracket contains a quantity smaller than �, with this pattern
persisting forever. So the sum is at least as small as � � � … . That
is, the expected utility is seemingly negative infinity. The game is worse
than any finite punishment, however large. It is as bad as it gets. 

And so it goes. In fact, it seems that any expected utility whatsoever
can be realized by some rearrangement of the cards—more on that
shortly. What, then, is the value of the game? We already knew that
expectations can misbehave in games with infinite state spaces and
unbounded pay-offs such as ours—Bernoulli taught us that long ago
with his St. Petersburg game.1 But vexing though that game is, the
Pasadena game is worse in several ways.

While we may disagree with decision theory’s apparent verdict about
how good the St. Petersburg game is—we may not think that it is infi-
nitely good—still we should all agree that it is good. Certainly it is
worth playing if there is no entry fee, for example. And however good it
is, this is fixed once and for all, independently of how the game is pre-
sented. By contrast, there is no fact of the matter of whether the
Pasadena game is good or bad, and indeed we can make it appear

1 In the St. Petersburg game, we toss a fair coin until it lands heads for the first time. The longer
it takes, the better for you. You receive exponentially escalating pay-offs according to the following
schedule:

First heads on toss Probability Pay-off
 ½ $

 ¼ $

 ⅛ 

n ½n $n

Your expectation (in dollars) = ½ + ¼ + ⅛ + …
=  +  +  + …
= 

Decision theory is apparently telling you that you should pay any finite amount to play this game
once. This seems absurd—and thus we have the St. Petersburg paradox. 

… … …

… … …


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exactly as good or as bad as we like by merely presenting the pay-offs in
a suitable order. Yet since it is the very same game that is being pre-
sented one way or another, it seems that the game is simultaneously
good, bad, neutral, incredibly wonderful, unspeakably awful etc.—in
short, all things at once. We may put this paradox geometrically, since
the expectation of a game corresponds to the point of balance of a ‘see-
saw’ that has weights equal to the probabilities sitting at positions on
the real line corresponding to the pay-offs. The see-saw whose position-
ing of weights corresponds to the St. Petersburg game has no finite
point of balance, ‘tipping to the right’ wherever we put its fulcrum. But
the see-saw corresponding to the Pasadena game can apparently be
made to balance anywhere by suitable rearrangement of the pay-off

table. 
The Pasadena game also seems to allow us to set up the nastiest of

money pumps: sell the game at a high price, and buy the very same
game at a low price, with the prices dictated by the putative correspond-
ing expected utilities. Dutch Books exploit inconsistent valuations by
an agent of one and the same state of affairs, supposedly revealing a
defect in that agent’s state of mind. But there is nothing defective in the
above mathematics: the inconsistent valuations are not the fault of any
agent, but rather of the game itself coupled with the usual expectation
formula. At least with the St. Petersburg game we knew what we were
getting into; but the Pasadena game is a supreme Aladdin’s genie
among games, capable of transmuting itself into whatever one wants it
to be. 

Finally, in response to the St. Petersburg paradox, there is something
to be said for the bullet-biting response: ‘the game should be valued
infinitely, and any intuition to the contrary should be dismissed as an
artifact of our finite minds not fully appreciating the true nature of the
game; we should learn to live with decision theory’s verdict’. (Cf. Mar-
tin , Clark .) But no such reply is available in the Pasadena par-
adox. There is no verdict that we should learn to live with, because
decision theory delivers so many verdicts—which is to say that it goes
silent. 

It is an uncomfortable silence. For intuition tells us—indeed, yells at
us—that we can make meaningful comparisons between the Pasadena
game and other games. It is clearly worse than the St. Petersburg game,
for starters. It is clearly worse than a neighbouring variant of the game
—call it the Altadena game—in which every pay-off is raised by a dol-
lar. (Notice that the Altadena game has all the problems of the Pasadena
game.) And the Pasadena game is clearly better than a ‘negative’
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St. Petersburg game, in which all the pay-offs of the St. Petersburg game
are switched in sign. Yet expected utility theory can say none of this. 

Ironically, while the expectation in the St. Petersburg game at least
gave us a warning that all might not be well—the series diverges, after
all—the expectation in the original presentation of the Pasadena game
apparently converged to an innocent ln  (that is, about .). And yet
we could at least say something about the value of the St. Petersburg
game—we have already said that it is positive—whereas once we see
the differences that rearrangements can make, we realize that we can
say absolutely nothing about the value of the Pasadena game. The game
is apparently well defined, and yet decision theory cannot handle it.
Something has to give—either the game itself, or decision theory. 

2. Infinite series: review and discussion

Expected utilities are straightforward when there are only finitely many
states. So let us confine our attention to decision problems with a
countably infinite number of states. Expected utilities are then infinite
series. It will thus be useful for us to review briefly some definitions and
results from real analysis regarding infinite series. 

Consider an infinite sequence of real numbers a, a, a,…, an,…. We
say that this sequence has the limit L if, for every � � , there exists N
such that for all n � N, |an � L|� �. In less technical terms, we mean
that for any tolerance, there exists a point in the sequence such that
every element past that point is within that tolerance of the limit. If the
limit condition is met, then we write that limnt an = L. If a sequence
has a limit, we say that the sequence is convergent. Otherwise, we say
that it is divergent. 

Now, instead of the sequence above, consider a related sequence: 

We call such a sequence that is made up of the partial sums of the terms
of an infinite sequence an (infinite) series. Such a series may of course
h ave  a  l i m i t ,  by  w h i c h  w e  m e a n  a  n u m b e r  S  s u c h  t h a t
limnt ai=S. For simplicity’s sake, we will refer to both a series
and its limit (if one exists) by ai . We classify series just as we do
sequences: a series may be convergent or divergent. The harmonic series

 is divergent; but the alternating harmonic series is convergent
(and has limit ln , as we have noted). 

The question of divergence or convergence is decided on the basis of
the behaviour of the sequence of the partial sums. It is important to



a, a + a, a + a+ a ,…,�
n
i= ai,… .

 �
n 
i=

�
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

�
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note that the limit of this sequence does not necessarily behave as we
would expect from our experience with finite sums. Any reordering of a
finite sum yields the same result. However, as we saw in the expectation
calculations of the Pasadena game, reordering the terms in an infinite
sum may change its value. 

There is a condition on convergent series that is both necessary and
sufficient for such mischief being possible. We say that the infinite series

 ai is absolutely convergent if the related infinite series |ai| is
convergent. In this case, ai will also converge, and the value to
which it converges is independent of the order of the terms. Alterna-
tively, if ai converges but |ai| diverges, we say that the series is
conditionally convergent. We can now state the necessary and sufficient
condition: rearrangement can change the value of a convergent series iff
the series converges conditionally (see Apostol , p. ). 

That does not yet settle how many different values can be achieved by
rearrangement. In fact, there are uncountably many such values;
indeed, a conditionally convergent series can be rearranged to give
whatever sum you want. This is Riemann’s celebrated rearrangement
theorem: Let ai be a conditionally convergent series of real terms,
and let S be a given real number. Then there is a rearrangement of ai
that converges to the sum S. (For proof, see Apostol , p. .) Moreo-
ver, the series may also be rearranged to diverge to positive or negative
infinity; and it may be rearranged so that the partial sums forever oscil-
late without approaching a limit. 

3. Infinite decision problems

In a decision problem, the expectation of a given action is a sum. When
the set of states that receive positive probability is infinite, it is an infin-
ite sum. So the theory of infinite series applies, and the results above are
relevant. However, there is a twist. In real analysis, the order of a partic-
ular series is given—there is a fact of the matter of the arrangement of
its terms, and any rearrangement of a particular series produces a
different series. But in decision theory, there is an arbitrariness to how
the pay-off schedule of a given decision problem is presented, and any
rearrangement of the schedule yields the same decision problem. (We
noted that reordering the cards that detail the Pasadena game does not
change the game.) If we let the arrangement of the schedule dictate the
arrangement of the corresponding expectation series, we then should
regard the choice of the latter to be equally arbitrary. Unfortunately, as
we have seen, this arbitrary choice can have serious consequences for
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the apparent choice-worthiness of a given action. Formally speaking,
an expectation that is not absolutely convergent is undefined. But it is
all very well to speak formally. Decision theory is a theory of rational
action; what is one supposed to do in such a case? Should one play the
Pasadena game or not, if given the choice?  Should one take the Alta-
dena game rather than the Pasadena game, if given the choice?  Deci-
sion theory, as we have said, is silent.

Consider an action whose expected utility is conditionally conver-
gent. It would already be troubling if there were just two possible values
that could be achieved by rearrangement of the expectation series of
some action—then, there would be no fact of the matter of the value of
that action, a kind of indeterminacy. Still, we might at least be able to
make useful comparisons —e.g., if both values were below that of
another action, the latter action should be preferred. But the trouble is
far worse than that: by Riemann’s rearrangement theorem, every possi-
ble value (including the ‘values’ of positive and negative infinity) can be
attained by rearrangement. This is indeterminacy on the grandest
scale.2

One might argue that there is in the end a fact of the matter as to the
ordering of the terms: the game is played in a certain sequence, and the
ordering thus induced is therefore privileged. We have several misgiv-
ings about this argument. 

First, it departs from the standard decision-theoretic framework. To
determine the choice-worthiness of an action, we should only need to
know the probabilities and pay-offs associated with each state of the
world under that action. Extra details about how they arise are extrane-
ous to the decision problem. Now, apparently, we are requiring addi-
tional information. Yet if other information were to affect choice-

2 Nathan () is aware that there are games whose expectations may depend on the ordering
of terms (although he does not give an example of such a game, and he does not appear to regard
them as paradoxical). Nevertheless, he believes that such a game may have a well-defined expecta-
tion. He writes:

In infinite games, we can always proceed by first defining a finite game truncated at step k = N
and subsequently letting N t . A complete description of such a game must, therefore, include
a method of truncation unless the game has an expectation which is independent of the ordering
of the terms of () [the expectation series] … If expectation series () neither converges abso-
lutely nor tends absolutely to plus or minus infinity, the manner of (virtual) truncation must be
specified to meet [the condition that the expectation of the game is uniquely defined]. If this
fixes the value of (), then () is the expectation … (pp. –)

In the Pasadena game we could define a sequence of truncated games in which we call the game off

if the coin is tossed n times, and then let n t . The sequence of expectations of these finite games
has limit ln . Does this mean that the desirability of the Pasadena game is, or at least can be, defined
after all? We think not. Fixing a method of truncation seems to be no different from fixing an or-
dering, and we next demonstrate why this cannot be done in a satisfactory manner.




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worthiness, it should really be incorporated into either the probability
or pay-off profiles.

Furthermore, we chose to use a coin in our game for dramatic effect,
but we could have left obscure the details of the mechanism. We could
just as easily play with a ‘black box’. All you know about the box is that,
for every n � , there is a ¹⁄₂n chance of the number n occurring, and if
that number occurs then you receive a pay-off of (�)n-²n⁄n. Is there still
a privileged ordering? That is not at all clear. While n seems to serve
naturally as an index here, and thus to provide an ordering, we could
just as easily carry out some mathematical transformation on n that
would reorder the terms, and present the game that way. For example,
we could offer you a game where we index triplets of outcomes. For
every m � , there is one pay-off of $  that has a probability of ,
one pay-off of $  that has a probability of , and one further pay-
off of $  that has a probability of . This is a fairly transparent
description of the Pasadena game, with m�, m�, and m replac-
ing n. However, by indexing by m, we are presenting the Pasadena game
in a new order, which corresponds in the ‘n-notation’ to an order of
,,,,,,,,,…. Computing the expected value by this ordering
yields a value of ³⁄₂ ln . Yet in this notation this ordering is ‘natural’
(whatever that means). Note that we did not change the box itself—we
simply changed the notation by which we described its outputs. With-
out knowing the mechanism, there is no reason to say that this descrip-
tion is less ‘natural’, as perhaps the mechanism implementing the
payoffs actually does make this the most obvious ordering. We should
be suspicious, moreover, of an appeal to a notion as ill-understood as
‘naturalness’; and even if it were well understood, it is dubious that
every decision problem can be given exactly one ‘most natural’ charac-
terization. This certainly goes beyond anything we were taught in our
decision theory textbooks! And of course we always could implement a
mechanism that makes the m ordering the most ‘natural’. In that case,
the suggested line of argument leads to one valuing two games with
identical pay-off/probability schedules differently, which is clearly
absurd. 

4. Apologia

The Pasadena game creates a paradox for decision theory. One way to
get rid of the paradox would be to get rid of the game. It would be com-
forting to show that the paradox does not arise in the first place,
because the problem is simply ill-posed, the Pasadena game incoherent.

m-

m-


m-

m-

m-


m-

�
m

m


m
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There are two possible lines of attack—neither satisfactory, in our
opinion. 

4.1. Restrict decision theory to finite state spaces
The first response is to balk at the game’s infinite state space: the
assumption that the coin could land heads for the first time on the first
toss, or the second, or the third, ad infinitum. More generally, the
response is that decision theory should be confined to actions that have
finitely many consequences—that is, to decision problems that have
finitely many states. What could motivate this response? 

On the one hand, it might be purely theoretical considerations: it
might be claimed that as a matter of conceptual necessity, all decision
problems have finitely many states. But then the response strikes us as
high-handed: for we have no trouble countenancing infinitely many
states elsewhere in our theorizing—in physics, for example. What the
response is not is even-handed: for decision theory is kindred to proba-
bility theory, and yet infinite probability spaces are commonplace.
Indeed, Kolmogorov’s invocation of countable additivity builds infini-
tude into the very foundations of probability theory. More than that,
the usual justification for maximizing expected utility appeals to the
laws of large numbers, limit theorems that are premised on the exist-
ence of infinitely many trials, and thus infinitely many states (e.g., states
of the form ‘ … occurs on trial n’, for infinitely many n). In short, the
response is at odds with the conceptual underpinnings of decision the-
ory itself, which take infinitude of states in their stride, and indeed
which could not be reproduced without such infinitude. 

On the other hand, the response might be motivated by empirical
considerations about human agents: it might be claimed that as a mat-
ter of contingent fact, all of our decision problems have finitely many
states—we simply do not live long enough, or cannot perform experi-
ments fast enough, or do not have adequate powers of discrimination
to generate an infinite state space. But even supposing it to be a fact, so
what? Such contingent facts are irrelevant for two reasons. First, it is
not the facts of the world that matter, but rather what an agent believes
those facts to be. While it may be true, for example, that a coin cannot
be tossed fast enough to determine every possible outcome of the
Pasadena (or St. Petersburg) game in a finite amount of time, if anyone
believes that this task can be done, then the infinite state space and
hence the problem for decision theory remains. (You might believe, for
example, that there is a supreme coin tosser who can complete each toss
in half the time of the previous toss.) Second, even if no one actually
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does believe that this task can be done, the problem is still there. Deci-
sion theory is not merely about humans, but is also about—perhaps
even especially about—ideal rational agents, and it does not follow that
our idealized theory of ideal rationality should be so constrained.
Again, the response is not even-handed, for we happily idealize away
our all-too-human nature elsewhere in our theorizing—in economics,
for example. And again, even decision theory and probability theory
themselves ignore our finiteness in other respects, assuming as they do
that we are logically omniscient, that our preference orderings are
infinitely rich, and so on. 

Whichever way this response is run—the ‘conceptual necessity’ way
or the ‘contingent fact’ way—it cannot stably stop at merely banishing
infinite state spaces. Arguments parallel to those adduced in favour of
finite state spaces would ultimately have us replace decision theory and
probability theory with finitist revisions. Indeed, it would hardly be
playing fair to stop there, either; we would need a principled reason
why the rest of mathematics should not go the same way. But that way
lies finitism and its attendant problems. We do not have space here to
enter the debate about finitism, except to note that it commits us to a
rather radical revision of mathematics. As a resolution of the Pasadena
paradox it is surely overkill. 

4.2. Restrict decision theory to bounded utility functions
The second line of attack targets the game’s unbounded pay-offs. It has
famously been used against the St. Petersburg game by Richard Jeffrey
(). He writes: ‘Put briefly and crudely our rebuttal of the
St. Petersburg paradox consists in the remark that anyone who offers to
let the agent play the St. Petersburg game is a liar, for he is pretending to
have an indefinitely large bank’ (p. ). Jeffrey is avowedly putting the
objection quickly here, but it is surely a natural objection, pithily stated.
He would presumably rebut the Pasadena paradox in a similar fashion.
We think, however, that the paradox won’t go away so easily.

If Jeffrey’s rebuttal turned solely on a consideration of how much
money there is in the world, we could quickly sidestep it by rewriting
the pay-offs of the Pasadena game in terms of utiles, units of utility
abstracted away from the details of how they are realized. To repeat a
point made in the previous section: all that matters to decision theory is
the utility/probability profile. If the way in which the rewards are real-
ized mattered, then that should already have been taken into account in
either the utilities or the probabilities. So Jeffrey’s rebuttal really



248 Harris Nover and Alan Hájek

becomes: all utility functions are bounded. Paralleling our discussion in
the previous section, this claim can be taken in two ways. 

On the one hand, it might be claimed that as a matter of conceptual
necessity, all utility functions are bounded. But why should we believe
this? Unbounded functions abound! In particular, they abound else-
where in our theorizing. Relativity theory does not balk at unbounded
space-time curvature; measure theory does not balk at unbounded
lengths. Why should decision theory be special in this regard? More
tellingly, probability theory comfortably accommodates unbounded
functions—unbounded random variables, for example. The imposi-
tion of bounds specifically on utility functions thus seems ad hoc. 

On the other hand, it might be claimed that as a matter of contingent
fact, all humans have bounded utility functions. We think that this is
not clearly a fact at all, for even a human might have preferences over
infinitely many outcomes, specifiable by a finite rule, and for any pair of
outcomes be prepared to pay a fixed finite amount to swap the dispre-
ferred for the preferred outcome. For example, you might be prepared
to pay a dollar (or utile) to swap m days in heaven for n whenever n is
greater than m; if so, you have an unbounded utility function. But even
supposing that all human utility functions happen to be bounded, so
what? Again, it does not follow that our idealized theory of ideal ration-
ality should be so constrained. After all, we do not eschew continuous
utility functions, even though as a matter of contingent fact, all humans
have finite thresholds for their perception of reward. Much as we
impose no bounds on the sensitivity of our discriminations of utility,
we should impose no bounds on the utilities themselves. If we are pre-
pared to idealize ‘in the small’, we should equally be prepared to idealize
‘in the large’, fully aware that in doing so we pay no heed to our contin-
gent limitations, in both directions. And even if we do acknowledge the
limitations of human beings, decision theory is not specifically about
human beings. It is about rational decision makers in the abstract. And
so we are brought back to the conceptual argument that we dismissed
above. 

Thus, we submit that the Pasadena game prevails, and that it is a
headache for decision theory. If it is going to be cured, some other kind
of medicine will be required.3 

3 We thank John Broome, Antony Eagle, Terrence Fine, Matthias Hild, Bradley Monton, An-
drew Reisner, Roy Sorensen, Manuel Vargas, Peter Vranas, and especially Mark Colyvan, Adam
Elga, Branden Fitelson, Ned Hall, Chris Hitchcock, and Daniel Nolan for very helpful comments.
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