
In the format provided by the authors and unedited.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Supplementary material for “Proposal for Gravitational-Wave Detection Beyond the
Standard Quantum Limit using EPR Entanglement”

Yiqiu Ma,1 Haixing Miao,2 Belinda Heyun Pang,1 Matthew Evans,3

Chunnong Zhao,4 Jan Harms,5, 6 Roman Schnabel,7 and Yanbei Chen1

1Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA
2School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

3Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4School of Physics, University of Western Australia, Western Australia 6009, Australia

5Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy
6INFN, Sezione di Firenze, Firenze 50019, Italy

7Institut für Laserphysik and Zentrum für Optische Quantentechnologien,
Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Dated: March 15, 2017)

This is a supplementary material for the paper: “Proposal for Gravitational-Wave Detection
Beyond the Standard Quantum Limit using EPR Entanglement”. The purpose of this material is
to present the details about (1) the derivation of the sensitivity formula; (2) the choice of system
parameters; (3) the effect of loss;

I. DERIVATION OF THE SENSITIVITY FORMULA

First, for each audio-sideband frequency Ω, the field input-output relations of the squeezer (the pumped OPA) can
be written as:

â(ω0 +Ω) = µâin(ω0 +Ω) + νb̂†in(ω0 +∆− Ω), b̂(ω0 +∆+Ω) = µb̂in(ω0 +∆+Ω) + νâ†in(ω0 − Ω);

â†(ω0 − Ω) = µ∗â†in(ω0 − Ω) + ν∗b̂in(ω0 +∆+Ω), b̂†(ω0 +∆− Ω) = µ∗b̂†in(ω0 +∆− Ω) + ν∗âin(ω0 +Ω),
(1)

where â and b̂ describe the generated signal and idler fields near ω0 and ω0 ± ∆, respectively. The fields âin, b̂in
represent the vacuum fields entering into the squeezer. The phenomenological coefficient µ and ν are determined by
the χ(2)−nonlinearity coefficient of the crystal and the pumping field strength [1]. Field commutation relation requires
them to satisfy the relation |µ|2 − |ν|2 = 1. Since the phase of µ and ν can be absorbed into the definition of creation
and annihilation operators, we can parametrise them as µ = cosh r and ν = sinh r, where r is usually denoted to be
the squeezing degree of the OPA. In the so-called two-photon formalism where we define:

â1(Ω) =
â(ω0 +Ω) + â†(ω0 − Ω)√

2
, b̂1(Ω) =

b̂(ω0 +∆+Ω) + b̂†(ω0 +∆− Ω)√
2

;

â2(Ω) =
â(ω0 +Ω)− â†(ω0 − Ω)√

2i
, b̂2(Ω) =

b̂(ω0 +∆+Ω)− b̂†(ω0 +∆− Ω)√
2i

,

(2)

the relations in Eq. (1) then can be represented in another form (in the following, â1,2(Ω) and b̂1,2(Ω) will be simply
written as â1,2 and b̂1,2):

â1 + b̂1 = er(âin1 + b̂in1), â1 − b̂1 = e−r(âin1 − b̂in1); (3)

â2 + b̂2 = e−r(âin2 + b̂in2), â2 − b̂2 = er(âin2 − b̂in2), (4)

(the âin1,2, b̂in1,2 are defined in the same way as Eq. (2)). EPR-type commutation relation [â1 − b̂1, â2 + b̂2] = 0 allows
the existence of the state in which the fluctuations of quadrature combinations (â1 − b̂1)/

√
2 and (â2 + b̂2)/

√
2 are

much below the vacuum level. Therefore b̂1 is correlated with â1 while b̂2 is correlated with −â2, and further more
â−θ = â1 cos θ− â2 sin θ correlates with b̂θ = b̂1 cos θ+ b̂2 sin θ. Using homodyne detection scheme, â−θ and b̂θ can be
measured. When we do conditioning by processing these measurement results, we assume the measurement result of
the idler field quadrature b̂θ is filtered with a filtering gain factor g and then combined with the signal field quadrature
â−θ, leads to:

âg−θ = â−θ − gb̂θ = (â1 − gb̂1) cos θ − (â2 + gb̂2) sin θ. (5)
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It is easy to show that the spectrum of âg−θ is:

Sâg
−θ â

g
−θ

= (µ− gν)2 + (ν − gµ)2. (6)

For realising an optimal filtering (which is the so-called “Wiener filtering") so that Sâg
−θ â

g
−θ

takes its minimum value,
we can solve δSâg

−θ â
g
−θ
/δg = 0, which leads to the Wiener filter gain factor gopt and conditional squeezing spectrum:

gopt =
2µν

µ2 + ν2
= tanh 2r, Scond

â−θ â−θ
=

1

µ2 + ν2
=

1

cosh 2r
. (7)

In laser interferometer gravitational wave detectors, we have the input-output relation for quantum noise field in
the signal channel as [2]:

Â2 = e2iβ(â2 −Kâ1) = e2iβ(
√
1 +K2)(â1 cos ξ − â2 sin ξ), (8)

where Â2 is the phase quadrature of the signal fields propagate out of the interferometer and ξ = − arctan 1/K. If we
want the phase quadrature of the idler fields out of the interferometer B̂2 to maximally correlate with Â2 in Eq. (8),
then B̂2 = b̂arctan 1/K (besides an unimportant phase factor α accumulated by sidebands of the idler field during its
circulation in the interferometer). Therefore, the rotation angle of the idler field Φrot by the interferometer defined in

B̂2 = eiα(−b̂1 sinΦrot + b̂2 cosΦrot), (9)

is given as Φrot = arctanK.
Similarly, when combining the measurement results of signal and idler channel, we have:

Âg
2 = Â2 − gB̂2 and SÂg

2Â
g
2
= SÂ2Â2

+ |g|2SB̂2B̂2
− g∗SÂ2B̂2

− gSB̂2Â2
. (10)

Variation with respect to filter gain factor g leads to the Wiener filter and a minimum variance given as:

gopt =
SÂ2B̂2

SB̂2B̂2

= ei(2β−α)
√

1 +K2 tanh 2r, (11)

Scond
Â2Â2

= SÂ2Â2
−

SB̂2Â2
SÂ2B̂2

SB̂2B̂2

=
1 +K2

cosh 2r
. (12)

Considering the signal field as: ÂGW
2 =

√
2Keiβh/hSQL [2], we can recover the Eq. (7) of the main text:

Shh =
h2
SQL

2 cosh 2r

(
K +

1

K

)
. (13)

II. PARAMETER SETTING

A. Requirements

Our conditional squeezing scheme is based on the combination of the results from signal beam detection and idler
beam detection. If the squeezer’s squeezing level is high, the parameter error will have a significant effect on the final
squeezing level. For example, the effect of variation of the idler rotation angle to the sensitivity is roughly given by:

Shh =
h2
SQL

2 cosh 2r

(
K +

1

K

)
+

h2
SQL

2

(sinh 2r)2

cosh 2r

(
K +

1

K

)
δΦ2. (14)

For a 15 dB squeezer as shown in the main text, the ratio between the correction term and the exact value is roughly
≈ 249δΦ2. Therefore even a 10% relative correction to the noise spectrum requires the error of the rotation angle to
be as small as 0.02 rad. This simple estimation tells us that it is of great importance to search the suitable parameters
for our proposed scheme.

In our design, the signal field sees an interferometer working in the resonant sideband extraction mode while the
idler field sees the interferometer as a filter cavity. This filter cavity should rotate the idler field in its phase space
by an angle Φrot = arctanK. Generally, for realising such a rotation angle, two filter cavities are required [2] (for a
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more general discussion, see [3]). However, when the signal field works in the resonant sideband extraction mode, the
interferometer has a relatively large bandwidth so that K can be approximated around the transition frequency as:
K ≈ 2Θ3/(Ω2γ). In this case, only one filter cavity is necessary to achieve the required rotation of the idler field, and
we use the signal recycling interferometer itself as the filter. The required bandwidth γf and detuning δf of the signal
recycling interferometer with respect to the idler field is given by [3, 4]:

γf =
√
Θ3/γ, δf = −γf . (15)

B. Parameter setting conditions

The dependence of detuning δf and bandwidth γf on the interferometer parameters can be seen in the interferometer
reflectivity, which is given by (in the sideband picture) [5]:

ridlerifo (Ω) =
ρ+ (τ τ̃ − ρρ̃)exp[2i(∆ + Ω)Larm/c]

1− ρ̃exp[2i(∆ + Ω)Larm/c]
, ; (16)

where ρ, ρ̃, τ , and τ̃ describe the reflectivity and transmissivity of the signal recycling cavity. They are given by [5]:

ρ̃ =

√
RITM −

√
RSRMexp[2iφSRC]

1−
√
RITMRSRMexp[2iφSRC]

, ρ = −
√
RSRM −

√
RITMexp[2iφSRC]

1−
√
RITMRSRMexp[2iφSRC]

,

τ = τ̃ =
i
√
TSRM

√
TITMexp[iφSRC]

1−
√
RSRMRITMexp[2iφSRC]

.

(17)

Here, RITM and RSRM are the power reflectivity of the input test mass mirrors and the signal recycling mirror,
respectively. The φSRC is the single trip phase of the idler field in the signal recycling cavity given as:

φSRC = ∆LSRC/c. (18)

From Eq.(16), the resonance condition can be derived as:

Mod2π

[
2(δf +∆)

(
Larm

c

)
+Arg[ρ̃]

]
= 0, (19)

which determines the detuning δf . The bandwidth γf is given by:

γf ≈ TSRM

1 +RSRM + 2
√
RSRM cos 2φSRC

γITM, (20)

where γITM = cTITM/(4Larm).
From Eq.(19) and (20), when the reflectivity of the signal recycling mirror and the input test mass mirror is given,

we have the following tunable parameters: (1) detuning of the idler beam with respect to the signal beam ∆, (2) arm
cavity length Larm, (3) the phase φSRC. These parameters must be tuned in such a way so that arm cavity and signal
recycling cavity must each be resonant with the signal carrier frequency ω0 for keeping the signal channel unaffected.
This means that the length tuning of the signal recycling cavity and the arm cavities (denoted by δLarm and δLSRC,
respectively) , starting from their initial lengths (denoted by L

(0)
arm and L

(0)
SRC, respectively) should be integer numbers

of half wavelength of the main carrier field, that is

δLSRC = pλ/2, δLarm = qλ/2, (p, q ∈ Z). (21)

Also note that Eq.(15) tells us that γf and δf depends on δLarm while not on δLSRC. Since L
(0)
arm is typically of

kilometer scale, thereby δLarm as a small length tuning has negligible effect on the value of required γf and δf .
To obtain the required bandwidth γf , we can tune the φSRC by tuning ∆ and LSRC in Eq.(18) to satisfy:

φSRC = ∆LSRC/c =
1

2
arccos

[
γITM

γf
TSRM − (1 +RSRM)

]
+ nπ, (22)
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or in another form:

∆ =
c

2LSRC
arccos

[
γITM

γf
TSRM − (1 +RSRM)

]
+

nπc

LSRC
, (23)

which tells us that n, as a tunable degree of freedom, represents how many free-spectral range of signal recycling cavity
contained by the idler detuning ∆. In summary, we have three tunable integers: m,n and p. For a fixed value of n,
the phase φSRC only depends on the LSRC = L

(0)
SRC + pλ/2, thus the rough range of p can be determined. To obtain

the required detuning δf , we need to further do fine tuning of p and then do a corresponding tuning of q to match the
resonance condition Eq.(19). A sample parameter set is given in Tab. I. We also need to emphasise that the practical
parameters setting should be decided considering concrete experimental requirements, and a feedback control system
for length tuning needs to be carefully designed, what we have here is merely an example demonstrating that these
parameters can in principle be found.

C. Phase compensation

Note that since the detuned b̂− field will pick up a phase when it is reflected by the signal recycling cavity, which
will contribute an additional rotation angle, we need to compensate this phase by properly choosing the homodyne
angle. This fact can be seen by manipulating(16), given as follows.

From Eq. (17), we can derive the following relation:

ρ̃∗

ρ
= − 1

τ2 − ρρ̃
. (24)

Substituting this relation into Eq.(16) leads to:

ridlerifo (Ω) =
−ρ̃∗(τ2 − ρρ̃) + (τ2 − ρρ̃)exp[2i(∆ + Ω)Larm/c]

1− ρ̃exp[2i(∆ + Ω)Larm/c]

=

[
−ρ̃∗ + exp[2i(∆ + Ω)Larm/c]

1− ρ̃exp[2i(∆ + Ω)Larm/c]

]
(τ2 − ρρ̃).

(25)

Note that ρ̃ = |ρ̃|eiArg[ρ] and |τ2 − ρρ̃| = 1, therefore the above ridlerifo can be written as:

ridlerifo =

[
−|ρ̃|+ exp[2i(∆ + Ω)Larm/c+ iArg[ρ̃]]

1− |ρ̃|exp[2i(∆ + Ω)Larm/c+ iArg[ρ̃]]

]
eiφc , (26)

where

φc = Arg
[
τ2 − ρρ̃

]
−Arg[ρ̃]. (27)

Since ΩLSRC/c � 1, the φc dependence on Ω is very weak. Therefore this additional phase can be treated as almost a
D-C phase. In our sample example, for compensating this additional phase angle, the phase of the homodyne detector
of idler channel must be tuned by φc = 0.32 rads.

D. A sample rotation angle

Using the parameters given in Tab. I, we are able to produce the frequency dependent rotation angle for the b̂−fields
measured by the homodyne detector with local oscillator frequency ω0+∆, as shown in Fig. 1. This figure demonstrates
that the proposed parameters in Tab. I lead to a result that is very close to the required rotation angle. The angle
error is also given in the right panel of Fig. 1, which shows that our result has maximally 0.04 rads angle error in the
intermediate frequency band (50-300Hz), creates a 40% relative correction to the noise spectrum according to our
estimation formula Eq. (14), degrading the improvement factor from 12 dB to 10.5 dB. Exact computation shows that
the degraded improvement factor is around 11.1 dB.
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λ carrier laser wavelength 1064nm
TSRM SRM power transmissivity 0.35
T ITM power transmissivity 0.014
L

(0)
arm Arm cavity initial length 4km1

L
(0)
SRC Signal recycling cavity initial length 50m1

γ Detection bandwidth 389 Hz
m Mirror mass (ITM and ETM) 40kg
Ic Intra cavity power 650kW
∆ Idler detuning -300 kHz-5FSRSRC(=-15.3 MHz)
r Squeezing factor of the OPA 1.23 (15dB)
δLarm Arm length tuning 19850λ
δLsrc SRC length tuning 26λ
φc Phase compensation 0.32 rads

1 These numbers are approximated value since the exact length should be integer
number of half wavelength since both the arm cavity and signal recycling cavity
should be on resonance with the main carrier light. In particular, the exact length
of arm cavity closest to 4 km is 3759398496λ; for exact length of signal recycling
cavity closest to 50 m is 46992481λ.

TABLE I: Sample Parameters for implementing our scheme on the Advanced
LIGO. Here FSRSRC = c/(2LSRC).

FIG. 1: Left panel: Rotation angle for the b̂− field. The blue curve is the result computed using the parameters given in Tab.1
of the main text and exact transfer matrix technique. The red dashed curve is the optimal result of Φrot = −arctanK while the
black dashed curve is the rotation angle when we approximate K using broadband approximation as discussed in the main text
of this supplementary material. Right panel: Error of the rotation angle. (1)The magenta dotdashed curve is the difference
between the analytical result of rotation angle under broadband approximation and the optimal angle ; (2) the blue curve
is the difference between the rotation angle computed from our proposed scheme and the analytical result under broadband
approximation; (3) the red dashed curve is the difference between the rotation angle computed from our proposed scheme and
the optimal analytical result.

III. LOSS ANALYSIS

Fig.3 of the main text takes into account of the loss in our system. There are four main loss sources in our design:
(1) the loss due to the arm cavity and signal recycling cavity, which currently has the value round 100 ppm (per
round trip) and 2000 ppm (per round trip) and has a relatively small effect on the sensitivity, compare to the current
filter cavity design which has the value around 1ppm per meter. (2) the input loss comes from the loss of the optical
devices in the input optical path and mode mismatch; the readout loss comes from the measurement channel due to
the non-perfect quantum efficiency of the photo-detector, the lossy optical devices in the output optical path and also
mode mismatch. (3) The phase fluctuation of the local oscillators which are used to measure the â and b̂−fields.
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A. Arm cavity loss and signal recycling cavity loss

Similar to what has been discussed in [6], for the signal channel, 100 ppm round trip loss in the arm cavity corresponds
to about 0.3% total loss (considering the circulation of light fields) in advanced LIGO since it works in the resonant
sideband extraction mode, which is comparable to the impact of signal recycling cavity loss (∼ 0.2%) at the interesting
frequency band. However, since the large detuned idler field does not resonant with the signal recycling cavity, thereby
a more careful simulation is needed. We simulate the effects of these noises in the following Fig. 2 to compare the
impact of these different noise sources (a similar figure was also shown in [6]). Note that at low frequency, the impact
of these noises on the idler channel is much less than that on the signal channel, since the idler field does not drive
the interferometer mirrors through random radiation pressure force noise in the interested frequency domain.

FIG. 2: Simulation of quantum noise contributions from the arm and signal recycling cavities (round trip losses εc = 100 ppm
and εSRC = 2000 ppm respectively, as in the main text) and their impact on strain sensitivity and sensitivity enhancement.
(a) Signal channel: comparison of quantum noise contributions in the signal channel from (unsqueezed) vacuum fluctuations,
arm cavity loss, and SRC loss. The noise fields beat with a strong carrier field, resulting in radiation pressure noise below
50 Hz due to the ponderomotive effect. (b) Idler channel: comparison of contributions in the idler channel from (unsqueezed)
vacuum fluctuations, arm cavity loss and SRC loss. The noise fields do not beat with the strong carrier field, and therefore do
not participate in the ponderomotive process. (c) The (small) impact of loss due to combined signal and idler channels, shown
separately for arm cavity loss and SRC loss (d) Impact of cavity losses on sensitivity enhancement factor for the proposed
conditioning scheme.

B. Input Loss and readout loss

Let us now investigate the effect of the input loss and the readout loss. The sensitivity curve in Fig. 3 of the main
text is computed using numerical transfer-matrix approach [8]. Here for giving an analytical formula, we apply the
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single-mode approximation which is a very good approximation within one free-spectral-range of the arm cavity. The
exact results about the contribution from the input loss and readout loss respectively are shown in Fig. 3. Since the
â and b̂ fields propagate in a collinear way and share the same optical mode, therefore the input and readout loss of
the â and b̂−fields are the same, denoted by εin (in terms of power) and we have:

â →
√
1− εinâ+

√
εinn̂

in
s , b̂ →

√
1− εinb̂+

√
εinn̂

in
i , (28)

Â2 →
√
1− εrÂ2 +

√
εrn̂

r
s, B̂2 →

√
1− εrB̂2 +

√
εrn̂

r
i . (29)

where n̂in
s and n̂in

i are two uncorrelated injection noises and n̂r
s and n̂r

i are two uncorrelated readout noises associated
with two homodyne detectors.

Expand to the first order of εin and εr, we have the approximated formula for the degradation of the strain sensitivity
as a summation of input loss contribution ∆Sεincond

hh and the readout loss contribution ∆Sεrcond
hh :

∆Sεcond
hh = ∆Sεincond

hh +∆Sεrcond
hh (30)

where:

∆Sεincond
hh ≈

h2
SQL

2 cosh 2r

(
K +

1

K

)(
2 cosh 2r2 − cosh 2r − 1

cosh 2r

)
εin (31)

∆Sεrcond
hh ≈

h2
SQL

2

(
K tanh2 2r +

1 + tanh2 2r

K

)
εr. (32)

(33)

It is easy to see that the effect of the input loss contributes a broadband degradation of squeezing degree. This
degradation is frequency independent. However, for the readout loss, at high frequencies where K � 1 the relative
loss correction is roughly ∆Sεrcond

hh /Scond
hh ≈ [1 + (tanh 2r)2]εr, while at low frequencies where K � 1, ∆Sεrcond

hh /Scond
hh

is roughly (tanh 2r)2εr. Therefore the readout loss effect at high frequencies is higher than that at low frequencies,
due to the fact that the pondermotive effect amplifies the signal at the low frequency band [2]. This character of
the sensitivity curves has been shown in Fig. 3 of the main text and more explicitly in Fig. 3 of this Supplementary
Material.

If we take the assumption of εin = εr = ε, the noise spectrum for the traditional broadband squeezing using an addi-
tional filter cavity and the conditional squeezing, including the loss ε to the first order, and under the approximation
that the squeezing degree is large, we have:

∆Sεcond
hh ≈

h2
SQL

2

(
2

K
+

3

2
K
)
2ε, ∆Sεtran

hh ≈
h2
SQL

2

(
2

K
+K

)
ε, (34)

where ∆Sεtran
hh is the first order correction to the sensitivity curve produced by traditional squeezing scheme [2, 7] and

clearly we have ∆Sεcond
hh ≈ 2∆Sεtran

hh . As we have briefly mentioned in the main text, due to the fact that both signal
and idler beams experience the same loss during their propagation in our scheme, the input and readout losses in our
configuration are roughly doubled compare to that of the traditional squeezing scheme with an additional filter cavity.

C. Phase fluctuation

The classical phase uncertainty of local oscillators in homodyne detection scheme has a very small effect on the
sensitivity, proved as follows.

We assume that the phase fluctuation of the local oscillators used for signal and idler detection are independent
Gaussian random variables represented by ξs and ξi respectively, with zero mean and standard variacne ξvs and ξvi,
such that their probability density functions are given by:

Ps(ξs) =
1√
2πξ2vs

e
− ξ2s

2ξ2vs , Pi(ξi) =
1√
2πξ2vi

e
− ξ2i

2ξ2
vi , (35)

For measuring any field Ô, the effect of phase fluctuation ξO in a phase quadrature readout scheme is that the
actual detected quadrature is also a random variable which is given by Ôm(t) = −Ô1(t) sin ξO + Ô2(t) cos ξO. The
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FIG. 3: Left panel: the strain sensitivity and enhancement factor of our configuration when there is only input loss. Right
panel: the strain sensitivity and enhancement factor of our configuration when there is only readout loss.

ensemble-averaged variance of the detected quadrature is then [9]:

SÔmÔm
=

1

2

∫
dξOP (ξO)〈ÔmÔ†

m + Ô†
mÔm〉

= VÔ1Ô1

∫
dξOP (ξO) sin ξ

2
O + VÔ2Ô2

∫
dξOP (ξO) cos ξ

2
O + (VÔ1Ô2

+ VÔ2Ô1
) sin ξO cos ξO

(36)

Now if we use the identities (we assume that ξvo � 1.):
∫

dξOP (ξO) sin
2 ξO = e−ξ2ov sinh ξ2ov ≈ ξ2ov ≈ sin ξ2ov

∫
dξOP (ξO) cos

2 ξO = e−ξ2ov cosh ξ2ov ≈ 1− ξ2ov ≈ cos ξ2ov,

(37)

and the fact that the sin ξO cos ξO is an odd function, one can obtain:

SÔmÔm
≈ cos ξ2voVÔ1Ô1

+ sin ξ2voVÔ2Ô2
. (38)

Using the above formula, one can can compute the variance of signal and idler fields.
Similarly, the cross correlation between the signal and idler fields (represented by Â and B̂) in the phase quadrature

readout scheme, accounting for phase fluctuations, is given by:

SAmBm
=

1

2

∫
dξidξsP (ξi)P (ξs)〈(Â1 sin ξs + Â2 cos ξs)(B̂1 cos ξi + B̂2 sin ξi)〉. (39)

Because ξi and ξs are two independent random variables, the above cross correlation fluctuation leads to:

SAmBm
= SA2B1

e−
ξ2vs+ξ2vi

2 ≈ Sa2b1

(
1− ξ2vs + ξ2vi

2

)
. (40)
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where we have used the identities:
∫

dξOP (ξO) cos ξO = e−
ξ2O
2 ,

∫
dξOP (ξO) sin ξO = 0. (41)

Substituting Eq. (38) and Eq. (40) into Eq. (11), the final strain sensitivity can be written as:

Shh =
h2
SQL

2 cosh 2r

[
1 + (ξ2vs + ξ2vi) sinh 4r

K
+ (1− ξ2vs + ξ2vi sinh 4r)K

]
. (42)

The typical experimental rms of the local oscillator phase is taken to be 1.7m rad such as shown in [10], that means
the phase fluctuation quantities in the above formula have an orders of magnitude ∼ 10−6 rad2. For a 15dB squeezer,
1mrad phase jittering only contributes roughly ∼ 0.5% relative correction to the final sensitivity.
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