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Abstract

We report the synthesis, characterization, and reactivity of [LFe3(PhPz)3OMn(sPhIO)][OTf]x (3: x 

= 2; 4: x = 3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized 

by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the 
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metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe 

Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in 

oxidation state (FeIII
2FeIIMnII vs. FeIII

3MnII) influence oxygen atom transfer in tetranuclear 

Fe3Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change 

in oxygen atom transfer reactivity by ca. two orders of magnitude.

Keywords

C–H bond oxygenation; clusters; iodosobenzene adduct; multimetallic complexes; oxygen atom 
transfer

Terminal metal-oxo moieties are commonly invoked in oxidative biological 

transformations.[1] Due to the important functions of reactive metal-oxo motifs in C–H bond 

functionalization and water oxidation, intense efforts have been made to develop synthetic 

model complexes to elucidate their behavior through structure–function studies.[2] Both the 

oxidation- and spin-state of the metal center affect their reactivity.[3] Nonetheless, studying 

these effects on C–H bond activation or oxygen atom transfer is challenging due to 

limitations in accessing metal complexes with properties suitable for meaningful 

comparison.[2d,4] Such studies are even more challenging in multinuclear systems, which 

represent more accurate models of enzymes’ active sites.[1f,5] Only recently, a study of 

bimetallic complexes demonstrated that changing the oxidation state from [HO-FeIV-O-

FeIV=O] to [HO-FeIII-O-FeIV=O] resulted in a change in spin-state, concomitant with a 

remarkable million-fold increase in the rate of C–H bond cleavage.[6] Apart from bimetallic 

complexes, there are no other reports, to our knowledge, that examine the effect of remote 

redox changes on oxygen atom transfer (OAT) or C–H bond oxygenation.

Herein, we report on the synthesis and characterization of a new series of clusters, 

[LFe3(PhPz)3OMn][OTf]x (Figure 1; 1: x = 2; 2: x = 3), and demonstrate how changing the 

oxidation state (FeIII
2FeIIMnII vs. FeIII

3MnII) has profound effects on the rate of oxygen 

atom transfer from their corresponding iodosobenzene adducts [LFe3(PhPz)3OMn(sPhIO)]

[OTf]x (3: x = 2; and 4: x = 3). Compound 4 is stable for a few hours at room temperature 

(RT), and constitutes one of the very rare example of a iodosobenzene adduct characterized 

by X-ray crystallography.[7] Access to these heterometallic clusters enabled us to 

differentiate the Mn and Fe metal centers by both 57Fe Mössbauer and X-ray absorption 

spectroscopy (XAS), giving unique insights into the structure and reactivity of 3 and 4 where 

coordination of iodosobenzene to low-valent MnII is observed.

Complexes [LFe3(PhPz)3OMn][OTf]2 (1) and [LFe3(PhPz)3OMn][OTf]3 (2; PhPz = 

phenylpyrazolate, OTf = trifluoromethanesulfonate) were prepared by modifying our 

recently reported literature procedure for [LFe3(PhPz)3OFe][OTf]2.[8] Both 1 and 2 were 

fully characterized by a wide variety of physical methods including 1H NMR spectroscopy 

(Figures S1 and S2 in the Supporting Information), X-ray crystallography (Figure 2, and 

Figures S20 and S21), Mössbauer spectroscopy (Figure S17), and X-ray absorption 

spectroscopy (Figures S12–S14).
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Access to different oxidation states (FeIII
2FeIIMnII vs. FeIII

3MnII) in complexes 1 and 2 
allows for structure–reactivity studies. Given the function of the multinuclear oxygen 

evolving complex (OEC) in water oxidation and of diiron active sites in C–H oxygenation 

chemistry, O-atom transfer was studied by treatment of 1 and 2 with 2-(tert-butylsulfonyl)-

iodosobenzene (sPhIO; 5.0 equiv). Indeed, en route towards intramolecular C–H bond 

oxygenation,[9] distinct intermediates (3, 4) were observed by 1H NMR spectroscopy 

(Figures S3 and S4), where 4 exhibits diminished reactivity. No other intermediates were 

observed prior to the formation of [LFe3(PhPz)2(OArPz)OMn][OTf]x (Scheme 1. 5: x = 2; 

6: x = 3).[10] Intrigued by the formation of 3 and 4, their structure and reactivity were further 

investigated by various analytical methods, where the relative stability of 4 enabled us to 

isolate crystals amenable for X-ray crystallography.

X-ray diffraction (XRD) studies on single crystals of 4 (Figure 2C), revealed the formation 

of a rare isolable iodosobenzene adduct [LFe3(PhPz)3OMn(sPhIO)][OTf]3. Comparing the 

O2−I1 (1.848(6) Å) and I1−C101 (2.128(7) Å) bond distances in 4 (Figure 2C), to those 

observed for free sPhIO (1.864(10) and 2.105(15) Å)[11] reveals no significant sPhIO 

activation (Table S1). This lack of activation is further corroborated by comparing the 

Mn1−O1 bond distances in complex 2 (2.166(3) Å) to those in 4 (2.100(6) Å). The long 

distances indicate that even upon binding of sPhIO, the manganese metal center remains 

MnII.[12] Subsequent XAS studies confirm such an assignment (see below).

The isolation of an iodosobenzene adduct bound to a low-valent MnII metal center is unique. 

To date, only two other examples are known where iodosobenzene is bound to a biologically 

relevant metal (Mn or Fe),[7b,c] none of them being on a multimetallic scaffold. Furthermore, 

in both complexes, the iodosobenzene is bound to higher oxidation state metal centers (FeIII 

and MnIV), which are less prone to further oxidation and feature larger degrees of PhIO 

activation. These differences suggest a multimetallic effect where the distal metal centers 

affect the reactivity of the MnII that ligates iodosobenzene.

To gain further insight into the reactivity and oxidation state assignment of 3 and 4, their 

properties were investigated by X-ray absorption spectroscopy (XAS). XAS is an element-

specific technique that provides information about the oxidation state and local coordination 

environment of metal ions.[13] The Mn K-edge X-ray absorption near edge structure 

(XANES) spectra for complexes 3 and 4 are nearly identical, with rising edge energies (at 

half-height of the absorption edge) of 6547.8 eV (3) and 6547.7 eV (4) respectively (Figure 

3; dashed green and red traces). These values are close to that recorded for MnO (6546.4 eV; 

Figure 3; dotted brown trace), and slightly lower than that recorded for mixed-valent Mn3O4 

(6548.9 eV; Figure 3; dotted black trace). For comparison, the XANES spectra for 5 and 6 
are clearly at a higher energy, where the rising edge energies obtained for 5 (6550.7 eV) and 

6 (6550.9 eV) are close to that of Mn2
IIIO3(6550.7 eV), suggesting the presence of higher 

oxidation state metal centers (Figure 3; solid green and red traces). The short Mn1−O1 (5: 

1.894(7) Å; 6: 1.943(4) Å) and Mn1−O2 (5:1.854(7) Å; 6: 1.819(9) Å) bond distances 

support such an assignment (Figure 2B, Figure S24, Table S1).[14] The Mn XANES data 

thus indicate that prior to C–H bond oxygenation a lower oxidation state (MnII) metal center 

is present in 3 and 4, which oxidizes (to MnIII) along the reaction pathway. Moreover, the 

comparable shapes of the XAS spectra for 3 and 4 suggest a similar coordination geometry 
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around the Mn metal center.[13] Based on these data, we propose that 3 is also an 

iodosobenzene adduct. The agreement between the Mn K-edge extended X-ray absorption 

fine structure (EXAFS) derived bond distances in 3 (Mn−Oavg: 2.03 ± 0.02 Å; Mn−Navg: 

2.18±0.03 Å) with those obtained by XRD in 4 (Mn−Oavg: 2.07±0.03 Å; Mn−Navg: 

2.17±0.01 Å), supports such a proposal (Tables S4 and S5).[15]

The Fe K-edge XAS is very useful for establishing the iron oxidation states in 3, for which 

no Mössbauer or XRD data is available. The Fe K-edge XANES of 3 (Figure 3, dashed 

green trace) is in between that of Fe2O3 (FeIII; dotted gray trace) and FeCl2 (FeII; dotted 

black trace). The closer proximity of the rising edge energy in 3 (7122.2 eV) to that of 

Fe2O3 (7123.3 eV), indicates that the triiron core is of mixed valence and mainly FeIII in 

character. Moreover, the rising edge energy in 3 is nearly identical to that of 5 (7121.9 eV), 

for which a [FeIIFeIII
2] oxidation state was established by Mössbauer spectroscopy and X-

ray crystallography (Figures S19 and S23). The XAS data therefore indicates an overall 

[LFeIII
2FeII(PhPz)3OMnII(sPhIO)][OTf]2 assignment for complex 3.

Analogous to 3, the Fe XANES spectrum of 4 is nearly identical to that of 6, suggesting the 

same oxidation state of the triiron core (Figure 3; dashed and solid red traces). The rising 

edge energies of 7123.8 eV (4) and 7123.5 eV (6) are very similar to that of Fe2O3 (7123.4 

eV) suggesting an [FeIII
3] assignment for the triiron core. The short Fecore−O1 distances of 

1.994(7) Å (Fe1−O1), 1.989(7) Å (Fe2−O1), and 1.967(6) Å (Fe3−O1), are in line with such 

an assignment (Table S1).[16] The overall oxidation state in 4 is thus assigned as 

[LFeIII
3(PhPz)3OMnII(sPhIO)][OTf]3 based on X-ray crystallography and XAS 

spectroscopy.

The presence of an [FeIII
3] triiron core in 4 was further supported by Mössbauer 

spectroscopy (Figure 4). The Mössbauer spectrum was modeled as three nearly identical 

quadrupole doublets in a 1:1:1 ratio with isomer shifts of δ = 0.42 mms−1 (|ΔEQ|= 0.76 

mms−1), δ = 0.46 mms−1 (|ΔEQ|= 0.92 mms−1), and δ = 0.47 mms−1 (|ΔEQ|= 0.71), 

consistent with the presence of three high spin ferric ions. The fitted parameters are similar 

to previously reported triiron oxo/hydroxo clusters.[16] Comparing the Mössbauer 

parameters of complexes 1, 2, and 4–6 (Figures S17–S19; Table S8), to our previously 

reported complexes [Fe3(PhPz)3OFe][OTf]x and [Fe3(PhPz)2(OArPz)OFe][OTf]x (x = 2–3) 

reveals a notable difference: the quadrupole doublet at δ ≈ 0.86 mms−1 (|ΔEQ| ≈ 1.57 

mms−1), associated with the apical iron metal center, is absent in our Mössbauer spectra.[8,9] 

The absence is significant and implies that no metal scrambling occurs within our 

[LFe3(PhPz)3OMn][OTf]x (x = 2–3) clusters, confirming that reactivity originates from the 

Mn metal center.

Overall, prior to C–H bond oxygenation, XRD, XAS, and Mössbauer spectroscopy provide 

conclusive evidence for assigning 3 and 4 as iodosobenzene adducts 

[LFe3(PhPz)3OMn(sPhIO)][OTf]x (3: x = 2; 4: x = 3) in which a low-valent MnII metal 

center engages in the interaction with iodosobenzene. Accessing these intermediates offers a 

unique opportunity to study the effect of remote redox changes (FeIII
2FeIIMnII vs. 

FeIII
3MnII) on oxygen atom transfer. Indeed, pronounced redox state effects in 3 and 4 were 

observed. Warming a solution of 3 from −78°C to RT resulted—within two minutes—in the 
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quantitative conversion to the C–H bond oxygenated product 5 (Scheme 1; Figure S9). In 

contrast, compound 4 persists for at least three hours (> 200 min) at RT; during which a 

gradual conversion to complex 6 occurs (Scheme 1; Figure S10). A difference of at least two 

orders of magnitude is observed for oxygen atom transfer in complexes 3 and 4.

The difference in reactivity between 3 and 4 is notable given that the XAS and XRD data 

(vide supra) suggest a similar degree of sPhIO activation. Assuming that sPhIO binds to the 

cluster as a neutral ligand, we propose that the redox properties of 3 and 4 should be 

comparable to their parent complexes 1 and 2.[8] Based on this assumption, we suggest that 

the reactivity differences between 3 and 4 are due to the higher oxidative stability of 4. The 

cyclic voltammogram of 1 is shown in Figure S11 and indeed reveals that the oxidation 

potential of 2 (FeIII
3MnII) is at least 500 mV more positive than that of 1 

(FeIII
2FeIIMnII).[17] The increased oxidative stability of 2 results in a slower oxygen atom 

transfer reaction; prolonging the lifetime of 4, and hence, resulting in a more sluggish 

overall C–H oxygenation reaction.[18] Other effects such as spin-state changes, 

intramolecular electron transfer, or differences in the interaction with ancillary ligands 

cannot be ruled out. Nonetheless, these studies demonstrate a significant effect on reactivity 

where redox state changes at remote metal centers influence bond cleavage and formation at 

a distant Mn metal center. The observed differences suggest a path for the mechanism of C–

H bond oxygenation. One can envision that the direct electrophilic attack or hydrogen atom 

abstraction from 3 or 4 would favor the metal complex with the highest oxidation 

potential.[19] However, here the opposite trend is observed, and is more consistent with the 

formation of a putative terminal MnIV-oxo, which if rate-limiting, is expected to be slower 

for the more oxidized metal cluster 4 compared to 3.

In summary, rare examples of iodosobenzene adducts [LFe3(PhPz)3OMn(sPhIO)][OTf]x. (3: 

x = 2; 4: x = 3) were characterized by a variety of spectroscopic methods. The first example 

of structurally characterized iodosobenzene adduct to a low oxidation state (MnII) metal 

center was reported. The oxidation states of a remote triiron core (FeIII
2FeIIMnII vs. 

FeIII
3MnII) was found to affect significantly oxygen atom transfer at a single manganese 

(MnII) metal center, and the overall C–H oxygenation chemistry in this system. These 

investigations provide a demonstration of the significant reactivity differences engendered 

by changes in the redox states of clusters, even at positions distant from where bond 

activations occur.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General molecular structure of [LFe3(PhPz)3OMn]n+ 3 (n = 2–3; top left), supported by 

pyrazolates and a 1,3,5- triarylbenzene-based ligand. The inset shows the coloring scheme 

for the metal oxidation states.

de Ruiter et al. Page 8

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Crystals structures of A) [LFe3(PhPz)3OMn][OTf]2 (1); B) [LFe3(PhPz)2(OArPz)OMn]

[OTf]2 (5); and C) [LFe3(PhPz)3OMn(sPhIO)][OTf]3 (4). Thermal ellipsoids are shown at 

the 50% probability level. Hydrogen atoms, outer-sphere counter ions, and co-crystallized 

solvent molecules are not shown for clarity. See Table S1 for a summary of selected bond 

lengths and angles.
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Figure 3. 
Normalized Mn and Fe K-edge XANES spectra (10 K) of compounds 3–6, compared to 

MnO, Mn2O3, Mn3O4 or to FeCl2, and Fe2O3.

de Ruiter et al. Page 10

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Zero-field 57Fe Mössbauer spectrum (80 K) of [LFe3(PhPz)3OMn(sPhIO)][OTf]3 (4).
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Scheme 1. 
Synthesis of triiron manganese clusters 1–6.
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