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Abstract— We propose a novel approach to the design of
focusing matrices which play important role in the coherent
methods for wideband direction-of-arrival estimation. We call
this ‘autofocusing’ because unlike the conventional methods, our
technique constructs the focusing matrices entirely by processing
the received signal and does not require any preliminary DOA
estimates. In this way, it overcomes the major drawback of
the coherent methods which otherwise possess many desirable
properties. Through computer simulations, the proposed method
is found to exhibit satisfactory performance in comparison to the
existing wideband DOA estimation algorithms. 1

Index Terms — Direction-of-arrival (DOA), Wideband Sources,
Focusing matrix, Signal subspace method.

I. INTRODUCTION

The problem of estimating the directions-of-arrival (DOA)
of signals impinging on a sensor array has widespread ap-
plication in source localization for radar, sonar and wire-
less communication systems. When the incoming signals are
wideband, the most popular approach is to decompose the
wideband signal into narrowband components and wideband
DOA estimation in that case is mainly concerned with finding
a clever way to use the multiple correlation matrices at
different frequencies to get accurate DOA estimates.

The incoherent signal subspace method (ISSM) [8] is the
simplest wideband method which estimates the source DOAs
separately at each narrowband frequency and then constructs
the final estimate by taking an average. While this works
well at high SNR, the performance can suffer severely at
low SNR because even a single outlier from one narrowband
component can potentially lead to inaccurate estimates through
the averaging process. Also it is incapable of handling coher-
ent sources. To overcome these drawbacks, several coherent
methods have been suggested [1]–[4], [7]. Of these, the
coherent signal subspace method (CSSM) [7] was the earliest.
It aimed at focusing the signal subspace at each frequency
to that at a certain reference focusing frequency and then
constructing a single correlation matrix by summing over
these focused correlation matrices, on which narrowband DOA
estimation algorithms could be applied. This method has good
performance at low SNR and can also handle coherent sources
[7]. However, construction of the focusing matrices needs
preliminary estimates of DOAs and the performance of CSSM
is sensitive to the error in the preliminary estimates, which can
give rise to biased final estimates [6]. The weighted average
of signal subspaces (WAVES) [1] is another coherent method
and it also requires focusing matrices. Though it can avoid
initial estimates by using BI-CSSM technique, its performance
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is worse than when it uses focusing matrices with good initial
estimates. Recently, a novel wideband DOA algorithm called
test of orthogonality of projected subspaces (TOPS) [9] has
been proposed. It is in between the coherent and incoherent
processing, performing best at low to mid SNR and does not
require initial estimates. However, the spatial spectrum used
in TOPS can show false peaks which is a disadvantage of this
method.

It is seen that coherent methods are definitely advantageous
in terms of good performance at low SNR and capabil-
ity for handling coherent sources. However, the dependence
of the focusing matrices used in coherent methods on the
preliminary DOA estimates, is a severe drawback of these
methods which gives rise to increased computation and also
potentially biased estimates. To overcome this problem, in
this paper, we suggest a new technique to focus the signal
subspaces at different frequencies, which does not require the
preliminary DOA estimates. This technique, which we call
autofocusing, constructs the focusing matrices entirely on the
basis of the received data and does not require knowledge of
array manifold. Hence careful calibration of the array is not
needed in their construction. Also, the focusing matrices are
made unitary by construction so that there is no focusing loss.

The rest of the paper is organized as follows. In Section
II, we briefly review the major wideband DOA estimation
algorithms. In Section III, we discuss the proposed method.
In Section IV, we provide numerical examples to compare
the proposed method with existing ones and finally Section V
concludes the paper.

II. BACKGROUND REVIEW

A. Signal Model

Consider an N element linear array with unambiguous
array manifold, i.e., D(≤ N ) steering vectors of the array
corresponding to D different source angles are linearly in-
dependent, spanning a D dimensional subspace, also known
as the signal subspace. Consider D(< N ) wideband sources
s1(t), s2(t), · · · , sD(t) impinging on the array from different
directions of arrival θ1, θ2, · · · , θD respectively. The signal
received at the nth sensor is given by

xn(t) =
D∑

d=1

sd(t− τn(θd)) + ηn(t) (1)

n = 1, 2, · · · , N

where τn(θd) is the propagation delay associated with the dth
source and the nth sensor and ηn(.) is the additive noise at
the nth sensor. The incoming signal at each sensor is first
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sampled at frequency fs and the samples are then partitioned
into segments of K = ΔTfs samples each. Then, a K-point
DFT is applied to the K samples in a segment. The DFT
coefficients from the N sensors can be expressed as

X[i] = A(fi)S[i] + N[i], i = 0, 1, · · · ,K − 1 (2)

where

fi =
i

K
fs, (3)

and X[i] = [ X1[i] X2[i] · · · XN [i] ]T with Xn[i] de-
noting the ith DFT coefficient of samples of xn(t). Here,

A(fi) = [ aθ1(fi) aθ2(fi) · · · aθD
(fi) ] , (4)

with

aθd
(fi) =

[
e−j2πfiτ1(θd), · · · , e−j2πfiτN (θd)

]T

(5)

as the steering vector of the array at frequency fi for the dth
source. In (2),

N[j] = [ N1[i] N2[i] · · · NN [i] ]T , (6)

S[i] = [ S1[i] S2[i] · · · SD[i] ]T (7)

where Nn[i] and Sd[i] are the ith DFT coefficients of samples
of ηn(t) and sd(t) respectively. Under the assumption that ΔT
is long enough compared to the correlation time of the signals
and the noise so that we can regard the DFT coefficients
uncorrelated [2], [7], we can write

Rxx[i] � E[X[i]XH [i]] (8)

= A(fi)Rss[i]AH(fi) + σ2
nI, (9)

where Rss[i] = E[S[i]SH [i]] and we have assumed the
noise samples to be zero mean temporally and spatially white
Gaussian random process with variance σ2

n so that the autocor-
relation matrix at each DFT frequency is σ2

nI. Assuming that
the D sources are uncorrelated, the D×D matrix Rss[i] has
full rank. Then, if the eigenvectors of Rxx[i] are ordered in
decreasing order with respect to their eigenvalues, the first D
eigenvectors span the same subspace of dimension D (known
as signal subspace at frequency fi) as R(A(fi)) (range space
of A(fi)) and are known as the signal subspace eigenvectors.
The last N − D eigenvectors are called the noise subspace
eigenvectors and they span a subspace of dimension N − D
orthogonal to the signal subspace.

B. Review of Coherent and Incoherent Methods of Wideband
DOA Estimation

The incoherent signal subspace method (ISSM) [8] is the
simplest wideband DOA estimation method which estimates
the signal and noise subspace at each frequency independently
and then the estimated DOAs from each frequency bin are
averaged in some way to get the final estimate. This method,
as mentioned in the earlier section, suffers at low SNR [7].
The coherent method [7] attempts at solving this problem
by combining the signal subspaces coherently into one single
autocorrelation matrix to which narrowband high resolution
methods (such as MUSIC) can be applied. The key idea is
to design a focusing matrix T(fi) which transforms the array

manifold at frequency fi to that at a common frequency f0 as
follows

T(fi)A(fi) = A(f0). (10)

Then the coherent autocorrelation matrix is generated as

Rcoh =
K−1∑
i=0

T(fi)Rxx[i]TH(fi) (11)

= A(f0)RsAH(f0) + σ2
n

K−1∑
i=0

T(fi)TH(fi). (12)

where Rs =
∑K−1

i=0 Rss[i]. Now any standard narrowband
DOA estimation method such as MUSIC [5], can be ap-
plied by computing the eigenvectors of the matrix pencil
(Rcoh,

∑K−1
i=0 T(fi)TH(fi)). The coherent method is poten-

tially capable of better performance even at low SNR as it
first focuses the energy at different frequencies at the focusing
frequency and then performs narrowband DOA estimation
at that focusing frequency. Also by the frequency averaging
process, it can handle correlated sources. WAVES [1] is
another interesting coherent method which, instead of using
the entire autocorrelation matrix at different frequencies, uses
sum of suitably weighted signal subspaces. However, it also
requires focusing matrices.

The focusing matrices are non-unique and several discus-
sions on construction of these focusing matrices can be found
in [2], [3], [7]. The most popular way to generate these
focusing matrices is to construct a unitary focusing matrix by
minimizing the Frobenius norm of the manifold mismatches,
viz.,

min
T(fi)

||A(f0)−T(fi)A(fi)||F (13)

subject to T(fi)TH(fi)) = I.

This class of focusing matrices is called RSS (rotational signal-
subspace) matrices [3] and the matrix is required to be unitary
in order to preserve the SNR before and after focusing. The
focusing matrices are further discussed in [2] where it is shown
that the focusing matrices (including the RSS matrices) belong
to the broader class of matrices called SST (signal-subspace
transformation) matrices.

However, to construct the focusing matrices following any
of the popular methods, it is crucial to have some preliminary
estimate of the DOAs. Poor initial estimates might lead to
inaccurate focusing and give rise to final DOA estimates which
are biased [6]. The need for initial DOA estimates can be
avoided by the BI-CSSM method [4] which utilizes a set of
frequency invariant beams spanning the field-of-view (FOV).
However the performance of this method heavily depends on
the size of the FOV and the array geometry.

III. AUTOFOCUSING APPROACH TO COHERENT SIGNAL
SUBSPACE BASED WIDEBAND DOA ESTIMATION

In this paper, we propose a novel technique of generating
focusing matrices, which do not require any preliminary
DOA estimation, and yet can coherently combine the signal
subspaces at different frequencies into one coherent subspace
at the chosen frequency, thereby assuring all the advantages
offered by CSS method. The need for preliminary DOA
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estimates is avoided by noticing the simple fact that the signal
subspace eigenvectors span the same subspace as the array
manifold at each frequency and so, we can use them to form
the focusing matrix, instead of using the array steering vectors,
which require the preliminary knowledge of the DOAs.

Let us consider the same signal model as described in
Section I. In particular, the autocorrelation matrix for the ith
DFT coefficient is

Rxx[i] = A(fi)Rss[i]AH(fi) + σ2
nI. (14)

Suppose, we want to focus to a frequency f0. Then the
focusing matrix proposed by our method is

Tauto(fi) =
1√
K

U(f0)UH(fi) (15)

where K is the number of frequency bins considered and
U(fi) is a N × N unitary matrix whose columns are the
eigenvectors of the autocorrelation matrix Rxx[i]. We assume
that all sources have non zero energy at all frequencies {fi}
under consideration. This choice of focusing matrix, as we
shall see shortly, will satisfy the purpose we discussed in the
previous paragraph. It is to be noted that this matrix belongs to
the same class of SST matrices as proposed by Doron in [2].
Since the eigenvectors of Rxx[i] can be grouped into signal
space and noise space eigenvectors, we can represent U(fi)
as

U(fi) = [ Uss(fi) UN (fi) ] (16)

where Uss(fi) is a N × D matrix whose columns represent
the D orthonormal eigenvectors of Rxx[i] corresponding to the
D largest eigenvalues, and UN (fi) is a N × (N −D) matrix
whose columns represent the remaining (N −D) orthonormal
eigenvectors of Rxx[i]. It is to be noted that to construct
Tauto(fi), we do not need to know the number of sources, D,
since we are using the complete set of eigenvectors of Rxx[i]
as columns of U(fi), as opposed to using, say, D of them.
However this does not prevent us from representing U(fi) as
in (16) because we can always construct U(fi) by making the
jth column equal to the eigenvector corresponding to the jth
largest eigenvalue. We can now multiply X[i] by the focusing
matrix and define the transformed vector

Y[i] = Tauto(fi)X[i]. (17)

Taking the autocorrelation of Y[i], substituting (14) and (15),
and using the unitarity of Tauto(fi), we get,

Ryy[i] = E[Y[i]Y[i]H ]
= Tauto(fi)A(fi)Rss[i]AH(fi)TH

auto(fi) (18)

+
1
K

σ2
nI

Now we have,

Tauto(fi)A(fi)

=
1√
K

[ Uss(f0) UN (f0) ]
[

UH
ss(fi)

UH
N (fi)

]
A(fi)

=
1√
K

[ Uss(f0) UN (f0) ]
[

UH
ss(fi)A(fi)

0

]
(19)

=
1√
K

Uss(f0)UH
ss(fi)A(fi) (20)

where (19) is due to the fact that the noise eigenvectors at
frequency fi are orthogonal to the array manifold A(fi) at
frequency fi. Substituting (20) into (18), we get,

Ryy[i] =
1
K

Uss(f0)R̃[i]UH
ss(f0) +

1
K

σ2
nI (21)

where

R̃[i] = UH
ss(fi)A(fi)Rss[i]AH(fi)Uss(fi). (22)

We next sum (21) corresponding to the K frequencies to get
the coherently combined autocorrelation matrix as

Rcoh =
K−1∑
i=0

Ryy[i] (23)

=
1
K

Uss(f0)

(
K−1∑
i=0

R̃[i]

)
UH

ss(f0) + σ2
nI (24)

= Uss(f0)RsUH
ss(f0) + σ2

nI (25)

where

Rs=
1
K

K−1∑
i=0

R̃[i]=
1
K

K−1∑
i=0

UH
ss(fi)A(fi)Rss[i]AH(fi)Uss(fi). (26)

Rcoh plays the role of the universal focused sample correlation
matrix, where the signal subspaces at different frequencies are
focused to the signal subspace at f0 which is spanned by
the columns of Uss(f0). It can be seen that (25) has similar
form as (12). However, instead of the actual array manifold
A(f0) as the focusing array manifold, we have the matrix
Uss(f0) whose columns span the same subspace as A(f0)
and hence, as we shall show shortly, they carry the same
information about the focusing signal subspace. This is the
primary reason why, in our proposed method, the focusing
can be performed without the preliminary DOA estimates.
The signal autocorrelation matrices at different frequencies
are transformed, and then summed to get the total correlation
matrix Rs whose rank will be discussed in the following
theorem. As the focusing matrices are unitary, the spatial
whiteness of the noise is preserved and hence the noise
autocorrelation matrix remains unchanged. Thus, (25) has the
form of a narrowband sample autocorrelation matrix from
which we can extract the DOA estimates following similar
technique as narrowband MUSIC algorithm, as explained by
the following theorem.
Lemma: Rs as given by (26), is a non negative matrix
satisfying

max
i
{rank(Rss[i])} ≤ rank(Rs) ≤ D. (27)

If the sources are uncorrelated, then Rs is a positive definite
matrix with

rank(Rs) = D. (28)

Proof: In (22), since Uss(fi) and A(fi) are N × D
matrices with full column rank, spanning the same range
space, UH

ss(fi)A(fi) is a full-rank D ×D matrix and so

rank(R̃[i]) = rank(Rss[i]) (29)
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Moreover, as Rss[i] is non negative definite (allowing coherent
sources), so must be R̃[i]. Therefore Rs is itself non negative
definite. Also, it is easy to check that

N (Rs) =
K−1⋂
i=0

N (R̃[i]) (30)

and hence, rank of the D ×D matrix Rs satisfies (27).
When the sources are uncorrelated, then Rss[i] is positive

definite for i = 0, 1, · · · ,K − 1. So, using (29), we can say
that rank(R̃[i]) = D ∀i. This, along with (27), implies that
rank(Rs) = D and hence Rs becomes a full rank positive
definite matrix.

Theorem 1: Let Rcoh be the coherently combined sample
autocorrelation matrix of the sensor outputs as given by (25).
Let ei and λi, i = 1, 2, · · · , N be the eigenvectors and the
corresponding eigenvalues, (in decreasing order), of Rcoh.
Then, we have
(a) λD+1 = λD+2 = · · · = λN = σ2

n
(b) Assuming the sources are uncorrelated, column span

of EN � [ eD+1 eD+2 · · · eN ] is orthogonal to
Range space of A(f0).

Proof: When the sources are uncorrelated, we know
from (28), that Rs is a positive definite matrix. Since
Uss(f0) is N × D matrix with full column rank D, so
Uss(f0)RsUH

ss(f0)) is a non negative definite rank-D matrix,
whose columns span the same subspace as R(A(f0)) since
R(Uss(f0)) = R(A(f0)). The eigenstructure of Rcoh in that
case is exactly the same as that of the sample autocorrelation
matrix encountered in narrowband MUSIC algorithm and
hence the proof of this part of the theorem follows the same
lines as given in [5].

The theorem ensures that we can perform narrowband MU-
SIC on the coherently combined covariance matrix obtained
by using our proposed focusing matrix. We have explicitly
proved that all D sources can be identified when they are
uncorrelated. However, this condition can be relaxed to in-
clude even correlated sources. In this case, though the source
covariance matrices Rss[i] are singular, the singularity may
be removed by the frequency averaging process so that the
averaged matrix Rs becomes non singular.

Advantages of the proposed autofocusing technique:

We now summarize the advantages of our proposed focusing
method:
(i) It does not need any initial estimate of the DOAs to

construct focusing matrix. Thus it completely avoids the
need for preprocessing.

(ii) The focusing matrix Tauto(fi) is a unitary matrix by
construction, and hence, according to [2], [3], it results in
no focusing loss. Also, it preserves the spatial whiteness
of the noise, so that the coherently combined noise
autocorrelation matrix remains diagonal.

(iii) Construction of the focusing matrix at a particular fre-
quency does not require the knowledge of the number
of sources since we use the full set of eigenvectors (as
opposed to using only the signal-subspace eigenvectors)
of the autocorrelation matrix at that frequency. This in

turn avoids the errors that might occur due to wrong
detection of number of sources at low SNR locally at
a given frequency.

(iv) The focusing matrices are constructed entirely on the
basis of the received data, by the eigendecomposition of
the signal autocorrelation matrix at different frequencies.
So it can be viewed as a fully data dependent method
which can be adapted to the changing scenario.

(v) Since we do not use the array manifold explicitly in
constructing the focusing matrices, it does not require
accurate calibration and can avoid the errors that occur
due to mismatches. The only time the array needs to be
calibrated is when we apply MUSIC to the coherently
combined autocorrelation matrix. However, if we use
ESPRIT instead of MUSIC, even this calibration can be
avoided.

IV. SIMULATION EXAMPLES

In this section, the performance of the proposed method is
evaluated and compared against popular wideband DOA esti-
mation algorithms through simulation examples. We consider
D = 3 broadband sources impinging on a 10 element ULA
from 0◦, 30◦ and 45◦. The sampling frequency is chosen to be
twice the highest frequency. The sources occupy the frequency
band between π/2 and π in the digital frequency domain.
The sensor spacing is chosen to be λmin/2 where λmin is
the wavelength corresponding to the highest frequency in the
signal. This spacing ensures that there is no aliasing in the
spatial domain.

The samples of the impinging signal are divided into M =
100 segments of K = 256 samples each. In each segment
the 256 samples are converted to frequency domain by a
256-point DFT which are then processed using four different
algorithms: i) The proposed autofocusing method. ii) CSSM
using RSS focusing matrices [3], [7] with perfect intial DOA
estimates (named CSSM I) iii) CSSM using RSS focusing
matrices with intial DOA estimates obatined by delay-and-
sum beamforming (named CSSM II), and iv) the recently
proposed TOPS [9] algorithm. The RSS focusing matrices are
constructed following [7] and the focusing frequency f0 for
both the CSSM methods and the proposed method is chosen
to be the middle frequency of the band.

The performances of the four algorithms are compared
for the source at 45◦ in terms of their RMSE in Fig. 1
and bias in Fig. 2. The proposed autofocusing technique is
found to outperform CSSM II and TOPS with respect to both
RMSE and bias. The CSSM method with perfect initial DOA
estimates exhibits the best performance but it is impractical. It
is to be noted that CSSM II, which is the more practical way to
implement CSSM, suffers from bias even at high SNR which is
due to inaccurate initial DOA estimates. The proposed method,
however, not requiring any such initial estimates, gives rise to
unbiased estimates as evident from the plots.

It is also to be noted that TOPS spectrum can show spurious
peaks at angles other than the true DOAs. To exhibit this, the
TOPS spectrum (inverse of the smallest singular value) and the
MUSIC spectrum for the proposed method are plotted (as a
function of angle of arrival) at SNR=0 dB. While the proposed
method clearly shows only three peaks, the TOPS spectrum
shows several other false peaks, which can potentially get
erroneously detected as source DOAs.
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Fig. 1. Comparison of RMSE of the different wideband DOA estimation
algorithms v/s SNR for the source at 45◦.
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Fig. 2. Comparison of bias of the different wideband DOA estimation
algorithms v/s SNR for the source at 45◦.

V. CONCLUSION

In this paper, we proposed a new wideband DOA estimation
algorithm based on the coherent signal subspace approach. It
provides a solution to one of the major drawbacks of coherent
methods, viz., the requirement of initial DOA estimates, while
exhibiting the desirable properties of coherent methods. The
focusing matrices proposed by our method are constructed
in a fully data-dependent manner, directly from the received
data, thereby avoiding the need for careful array calibration.
Also it results in no SNR loss as the matrices are unitary
by construction. However, the performance of our method
is likely to depend on the choice of the focusing frequency
(subspace) and future work will concentrate on the selection
of the best focusing frequency based on the received data.
It will also be interesting to perform asymptotic performance
analysis of the proposed algorithm and compare the results
analytically with the existing algorithms. Recently another

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

5

10

15

20

25

DOA (degree)

T
O

P
S

 s
p

e
c
tr

u
m

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

500

1000

1500

2000

DOA (degree)

M
U

S
IC

 s
p
e
c
tr

u
m

TOPS

Autofocus

Fig. 3. Spatial spectrum for the three sources at 0◦, 30◦ and 45◦ using i)
proposed autofocusing approach (top) and ii) TOPS (bottom) at SNR=0 dB.

algorithm, namely TOFS [10], showed promising performance
and in future we wish to compare the performance our method
with it. Also, though in this paper, we concentrated on a
passive array, we would like to extend this idea to the case of
wideband DOA estimation using active arrays, e.g., the MIMO
radar.
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