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We show that experimental probes of the P-conserving, T-violating triple correlation in polarized neutron 
or nuclear β-decay provide a unique probe of possible T-violation at the TeV scale in the presence of 
right-handed neutrinos. In contrast to other possible sources of semileptonic T-violation involving only 
left-handed neutrinos, those involving right-handed neutrinos are relatively unconstrained by present 
limits on the permanent electric dipole moments of the electron, neutral atoms, and the neutron. On 
the other hand, LHC results for pp → e+ missing transverse energy imply that an order of magnitude of 
improvement in D-coefficient sensitivity would be needed for discovery. Finally, we discuss the interplay 
with the scale of neutrino mass and naturalness considerations.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The search for time-reversal violation (TV) has long been a 
subject of considerable experimental and theoretical interest. It is 
partially motivated by the need for CP-violation beyond that en-
coded in the Standard Model (SM) Cabibbo–Kobayashi–Maskawa 
(CKM) matrix to explain the cosmic baryon asymmetry [1]. Assum-
ing CPT is a good symmetry of nature, searches for TV provide a 
probe of this possible CP-violation. Experimentally, the parity (P)-
and T-violating (PVTV) sector is being probed with great sensitiv-
ity through electric dipole moment (EDM) searches, with the three 
most stringent limits having been obtained for the 199Hg atom 
[2], the electron (extracted from the ThO molecule) [3], and the 
neutron [4,5]. On the other hand, the P-conserving and T-violating 
(PCTV) sector (equivalent to C- and CP-violation assuming CPT) has 
received considerably less attention. Experimental efforts in the 
sector include measurement of anomalous η-decay channels such 
as η → 2π0γ , 3π0γ , 3γ [6] and the D-coefficient in the β-decay 
of polarized neutrons [7] and 19Ne [8]. These processes are sen-
sitive probes of “new physics” because the Standard Model (SM) 
contributions are usually small [9,10]. There is a SM final-state in-
teraction that could mimic a non-zero D-coefficient in β-decay at 
order 10−5 for neutron [11] and 10−4 for 19Ne [8] but the ap-
plication of heavy baryon effective field theory allows a precise 
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computation of this contribution (up to 1% accuracy in the case of 
neutron [12]).

Theoretically, the effect of PCTV physics due to beyond Standard 
Model (BSM) interactions can be studied in a model-independent 
way using effective field theory (EFT). In this approach, one has 
integrated out the BSM heavy degrees of freedom (DOF). In this 
context, it was observed in Ref. [13] that any EDM limits imply 
severe bounds on PCTV observables since a PCTV interaction in 
the presence of P-violating SM radiative corrections will induce an 
EDM. While special exceptions to this argument may occur [14,15], 
the question remains as to the prospective impact of, and moti-
vation for, improved probes of flavor-conserving PCTV observables. 
Recently, the authors of Ref. [16] addressed this question in the EFT 
context, studying the contribution of the “left-right four fermion” 
(LR4F) operator to the D-coefficient of the neutron β-decay (de-
fined below). They find that the neutron EDM sets an indirect 
bound on the D-coefficient that is three orders of magnitude more 
stringent than its direct experimental bound.

In this paper, we observe that there exists a set of dimension-
six four-fermion operators involving right-handed neutrinos that 
(a) contribute to the D-coefficient and (b) are relatively uncon-
strained by EDM limits. Because the SM charge changing weak 
interaction involves purely left-handed leptons, this contribution to 
neutron decay does not interfere linearly with the SM contribution, 
resulting in a quadratic, rather than linear, dependence on the op-
erator Wilson coefficients. Nonetheless, present limits on D probe 
the TeV mass scale. We also show that while a subset of these 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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operators generate hadronic EDMs, their effects are suppressed by 
loop factors as well as �χ/v where �χ ∼ 1 GeV is the chiral 
symmetry breaking scale and v = 246 GeV is the Higgs vacuum 
expectation value (VEV). The resulting neutron EDM sensitivity to 
� is also at the TeV scale and does not preclude a non-zero result 
in a next generation D-coefficient probe.

Interestingly, indirect constraints from T-conserving observables 
may be more severe. These observables include Large Hadron Col-
lider (LHC) results for the process pp → e + X + M E T (missing 
transverse energy) and neutrino mass. The latter constraints also 
rely on naturalness considerations, a somewhat subjective crite-
ria. The former imply that an order of magnitude improvement in 
D-coefficient sensitivity would be required in order to discover ev-
idence for PCTV right-handed neutrino interactions.

Our analysis leading to these conclusions is organized as fol-
lows. In Sec. 2 we introduce the relevant set of dimension-6 opera-
tors and discuss the experimental D-coefficient constraint on their 
Wilson coefficients. We then compare this constraint to those im-
plied by LHC data, hadronic EDMs as well as neutrino mass and 
naturalness considerations. For comparison, we perform in Sec. 3
a similar analysis of other dimension-6 operators that do not in-
volve right-handed neutrinos. We show that any attempt to evade 
current EDM constraints and yet keep the size of the D-coefficient 
experimentally accessible would involve fine tuning at the 10−11

level. We conclude in Sec. 4.

2. Dimension-six operators with right-handed neutrinos

The PCTV observable of interest in β-decay involves a triple cor-
relation of the spin of the decaying particle and the momenta of 
the outgoing leptons that enters the differential β-decay rate. In 
what follows, we focus on neutron, for which the experimental 
bound on the PCTV triple correlation is the most stringent. How-
ever, the discussion below can be easily generalized to other cases. 
The differential decay rate for a polarized neutron is given by:

d�

dEed	ed	ν
= G2

F V 2
ud

(2π)5
(g2

V + 3g2
A)|�pe|Ee E2

ν

×
[

1 + a
�pe · �pν

Ee Eν
+ ŝ · (A

�pe

Ee
+ B

�pν

Eν
+ D

�pe × �pν

Ee Eν
)

]
(1)

where ŝ is the unit polarization vector of the neutron; �pe and 
�pν are the electron and anti-neutrino momenta, respectively, 
with corresponding energies Ee(ν); G F is the Fermi constant; and 
V ud is the first generation element of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. The most stringent experimental limit on 
the D-coefficient is given by D = (−0.96 ± 1.89 ± 1.01) × 10−4 [7]
which translates into an upper bound of |D| < 4 × 10−4 at 90% CL 
[17].

Theoretically, a non-vanishing contribution can be generated 
by the interference of amplitudes involving a small set of dimen-
sion d = 6 effective operators. Considering only first generation SM 
fermions and requiring SM gauge invariance, one finds a limited 
set of such d = 6 TV operators (see Ref. [18] for a complete list 
of gauge-invariant d = 6 operators involving SM fields). As we dis-
cuss in Section 3, EDM constraints imply severe bounds on the 
contribution of these operators to D . Extending the set of fields to 
include right-handed (RH) neutrinos, one finds an additional set of 
four-fermion operators that contribute to D at tree-level and that 
are relatively immune to EDM constraints [19]:

Ô 1 = c1(μ)

�2
L̄iνR ūR Q i + h.c.

Ô 2 = c2(μ)

2
εi j L̄iνR Q̄ jdR + h.c.
�

Ô 3 = c3(μ)

�2
εi j L̄iσμννR Q̄ jσμνdR + h.c. (2)

where � is the BSM mass scale and μ is the renormalization scale. 
These operators are analogous to the semi-leptonic four-fermion 
operators of type (L̄R)(L̄R) and (L̄ R)(R̄ L) in Ref. [18]. Also notice 
that the Wilson coefficients c1 − c3 are functions of the renormal-
ization scale μ, which as to be taken as the hadronic scale when 
we discuss the bounds of the Wilson coefficients from low-energy 
experiments.

It is straightforward to compute the contributions of Ô 1−3 to 
the D-coefficient. The dominant affect is quadratic in the ci/�

2, as 
the linear interference term is suppressed by the neutrino mass. 
Following Ref. [20], we obtain, to leading non-trivial order in {ci},

D = − gS gT

�4

1

G2
F V 2

ud(g2
V + 3g2

A)
Im[(c1 − c2)c∗

3]
∣∣∣
μ=μh

(3)

where gS and gT are the nucleon scalar and tensor charges, re-
spectively, and μh ≈ 1 GeV is the hadronic scale.

Even though one pays a price in BSM sensitivity owing to a 
quadratic rather than linear dependence on the ci/�

2, the gain 
achieved by avoiding EDM constraints is considerable (see Sec-
tion 3). Taking the updated lattice calculation of gS = 0.97(12)(6)

and gT = 0.987(51)(20) [21], we obtain:

| Im[(c1 − c2)c∗
3]

�4
|
∣∣∣
μ=μh

< 3 × 10−1 TeV−4 (4)

If we take {ci} ∼ c without distinguishing the real and imaginary 
part, then this inequality implies that existing D-coefficient studies 
probe BSM T-violating interactions with RH neutrinos with a sen-
sitivity of (v/�)2c ∼ 3 × 10−2 at μ = μh . One could estimate the 
sensitivity to � by assuming that ci ∼ 1 at μ ≈ �. QCD running 
in MS scheme gives c1,2(�) ≈ 0.56c1,2(μh) and c3(�) ≈ 1.2c3(μh)

for � > mW where mW is the mass of the W-boson (see, e.g. 
Ref. [22]). Then, the current bound implies � � 1 TeV.

The operators Ô 1−3 can induce hadronic EDMs at one-loop or-
der, but their contributions also scale quadratically with the ci/�

2. 
In particular, the combination of Ô 1 and Ô 2 may induce the CP-
odd four-quark operator [23]

C (1)

quqd(μ)

�2
εi j Q̄ iuR Q̄ jdR + h.c. (5)

via the one-loop graph of Fig. 2a. Contributions from loop mo-
menta k < � vanish, as seen explicitly in dimensional regulariza-
tion (DR), because the amplitude involves a quadratically-divergent 
integral with massless propagators and because it is infrared finite. 
Non-vanishing contributions result from k � � that are associated 
with matching onto the a priori unknown ultraviolet complete the-
ory that generates the non-vanishing ci . Estimating these matching 
contributions using a cut-off regulator [24] yields1

C (1)

quqd(�)

�2
∼ �2

16π2

c∗
1c2

�4

∣∣∣
μ=�

= c∗
1c2

16π2�2

∣∣∣
μ=�

(6)

This four-quark operator will in turn induce a neutron EDM dn . 
To evaluate this contribution, one must first evolve C (1)

quqd from 
μ = � down to μ = μh . In principle, this can only be done if one 
knows the exact value of �. However, since the evolution depends 
only logarithmically on �, it is reasonable to take � ∼ 1 TeV as an 
illustration, giving C (1)

quqd(μh) = 7.2C (1)

quqd(�) [25].

1 It is possible that in the full theory, a symmetry implies vanishing matching 
contributions, but we will be more general here.
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Next, in order to find the relation between C (1)

quqd(μh) and 
the induced hadronic EDMs one needs to compute correspond-
ing hadronic matrix elements. First-principle calculations of such 
matrix elements are challenging, and presently only exist for sim-
ple systems such as ρ-meson (see, e.g. Ref. [26] and references 
therein). The results of such calculations are generally consistent 
with the order-of-magnitude estimation based on naïve dimen-
sional analysis (NDA) [27–29], so here we shall also provide an 
NDA estimation of dn:

dn ∼ e
�χ

16π2

ImC (1)

quqd(μh)

�2

≈ e
�χ

16π2
× 7.2

ImC (1)

quqd(�)

�2

≈ 9.4 × 10−23(
v

�
)2Im{c∗

1c2}|μ=�e cm. (7)

This EDM is suppressed by 1/(16π2)2 as well as �χ/v . Given the 
current upper bound dn < 3.0 × 10−26e cm at 90% CL [4] we see 
that the existing neutron EDM limits are probing (v/�)2c2 ∼ 3 ×
10−4 at μ = � which implies � � 10 TeV if c(�) ∼ 1.

At first glance, the neutron EDM sensitivity to � is slightly 
tighter than that of the D-coefficient. However, since both esti-
mations made in Eq. (6) and (7) allow an error within an order 
of magnitude, one may reasonably conclude that the sensitivities 
of dn and the D-coefficient are comparable. Furthermore, hadronic 
and atomic EDMs depend only on c∗

1c2 and provide no direct con-
straint on the contribution from c jc∗

3 ( j = 1, 2) in Eq. (3).
We now consider constraints from T conserving observables. 

First, we note that LHC studies of the process pp → e + X + M E T
place stringent bounds on the operators in (2).2 Following Ref. [19], 
one may define two dimensionless quantities:

ε̃S = − c1 − c2

2
√

2G F V ud�
2

ε̃T = c3

2
√

2G F V ud�
2
. (8)

The contribution from Ô 1,2,3 to the total cross-section σtot of 
the pp → e + X + M E T process measured by LHC can be writ-
ten as σtot = σS |ε̃S |2 + σT |ε̃T |2. Therefore LHC is sensitive to |ε̃S |
and |ε̃T | while the D-coefficient probes the combination of prod-
ucts Reε̃T Imε̃S − Reε̃S Imε̃T . The bounds on the ε̃ parameters ob-
tained in Ref. [19] assume contributions from one operator at a 
time. However, when comparing with the D-coefficient sensitiv-
ity, one must take both ε̃S and ε̃T , since the D-coefficient probes 
products of the two. Recasting the analysis of Ref. [19] is never-
theless straightforward because σS and σT are known. The con-
straint equation in Ref. [19] then implies an elliptical bound in the 
|ε̃S | − |ε̃T | plane. One should also remember that the LHC con-
straints should be run down to μ = μh for a fair comparison with 
the D-coefficient.

Since there are four real parameters in the problem (the Re and 
Im parts of ε̃S,T ), it us useful to make simplifying assumptions in 
order to compare the LHC and D-coefficient sensitivities. To that 
end, we will assume for the moment that Reε̃S = Imε̃T = 0 so both 
the LHC and the neutron D-coefficient results set constraints on 
Reε̃T and Imε̃S (see Fig. 1). In this case, one sees that the sen-
sitivity of neutron decay to the D-coefficient has to be improved 
by roughly a factor of 15 in order to match the sensitivity of the 
7-TeV LHC results. Results at 

√
s = 8 TeV for the same channel at 

2 We thank M. Gonzales-Alonso for pointing out these constraints.
Fig. 1. (Color online) Exclusion plot for Reε̃T and Imε̃S at μ = μh from the 7-TeV 
LHC data (red solid line) as well as the bound from the neutron D-coefficient with 
the current precision level (blue dotted line) and 15 times of the current precision 
level (green dashed line) respectively assuming Reε̃S = Imε̃T = 0.

Fig. 2. Leading loop contributions that provide indirect bounds on c1 and c2. Fig-
ure (a) induces a four-quark operator that generates hadronic EDMs. Figure (b) 
generates a neutrino mass after electroweak symmetry breaking.

are also available. As there is no significant deviation from SM pre-
diction [30,31], the LHC bound on |ε̃S | and |ε̃T | will be even more 
stringent than quoted above, although a detailed analysis has yet 
to be performed.3

One may also derive interesting but less direct constraints on 
Ô 1 and Ô 2 from the scale of neutrino mass and naturalness con-
siderations. Above the electroweak scale, the leading contribution 
to mν comes from a one-loop diagram with a quark Yukawa in-
sertion, inducing the Yukawa interaction term L̄ H̃ v R , as shown 
in Fig. 2b. Again this contribution vanishes in DR so we estimate 
it using simple dimensional analysis. After electroweak symmetry 
breaking, one obtains

mν ∼ ci

�2

�2

16π2
mq = cimq

16π2
(9)

where mq is the light quark mass and i = 1, 2. Taking mν < 1 eV
and mq ≈ 5 MeV we obtain ci < 3 × 10−5. We stress that this 
bound is not airtight, as the result may vary considerably, de-
pending on the specific symmetry of the underlying BSM scenario. 
Neutrino mass naturalness bounds also do not constrain the ten-
sor interaction strength c3. Should a next generate D-coefficient 
measurement yield a non-vanishing result, the comparison with 
neutrino mass naturalness considerations would provide interest-
ing input for model-building.

3 The LHC sensitivity will, of course, improve further with the data obtained from 
Run II.
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3. Operators without right-handed neutrinos

In contrast to the discussion of Section 2, we consider here 
d = 6 operators that contain only left-handed (LH) neutrino fields 
and show that any contributions to the D-coefficient are severely 
constrained by present EDM limits. In the four-fermion sector, the 
only operator that gives a tree-level D-coefficient scaling linearly 
with the BSM coupling strength has the form of ūRγ μdR ēLγμνL as 
discussed in Ref. [16]. It is actually derived from a gauge-invariant 
dim-6 operator:

Ô Hud = i
C Hud

�2
(H̃† DμH)(ūRγ μdR) + h.c. (10)

Below the electroweak scale, exchange of the W -boson contained 
in the covariant derivative with the left-handed charged weak cur-
rent leads to both the semi-leptonic four-fermion operator listed 
above as well as a four-quark operator of the form ūRγ μdRd̄LγμuL . 
Both operators share the same Wilson coefficient (up to V ud), 
which is tightly constrained by the four-quark contribution to the 
neutron EDM.

The three remaining semi-leptonic four-fermion operators that 
contain T-odd components are the scalar and tensor operators of 
the type (L̄R)(L̄ R) and (L̄R)(R̄ L) [18,23]:

Ô ledq = i
ImCledq

�2
L̄ieRd̄R Q i + h.c.

Ô (1)

lequ = i
ImC (1)

lequ

�2
εi j L̄ieR Q̄ juR + h.c.

Ô (3)

lequ = i
ImC (3)

lequ

�2
εi j L̄iσμνeR Q̄ jσμνuR + h.c. (11)

Similar to the operators in Eq. (2), they induce a D-coefficient that 
scales quadratically with ci/�

2. However, Ô ledq , Ô (1)

lequ , Ô (3)

lequ con-
tribute linearly to EDMs of paramagnetic atom and molecules and 
diamagnetic atoms at tree level as well as hadronic and electron 
EDMs at the one-loop level. In particular, the ACME limit on the 
EDM of ThO molecule implies a strong constraint on Im(Cledq −
C (1)

ledq) (see, e.g. Ref. [32]). The resulting indirect constraints on the 
associated D-coefficient contributions are severe.

The remaining class of operators that give rise to the D-coeffi-
cient at tree-level are dipole-like operators. One may wonder 
whether EDM constraints to such operators may be avoided with 
an appropriate choice of Wilson coefficients at low energy. We will 
show, however, that this is not possible without fine-tuning at the 
level of many orders of magnitude. To simplify our discussion, let 
us concentrate on the dipole-like operators in the purely leptonic 
sector:

Ô eB = i
g′ImCeB

�2
L̄σμν HeR Bμν + h.c.

Ô eW = i
gImCeW

�2
L̄σμν τ i

2
HeR W i

μν + h.c.

Ô eH3 = i
ImCeH3

�2
L̄HeR H† H + h.c. (12)

The first-two operators are dipole-like while the third operator 
is included as well because it mixes with the first two via elec-
troweak renormalization. Only Ô eW contributes to D , as it is 
the only one containing a W field. After electroweak symmetry-
breaking, one finds

D = − 4
√

2g2
A

g2 + 3g2
(

me

v
)(

v

�
)2ImCeW . (13)
V A
Note the presence of the me/v suppression due to the existence of 
a derivative in the operator Ô eW . The current upper bound on the 
neutron D-coefficient implies (v/�)2|ImCeW | < 1 × 102.

The same set of operators also induces an electron EDM, given 
by

de = −
√

2e

v
(

v

�
)2(ImCeB − ImCeW ) (14)

The current upper bound on de [3] implies (v/�)2|ImCeB −
ImCeW | < 7.7 × 10−13.

At first glance, it seems that one could simply choose ImCeB =
ImCeW at low energy to avoid the EDM constraint. We want to 
argue that, however, this choice is highly unnatural because the 
operators in Eq. (12) mix under electroweak renormalization as

d�

d lnμ
=

⎛
⎜⎜⎜⎝

151g′2−27g2

192π2 − 3gg′
64π2 0

− gg′
16π2

−11g2+3g′2
192π2 0

− 3g′(g2−3g′2)

16π2 − 9g(g2−g′2)

32π2 − 3(9g2+7g′2)

64π2

⎞
⎟⎟⎟⎠� (15)

where � = (
g′ImCeB gImCeW ImCeH3

)T
. Numerically, if we as-

sume that the bounds on the D-coefficient is marginally satisfied 
at μ = mW (i.e. (v/�)2|ImCeW | = 1 × 102), then after the elec-
troweak renormalization we find that (v/�)2|ImCeB − ImCeW | ≈
4.0 at μ = 10 TeV. However, this number has to be fine-tuned to a 
precision level of 2 × 10−11% in order to satisfy the EDM bound at 
low energy, and therefore it is obviously not natural. The dipole-
like operators in the quark sector suffer from the same problem. 
We conclude that, in the absence of RH neutrinos, EDM constraints 
imply that the existence of an observable D-coefficient is highly 
unlikely.

4. Conclusion

If neutrinos are Dirac particles, implying the existence of light 
νR in nature, then present limits on the D-coefficient indicate 
that the mass scale of any associated PCTV interactions may be 
quite significant: �/c � 1 TeV, where c denotes a d = 6 oper-
ator Wilson coefficient. The corresponding reach associated with 
limits on the PCTV triple correlation in polarized 19Ne decay are 
somewhat weaker, but nevertheless quite interesting. The obser-
vation of a non-zero effect in a next generation experiment with 
either the neutron or nuclei is not precluded by constraints from 
EDM search null results. On the other hand, the LHC results for 
pp → e + X + M E T present a greater challenge, implying at least 
an order of magnitude improvement in neutron decay PCTV cor-
relation sensitivity would be needed for discovery of a non-zero 
D-coefficient. Should such an observation occur, resolving the ten-
sion between a non-zero PCTV correlation measurement and neu-
trino mass naturalness considerations would provide an interesting 
challenge for model building.
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