
Supplementary Results and Discussion 

The Record of Precambrian Steroidal Hydrocarbons 
The record of sterane and triterpane hydrocarbon biomarkers in Archean and 

Proterozoic sedimentary rocks has come under extremely thorough scrutiny in recent 
times. Concerns about contamination, and doubts about reports of steroidal hydrocarbons 
in the 2.7 billion year-old Fortescue Group sediments of the Pilbara Craton (Brocks et al., 
1999), were initially raised in 2003 (Brocks et al., 2003).  These potential problems 
became increasingly difficult to dismiss when new and improved types of geochemical 
analyses were devised and applied. For example, Brocks and colleagues showed that a 
selection of rock and sediment samples from a range of localities were ubiquitously 
contaminated with petroleum- and plastic-derived organic compounds (Brocks et al., 
2008). Analyses of thin slices of sediment core showed that spatial distributions of 
hydrocarbons could be used to distinguish indigenous hydrocarbons from surface 
contaminants in Archean shales (Brocks, 2011). In another example, the carbon isotopic 
data values of in situ and insoluble kerogen and pyrobitumen in rock formations that had 
previously yielded biomarkers were discrepant from those of the extractable 
hydrocarbons, meaning that the latter could not be indigenous (Rasmussen et al., 2008). 
Experiments with passive sampling of laboratory aerosols provided further evidence of 
the pervasiveness of airborne petroleum-derived hydrocarbons in the environment (Illing 
et al., 2014). Irrespective of the geologic ages of samples being analyzed for biomarkers, 
these studies demonstrate that rocks that are lean in organic matter, or those which have 
seen elevated thermal histories, are particularly prone to contamination from 
anthropogenic pollutants (Gold et al., 2016b). Accordingly, we should be skeptical of all 
reports of biomarkers in pre-Cambrian rock sequences where the thermal history is high, 
where plasticizers or other demonstrable contaminants are detectable, or where the 
presence of incongruous combinations of extractable components casts reasonable doubt 
on the syngeneity of entrained hydrocarbons (Brocks et al., 2008).  

The debate concerning the reliability, or not, of reports of freely extractable 
Archean biomarkers was ultimately settled through the collaborative Agouron Institute 
Drilling Project (AIDP). This was a program that combined rigorously clean drilling, 
collection, archival and analysis of the samples (French et al., 2015). Two sedimentary 
sequences that had previously yielded putative Archean biomarkers in samples obtained 
from early mineral exploration drill cores (Brocks et al., 1999; Eigenbrode et al., 2008) 
were re-drilled along with a third core through sequence of highly metamorphosed shales 
that served as a control.  The results were unambiguous.  No sterane or triterpane 
biomarkers were detected in any of the samples from the new ores and, instead, the 
extractable hydrocarbons were dominated by parent polyaromatic hydrocarbons and 
diamondoid hydrocarbons, the distributions of which were consistent with having come 
from rocks with thermal histories well beyond the ‘oil window’ and into the range where 
aliphatic hydrocarbons are being cracked to gas (Peters et al., 2005).  Hydropyrolysis 
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experiments on kerogens from the same rocks afforded similar conclusions in that no 
steranes or triterpanes could be detected in the pyrolysates (French et al., 2015).  

Given the absence of credible evidence for biomarkers being freely extractable from 
Archean sediments, it seems timely to also re-examine technologies for their recovery 
from alternative archives.  For example, biomarkers including steranes, have been 
reported trapped in fluid inclusions in rocks of Archean and Paleoproterozoic ages 
(Dutkiewicz et al., 2007; Dutkiewicz et al., 1998; Dutkiewicz et al., 2006; George et al., 
2008). Identification of the source rock for the migrating hydrocarbons and dating the 
emplacement of the fluid inclusions are factors to establish with confidence.  Moreover, 
the enclosing minerals still need to be protected from the destructive effects of thermal 
metamorphism (Price, 1993) and ionizing radiation (Dahl et al., 1988; Landais, 1993; 
Lewan and Buchardt, 1989; Rasmussen et al., 1993). For example, in the case of the 
inclusions reported from the 2.45 Ga metaconglomerate of the Matinenda Formation, the 
authors state that these hydrocarbons were “exposed to upper prehnite–pumpellyite facies 
metamorphism (280–350 °C) either during migration or after entrapment” (George et al., 
2008). Subsequent work by (French et al., 2015) shows that no hydrocarbons survived a 
milder thermal history of the Fortescue Group in the Pilbara. It follows, therefore, that the 
reports of biomarkers in hydrocarbon-bearing fluid inclusions should be re-appraised as 
exactingly as those in extractable bitumens. 

Brocks et al. (2011) and French et al. (2015) reported particular sampling, 
curation and analytical protocols that, if followed, reduce errors on the analysis of pre-
Cambrian biomarkers. In doing so, they also identified criteria by which earlier reports of 
steranes, in particular, could be evaluated. Multiple studies of the 1.64 Ga Barney Creek 
Formation, which has been penetrated by wells drilled into terraines that are at or below 
the maturity threshold for oil generation (Crick et al., 1988) reveal the presence of a wide 
range of biomarker hydrocarbons including acyclic isoprenoids, tricyclic terpanes, 
pentacyclic hopanoid and gammacerane triterpanes, and C40 carotenoid-derived saturated 
and aromatic hydrocarbons (Brocks et al., 2005; Brocks and Schaeffer, 2008; Summons 
et al., 1988). A rigorous examination of the steranes in Barney Creek Formation 
sediments shows their presence but with a unique distribution dominated by 4-methyl and 
desmethyl triaromatic steroids at levels of 60–130 p.p.m. but lacking in the side-chain 
methylation that is characteristic of the steroids produced by typical eukaryotes. Saturated 
sterane biomarkers typical of those found in Phanerozoic rocks were close to, or below, 
the methodological detection limits of ~1 p.p.m. Other biomarker studies of Archean, 
Paleoproterozoic and Mesoproterozoic sedimentary rocks, conducted in the era of 
heightened contamination awareness, reveal a similar picture of non-detection of 
eukaryote-specific 24-alkylated steranes (Blumenberg et al., 2012; Flannery and George, 
2014; Hoshino et al., 2015) or their detection at levels than cannot be reliably 
distinguished from contamination (Luo et al., 2015; Zhang et al., 2016). Finally, new 
methodologies for evaluating the thermal regime experienced by sedimentary organic 
matter (Ferralis et al., 2016), the cleaning of contaminated rock samples prior to analysis 
(Jarrett et al., 2013) and a focus on directed identification and sampling of pockets of 
well-preserved Proterozoic and Archean sediments (Bruisten et al., 2013) suggest that the 
pre-Cambrian biomarker record can be elaborated and imbued with greater confidence. 
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Genetic Evidence for Early Sterol Biosynthesis, and the Reconciliation of Molecular and 
Geologic Data 

While our analysis focused on the first two genes in the sterol biosynthesis 
pathway, it is worth reiterating that the last common ancestor of crown-group eukaryotes 
(LECA) most likely had the complete suite of genes necessary to produce complex 
sterols. This is based on several comparative genomic studies,	
  which have concluded that 
the sterol biosynthesis pathway is present in the major eukaryotic clades, and that there is 
no compelling evidence for early horizontal gene transfer events between Eukaryotes 
(Desmond and Gribaldo, 2009; Gold et al., 2016a). This suite of genes includes sterol 24-
C-methyltransferase (SMT), which allows for the methylation of sterol side chains and
the biosynthesis of canonical C26-C30 eukaryotic sterols. Our analysis dates the origin of
LECA between ~1.30-2.17 Gyr ago, while multi-gene molecular clocks have estimated
LECA between 0.95 and 1.87 Gyr ago (Berney and Pawlowski, 2006; Douzery et al.,
2004; Parfrey et al., 2011). Subsequently, there is broad consensus that LECA evolved
prior to the Neoproterozoic, and that it was capable of producing 24-methyl steroids.

Molecular clock studies strongly support the idea that both protosterol 
biosynthesis genes (this report) and crown-group eukaryotes significantly predate their 
biomarker record; this begs for a taphonomic or ecological explanation. There appears to 
be no significant taphonomic bias affecting the preservation of sterol versus 
bacteriohopanepolyol lipids. The derived steroidal and hopanoid hydrocarbons have 
similar thermodynamic stabilities and their concentrations in sedimentary rocks and 
petroleum decrease similarly as thermal maturity increases (Farrimond et al., 1998; Peters 
et al., 2005; van Graas, 1990). Yet the majority of Paleoproterozoic and Mesoproterozoic 
sedimentary rocks described that are known to preserve biomarkers appear to be devoid 
of eukaryotic steranes, but do contain C27-C35 hopane hydrocarbons of bacterial origin 
(Blumenberg et al., 2012; Brocks et al., 2005; Flannery and George, 2014; Luo et al., 
2015). From a micro- and macrofossil perspective, ample evidence exists for the presence 
of unambiguously eukaryotic fossil assemblages in the Mesoproterozoic (Butterfield, 
2000; Javaux et al., 2001; Javaux et al., 2004; Knoll et al., 2006; Zhu et al., 2016). 
Accordingly, the failure to detect a concomitant record of eukaryotic steranes suggests 
that their membrane lipids contained limited amounts of steroids. However, it is possible 
that the majority of these organisms—with the exception of Bangiomorpha pubescens 
(Butterfield, 2000)–represent stem-group eukaryotes that had yet to evolve a complete 
sterol biosynthesis pathway.  

An alternative explanation for the lack of Mesoproterozoic steranes is that crown-
group eukaryotic biomass did not contribute significantly to organic matter that was 
ultimately preserved in the rock record or that eukaryote-derived organic matter was 
spatially restricted. Redox-sensitive bio-essential trace element abundances, iron and 
molybdenum in particular, have been invoked as factors constraining the marine nitrogen 
cycle and limiting nitrate availability for eukaryotes (Anbar and Knoll, 2002; Reinhard et 
al., 2013). In support of this hypothesis, recent work on bulk nitrogen isotopes suggests 
that severe offshore nitrate limitation was present in the Mesoproterozoic, which could 
have ecologically restricted many eukaryotes to near-shore environments until the 
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Neoproterozoic (Koehler et al., 2017; Stüeken et al., 2016). If this is correct, then low 
maturity, shallow water (carbonate) depositional environments might prove a more likely 
setting to find the missing evidence for pre-1.6Ga eukaryotic fossils and eukaryotic 
steroids. 

The limited chemical fossil evidence that we have for the Barney Creek 
Formation indicates that protosterol biosynthesis was extant at least 1.64 billion years ago 
and is entirely consistent with the molecular clock analyses reported here. In addition, the 
abundance and diversity of fossil 24-alkylated steranes that is found in Cryogenian and 
Ediacaran rocks (Briggs and Summons, 2014; Brocks et al., 2016; Grosjean et al., 2009; 
Kelly et al., 2011; Pawlowska et al., 2013) matches what is known from the record of 
preserved physical fossils (Cohen et al., 2015; Knoll et al., 2006). Consistent with fossil 
evidence for an increasing presence and diversification of protists in the mid-
Neoproterozoic (Butterfield, 2015; Cohen and Macdonald, 2015; Knoll, 2014), a recent 
study of well-preserved sediments from c. 800-750 Ma indicates steranes can be 
abundant in rocks of this age but that cholestane is dominant and its 24-alkylated 
counterparts are undetectable, a phenomenon that is not known at any other time in 
Earth's history (Brocks et al., 2016).  

Improved biomarker and fossil records require targeted search and drilling 
programs to obtain additional samples of well-preserved, organic-rich Proterozoic and 
Archean sediments, as opposed to past approaches based on sampling of available drill 
cores.  Efforts to reconstruct environmental pO2 through this interval (Cole et al., 2016; 
Lyons et al., 2014) will provide further sampling guidelines. The results of these 
endeavors will ultimately determine how well the fossil, geochemical, and molecular 
records for the rise of complex life might be reconciled with those for environmental 
oxygenation.   
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