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Spontaneous breaking of Lorentz invariance

Alejandro Jenkins*
California Institute of Technology, Pasadena, California 91125, USA

~Received 6 December 2003; published 14 May 2004!

We describe how a stable effective theory in which particles of the same fermion number attract may
spontaneously break Lorentz invariance by giving a nonzero fermion number density to the vacuum~and
therefore dynamically generating a chemical potential term!. This mechanism yields a finite vacuum expecta-

tion value ^c̄gmc&, which we consider in the context of proposed models that require such a breaking of
Lorentz invariance in order to yield composite degrees of freedom that act approximately like gauge bosons.

We also make general remarks about how the background source provided by^c̄gmc& could relate to work on
signals of Lorentz violation in electrodynamics.

DOI: 10.1103/PhysRevD.69.105007 PACS number~s!: 11.30.Cp, 11.15.Ex, 14.70.2e
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I. INTRODUCTION

Lorentz invariance~LI !, the fundamental symmetry o
Einstein’s special relativity, states that physical results sho
not change after an experiment has been boosted or rot
In recent years, and particularly since the publication of w
on the possibility of spontaneously breaking LI in boson
string field theory@1#, there has been considerable interes
the prospect of violating LI. More recent motivations f
work on Lorentz noninvariance have ranged from the
plicit breaking of LI in the noncommutative geometries th
some have proposed as descriptions of physical space-
~see@2# and references therein!, and in certain supersymme
ric theories considered by the string community@3#, to the
possibility of explaining puzzling cosmic ray measureme
by invoking small departures from LI@4# or modifications to
special relativity itself@5,6#. It has also been suggested th
anomalies in certain chiral gauge theories may be traded
violations of LI andCPT @7#.1

Our own interest in the subject began with a recent p
posal @9# for addressing the cosmological constant probl
~i.e., how to explain the flatness or near flatness of the U
verse without unnaturally fine tuning the parameters of
quantum theories! by reviving an old idea for generatin
composite force-mediating particles@10#. This sort of mecha-
nism depends on the spontaneous breaking of LI. In the
lowing section of this paper we shall discuss this idea a
address some problems related to obtaining the require
breaking in the manner that has been proposed.

This leads us to investigate the question of how a reas
able quantum field theorymight spontaneously break LI
Borrowing from some old theoretical work@11,12# as well as
from the recent research into color superconductivity@13–
15#, we argue for the existence of theories with Lorentz

*Electronic address: jenkins@theory.caltech.edu
1This is far from a thorough account of the rich scientific literatu

on Lorentz noninvariance. Extensions of the standard model h
been proposed which are meant to capture the low-energy effec
whatever new high-energy physics~string theory, noncommutative
geometry, loop quantum gravity, etc.! might be introducing viola-
tions of LI @8#.
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variant bare Lagrangians where the formation of a cond
sate of particles of the same fermion number is energetic
favorable, leading to a non-Lorentz invariant vacuum exp

tation value~VEV! ^c̄gmc&Þ0.
This breaking of LI can be thought of conceptually as t

introduction of a preferred frame: the rest frame of the f
mion number density. If some kind of gauge coupling we
added to the theory without destroying this LI breaking, t
fermion number density would also be a charge density,
the preferred frame would be the rest frame of a char
background in which all processes are taking place. T
allows us to make some very general remarks on the res
ing LI-violating phenomenology for electrodynamics and
experimental limits to our non-Lorentz invariant VEV. Mo
of the work in this area, however, is left for future investig
tion.

II. EMERGENT GAUGE BOSONS

In 1963, Bjorken proposed a mechanism for what
called the ‘‘dynamical generation of quantum electrodyna
ics’’ ~QED! @10#. His idea was to formulate a theory whic
would reproduce the phenomenology of standard QED, w
out invoking localU(1) gauge invariance as an axiom. In
stead, Bjorken proposed working with a self-interacting f
mion field theory of the form

L5c̄~ i ]” 2m!c2l~c̄gmc!2. ~1!

Bjorken then argued that in a theory such as that descr
by Eq.~1!, composite ‘‘photons’’ could emerge as Goldsto
bosons, resulting from the presence of a condensate
spontaneously broke Lorentz invariance.

Bjorken’s idea might not seem attractive today, since
theory such as Eq.~1! is not renormalizable, while the work
of ’t Hooft and others has demonstrated that a locally ga
invariant theory can always be renormalized@16#. There
would not appear to be, at this stage in our understandin
fundamental physics, any compelling reason to abandon
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cal gauge invariance as an axiom for writing down intera
ing quantum field theories.2 Furthermore, the arguments fo
the existence of a LI-breaking condensate in theories suc
Eq. ~1! have never been solid.~For Bjorken’s most recen
revisiting of his proposal, in light of the theoretical develo
ments since 1963, see@19#!.

In 2002 Kraus and Tomboulis resurrected Bjorken’s id
for a different purpose of greater interest to contempor
theoretical physics: solving the cosmological constant pr
lem @9#. They proposed what Bjorken might call ‘‘dynamic
generation of linearized gravity.’’ In this scenario a compo
ite graviton would emerge as a Goldstone boson from
spontaneous breaking of Lorentz invariance in a theory
self-interacting fermions.

Being a Goldstone boson, such a graviton would be
bidden from developing a potential and the existence of
act solutions with constant matter fields and a mass
graviton would be assured. Then it would no longer be n
essary to fine tune the cosmological constant paramete
order to obtain a flat or nearly flat spacetime, providing
possible solution to a problem that plagues all mainstre
theories of quantum gravity.3

In @9#, the authors consider fermions coupled to gau
bosons that have acquired masses beyond the energy sc
interest. Then an effective low energy theory can be obtai
by integrating out those gauge bosons. We expect to ob
an effective Lagrangian of the form

L5c̄~ i ]” 2m!c1 (
n51

`

ln~ c̄gmc!2n

1 (
n51

`

mnF c̄ i

2
~gm]W n2gm]Q n!cG2n

1•••, ~2!

where we have explicitly written out only two of the pow
series in fermion bilinears that we would in general expec
get from integrating out the gauge bosons.

One may then introduce an auxiliary field for each
these fermion bilinears. In this example we shall assign
label Am to the auxiliary field corresponding toc̄gmc, and
the label hmn to the field corresponding toc̄( i /2)(gm]W n

2gm]Q n)c. It is possible to write a Lagrangian that involve
the auxiliary fields but not their derivatives, so that the alg
braic equations of motion relating each auxiliary field to

2We do know that in the 1980s Feynman regarded Bjorken’s p
posal as a serious alternative to postulating local gauge invaria
For enlightening treatments of the principle of gauge invariance
its historical role in the development of modern physical theor
see@17,18#.

3In the bargain, this scheme would appear to offer an unortho
avenue to a renormalizable quantum theory of linearized gra
because the fermion self-interactions could be interpreted as co
from the integrating out, at low energies, of gauge bosons that h
acquired large masses via the Higgs mechanism, so that linea
gravity would be the low energy behavior of a renormaliza
theory.
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corresponding fermion bilinear make that Lagrangian cla
cally equivalent to Eq.~2!. In this case the new Lagrangia
would be of the form

L85~hmn1hmn!c̄
i

2
~gm]W n2gm]Q n!c2c̄~A” 1m!c1 . . .

2VA~A2!2Vh~h2!1 . . . , ~3!

whereA2[AmAm and h2[hmnhmn. The ellipses in Eq.~3!
correspond to terms with other auxiliary fields associa
with more complicated fermion bilinears that were also om
ted in Eq.~2!.

We may then imagine that instead of having a single f
mion species we have one very heavy fermionc1 and one
lighter one c2 . Since Eq.~3! has terms that couple bot
fermion species to the auxiliary fields, integrating outc1 will
then produce kinetic terms forAm andhmn.

In the case ofAm we can readily see that since it is min
mally coupled toc1 , the kinetic terms obtained from inte
grating out the latter must be gauge invariant~provided a
gauge invariant cutoff is used!. To lowest order in derivatives
of Am, we must then get the standard photon Lagrang
2 1

4 Fmn
2 ~where Fmn[]mAn2]nAm). Since Am was also

minimally coupled toc2 , we then have, at low energies
something that has begun to look like QED.

If Am has a nonzero VEV, LI is spontaneously broke
producing three massless Goldstone bosons, two of wh
may be interpreted as photons~see@9# for a discussion of
how the exotic physics of the other extraneous ‘‘photon’’ c
be suppressed!. The integrating out ofc1 and the assumption
thathmn has a VEV, by similar arguments, yield a low ener
approximation to linearized gravity.

Fermion bilinears other than those we have written
explicitly in Eq. ~2! have their own auxiliary fields with thei
own potentials. If those potentials do not themselves prod
VEV’s for the auxiliary fields, then there would be no furth
Goldstone bosons, and one would expect, on gen
grounds, that those extra auxiliary fields would acqu
masses of the order of the energy-momentum cutoff scale
our effective field theory, making them irrelevant at low e
ergies.

The breaking of LI would be crucial for this kind o
mechanism, not only because we know experimentally t
photons and gravitons are massless or very nearly mass
but also because Weinberg and Witten have shown th
Lorentz invariant theory with a Lorentz invariant vacuu
and a Lorentz covariant energy-momentum tensor does
admit a composite graviton@20#.

Let us concentrate on the simpler case of the auxili
field Am. For the theory described by Eq.~3!, the equation of
motion for Am is

]L8

]Am
52c̄gmc2V8~A2!•2Am50. ~4!

Solving for c̄gmc in Eq. ~4! and substituting into both
Eq. ~2! and Eq. ~3! we see that the condition for th
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LagrangiansL and L8 to be classically equivalent is a dif
ferential equation forV(A2) in terms of the coefficientsln :

V~A2!52A2@V8~A2!#2 (
n51

`

ln22nA2n@V8~A2!#2n. ~5!

It is suggested in@9# that for some values ofln the re-
sulting potentialV(A2) might have a minimum away from
A250, and that this would give the LI-breaking VE
needed. It seems to us, however, that a minimum ofV(A2)
away from the origin is not the correct thing to look for
order to obtain LI breaking. The Lagrangian in Eq.~3! con-
tains Am’s not just in the potential but also in the ‘‘interac
tion’’ term Amc̄gmc, which is not in any sense a small pe
turbation as it might be, say, in QED. In other words, t
classical quantityV(A2) is not a useful approximation to th
quantum effective potential for the auxiliary field.

In fact, regardless of the values of theln , Eq. ~5! implies
that V(A250)50, and also that at any point whereV8(A2)
50 the potential must be zero. Therefore, the existence
classical extremum atA25CÞ0 would imply that V(C)
5V(0), and unless the potential is discontinuous som
where, this would require thatV8 ~and therefore alsoV)
vanish somewhere between 0 andC, and so onad infinitum.
Thus the potentialV cannot have a classical minimum awa
from A250, unless the potential has poles or some ot
discontinuity.

A similar observation applies to any fermion bilinear f
which we might attempt this kind of procedure and theref
the issue arises as well when dealing with the proposal in@9#
for generating the graviton. It is not possible to sidestep
difficulty by including other auxiliary fields or other fermio
bilinears, or even by imagining that we could start, instead
from Eq. ~2!, from a theory with interactions given by a
arbitrary, possibly nonanalytic function of the fermion bilin
ear F(bilinear). The problem can be traced to the fact th
the equation of motion of any auxiliary field of this kind wi
always be of the form

052~bilinear!2V8~field2!•2 field. ~6!

The point is that the vanishing of the first derivative of t
potential or the vanishing of the auxiliary field itself wi
always, classically, imply that the fermion bilinear is zer
Classically at least, it would seem that the extrema of
potential would correspond to the same physical state as
zeroes of the auxiliary field.

III. NAMBU AND JONA-LASINIO MODEL „REVIEW …

The complications we have discussed that emerge w
one tries to implement LI breaking as proposed in@9# do not,
in retrospect, seem entirely surprising. A VEV for the aux
iary field would classically imply a VEV for the correspond
ing fermion bilinear, and therefore a trick such as rewriting
theory in a form like Eq.~3! should not, perhaps, be expect
to uncover a physically significant phenomenon such as
spontaneous breaking of LI for a theory where it was
otherwise apparent that the fermion bilinear in question ha
10500
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VEV. Let us therefore turn our attention to considering wh
would be required so that one might reasonably expec
fermion field theory to exhibit the kind of condensation th
would give a VEV to a certain fermion bilinear.

If we allowed ourselves to be guided by purely classi
intuition, it would seem likely that a VEV for a bilinear with
derivatives@such asc̄( i /2)(gm]W n2gm]Q n)c] might require
nonstandard kinetic terms in the action.4 Whether or not this
intuition is correct, we abandon consideration of such bil
ears here as too complicated.

The simplest fermion bilinear is, of course,c̄c. Being a
Lorentz scalar,̂c̄c&Þ0 will not break LI. This kind of VEV
was treated back in 1961 by Nambu and Jona-Lasinio, w
used it to spontaneously break chiral symmetry in one of
early efforts to develop a theory of the strong nuclear int
actions, before the advent of quantum chromodynam
~QCD! @11#. It might be useful to review the original work o
Nambu and Jona-Lasinio, as it may shed some light on
study of the possibility of giving VEV’s to other fermion
bilinears that are not Lorentz scalars.

In their original paper, Nambu and Jona-Lasinio st
from a self-interacting massless fermion field theory and p
pose that the strong interactions be mediated by pions w
appear as Goldstone bosons produced by the spontan
breaking of the chiral symmetry associated with the trans
mationc°exp(iag5)c. This symmetry breaking is produce
by a VEV for the fermion bilinearc̄c. In other words,
Nambu and Jona-Lasinio originally proposed what, by clo
analogy to Bjorken’s idea, would be the ‘‘dynamical gene
tion of the strong interactions.’’5

Nambu and Jona-Lasinio start from a nonrenormaliza
quantum field theory with a four-fermion interaction that r
spects chiral symmetry:

L5 i c̄]” c2
g

2
@~ c̄gmc!22~ c̄gmg5c!2#. ~7!

In order to argue for the presence of a chiral symmet
breaking condensate in the theory described by Eq.~7!,
Nambu and Jona-Lasinio borrowed the technique of s
consistent-field theory from solid state physics~see, for in-
stance,@12#!. If one writes down a Lagrangian with a fre
and an interaction part,L5L01Li , ordinarily one would
then proceed to diagonalizeL0 and treatLi as a perturbation.
In self-consistent-field theory one instead rewrites the
grangian asL5(L01Ls)1(Li2Ls)5L081Li8 , whereLs is
a self-interaction term, either bilinear or quadratic in t
fields, such thatL08 yields a linear equation of motion. Now
L08 is diagonalized andLi8 is treated as a perturbation.

In order to determine what the form ofLs is, one requires
that the perturbationLi8 not produce any additional self

4Recent theoretical work in cosmology has shown interest in s
lar field theories with such nonstandard kinetic terms. See, for
stance,@21–23#.

5Historically, though, Bjorken was motivated by the earlier wo
of Nambu and Jona-Lasinio.
7-3
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energy effects. The name ‘‘self-consistent-field theory’’ r
flects the fact that in this techniqueLi is found by computing
a self-energy via a perturbative expansion in fields that
ready are subject to that self-energy, and then requiring
such a perturbative expansion not yield any additional s
energy effects.

Nambu and Jona-Lasinio proceed to make the ansatz
for Eq. ~7! the self-interaction term will be of the formLs

52mc̄c. Then, to first order in the coupling constantg,
they proceed to compute the fermion self-energyS8(p), us-
ing the propagatorS8(p)5 i (p” 2m)21, which corresponds
to the LagrangianL085c̄( i ]” 2m)c that incorporates the
proposed self-energy term.

The next step is to apply the self-consistency condit
using the Schwinger-Dyson equation for the propagator:

S8~x2y!5S~x2y!1Ed4z S~x2z!S8~0!S8~z2y!,

~8!

which is represented diagrammatically in Fig. 1. The prim
indicate quantities that correspond to a free LagrangianL08
that incorporates the self-energy term, whereas the unpri
quantities correspond to the ordinary free LagrangianL0 .
For S8 we will use the approximation shown in Fig. 2, val
to first order in the coupling constantg.

After Fourier transforming Eq.~8! and summing the left
side as a geometric series, we find that the self-consiste
condition may be written, in our approximation, as

m5S8~0!5
gmi

2p4E d4p

p22m21 i e
. ~9!

If we evaluate the momentum integral by Wick rotatio
and regularize its divergence by introducing a Lorentz inva
ant energy-momentum cutoffp2,L2, we find

2p2m

gL2
5mF12

m2

L2
logS L2

m2
11D G . ~10!

FIG. 1. Diagrammatic Schwinger-Dyson equation. The dou
line represents the primed propagator, which incorporates the
energy term. The single line represents the unprimed propag
1PI8 stands for the sum of one-particle irreducible graphs with
primed propagator.

FIG. 2. Diagrammatic equation for the primed self-energy.
will work to first order in the fermion self-coupling constantg.
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This equation will always have the trivial solutionm
50, which corresponds to the vanishing of the proposed s
interaction termLi . But if

0,
2p2

gL2
,1 ~11!

then there may also be a nontrivial solution to Eq.~10!, i.e.,
a nonzerom for which the condition of self-consistency i
met. For a rigorous treatment of the relation between n
trivial solutions of this self-consistent equation and local e
trema in the Wilsonian effective potential for the correspon
ing fermion bilinears, see@24# and the references therein.

In this model~which from now on we shall refer to a
NJL!, we see that if the interaction between fermions a
antifermions is attractive (g.0) and strong enough
@(2p2/gL2),1# it might be energetically favorable to form
a fermion-antifermion condensate. This is reasonable to
pect in this case because the particles have no bare mas
thus the energy cost of producing them is small. The res
ing condensate would have zero net charge, as well as
total momentum and spin. Therefore it must pair a le
handed fermioncL5 1

2 (12g5)c with the antiparticle of a
right-handed fermioncR5 1

2 (11g5)c, and vice versa. This
is the mass-term self-interactionLi52mc̄c52m(c̄LcR

1c̄RcL) that NJL studies.
After QCD became the accepted theory of the strong

teractions, the ideas behind the NJL mechanism rema
useful. Theu andd quarks are not massless~nor isu-d flavor
isospin an exact symmetry! but their bare masses are b
lieved to be quite small compared to their effective masse
baryons and mesons, so that the formation ofūu and d̄d
condensates represents the spontaneous breaking of a
proximate chiral symmetry. Interpreting the pions~which are
fairly light! as the pseudo-Goldstone bosons generated by
spontaneous breaking of the approximateSU(2)R3SU(2)L
chiral isospin symmetry down to justSU(2), proved a fruit-
ful line of thought from the point of view of the phenom
enology of the strong interaction.6

Condition Eq.~11! has a natural interpretation if we thin
of the interaction in Eq.~7! as mediated by massive gaug
bosons with zero momentum and couplinge. For it to be
reasonable to neglect boson momentum in the effec
theory, the massm of the bosons should bem.L. If e2

,2p2 then g5e2/m2,2p2/L2, which violates Eq.~11!.
Therefore for chiral symmetry breaking to happen, the c
pling e should be quite large, making the renormalizab
theory nonperturbative. This is acceptable because the fa
of 1/m2 allows the perturbative calculations we have carr
out in the effective theory Eq.~7!. This is why the NJL
mechanism is modernly thought of as a model for a pheno
enon of non-perturbative QCD.

6For a treatment of this subject, including a historical note on
influence of the NJL model in the development of QCD, see Ch
19, Sec. IV in@25#.
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IV. AN NJL-STYLE ARGUMENT FOR BREAKING LI

We have reviewed how NJL formulated a model that e

hibited a nonzero VEV for the fermion bilinearc̄c. The next

simplest fermion bilinear that we might consider isc̄gmc,
which was the one that Bjorken, Kraus, and Tomboulis c
sidered when they discussed the ‘‘dynamical generation
QED.’’ This particular fermion bilinear is especially interes
ing because it corresponds to theU(1) conserved current
and also because it is the simplest bilinear with an odd n
ber of Lorentz tensor indices, so that a non-zero VEV fo
would break not only LI but also charge~C!, charge-parity
~CP!, and charge-parity-time~CPT! reversal invariance.C
andCP may not be symmetries of the Lagrangian, as inde
they are not in the standard model, but by a celebrated re
CPT must be an invariance of any reasonable theory~see
@26# and references therein!. This invariance, however, ma
well be spontaneously broken, as it would be by any V
with an odd number of Lorentz indices.

Before proceeding, however, it may be advisable to try
develop some physical intuition about what would be
quired for a fermion bilinear likec̄gmc to exhibit a VEV. If
we choose a representation of the gamma matrix algebra
use it to write out (c̄gmc)2 for an arbitrary bispinorc, we
may check that (c̄gmc)2>0 for the choice of mostly nega
tive metric gmn5diag(1,21,21,21). That is, c̄gmc is
timelike. This has an intuitive explanation, based on the
servation thatc̄gmc is a conserved fermion-number curre
density. Classically a charge densityr moving with a veloc-
ity vW will produce a currentj m5(r,rvW ) ~in units of c51).
Therefore the relativistic requirement that the charge den
not move faster than the speed of light in any frame of r
erence implies thatj 2>0. Considerations of causality mak
it natural to expect that something similar would be true
c̄gmc.

For any time-like Lorentz vectornm it is possible to find a
Lorentz transformation that maps it to a vectorn8m with only
one nonvanishing component:n80. For a constant curren
density j m, this means that forj m to be nonzero there mus
be a charge densityj 0, which has a rest frame. Therefore w
only expect to see a VEV forc̄gmc if our theory somehow
has a vacuum with a nonzero fermion number density. T
consequent spontaneous breaking of LI may be seen a
introduction of a preferred reference frame: the rest frame
the vacuum charge.

In the literature of finite density quantum field theory a
of color superconductivity~see, for instance,@13# and @14#!,
the Lagrangians discussed are explicitly non-Lorentz inv
ant because they contain chemical potential terms of
form f •c̄g0c. This term appears in theories whose grou
state has a nonzero fermion number because, by the P
exclusion principle, new fermions must be added just ab
the Fermi surface, i.e., at energies higher than those alre
occupied by the pre-existing fermions, while holes~which
can be thought of as antifermions! should be made by re
moving fermions at that Fermi surface. The result is an
ergy shift that depends on the number of fermions alre
10500
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present and which has opposite signs for fermions and a
fermions.

The physical picture that emerges is now, hopefu
clearer: a theory with a VEV forc̄gmc is one with a con-
densate that has a nonzero fermion number. This means
only theories with some form of attractive interaction b
tween particles with the same sign in fermion number m
be expected to produce such a VEV. The situation is clos
analogous to BCS superconductivity@27#, in which a
phonon-mediated attractive interaction between electrons
lows the presence of a condensate with nonzero elec
charge. Note that in the NJL model, the condensate was c
posed of fermion-antifermion pairs, and therefore clea

^c̄g0c&50, which implies ^c̄gmc&50. It should now be
physically clear why a VEV forc̄gmc would break not only
LI but alsoC, CP, andCPT.

There is an easy way to write a theory which will have
VEV for a U(1) conserved current: to couple a massi
photon to such a current via a purely imaginary charge.
see this, let us write a Proca Lagrangian for a massive pho
field with an external source:

L52
1

4
Fmn

2 1
m2

2
A22 j mAm. ~12!

The equation of motion for the photon field is

]mFmn5 j n2m2An. ~13!

At energy scales well below the photon massm, the ki-
netic term 2Fmn

2 /4 may be neglected with respect to th

mass termm2A2/2. We may then integrate out the photon
zero momentum by solving the equation of motion, Eq.~13!,
for the photon fieldAm with its conjugate momentaFmn set
to zero, and substituting the result back into the Lagrang
in Eq. ~12!. The resulting low-energy effective field theor
has the Hamiltonian

Heffective5
j 2

2m2
. ~14!

Nothing interesting happens if the source is a timel
current density, since in that case Eq.~14! has its minimum
at j m50. But if we were to make the charge coupling to t
photon imaginary~e.g., j m5 iec̄gmc for e real!, then j 2 is
actually always negative@recall that (c̄gmc)2 is always posi-
tive# and we get a ‘‘potential’’ with the wrong sign, so tha
the energy can be made arbitrarily low by decreasingj 2. If
we make j m dynamical by adding to the Lagrangian term
corresponding to the field that sets up the current, we m
expect, for certain parameters in the theory, that the ene
be minimized for a finite value ofj m.

By making the charge purely imaginary, our effectiv
theory at energy scales much lower than the photon masm
will look similar to Eq. ~7!, except that the four-fermion
interaction in the effective Lagrangian will b
e2(c̄gmc)2/2m2 ~with an overall positive, rather than a neg
tive, sign!. What this means is that fermions are attracti
7-5
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ALEJANDRO JENKINS PHYSICAL REVIEW D69, 105007 ~2004!
fermions and antifermions are attracting antifermions, rat
than what we had in NJL~and in QED!: attraction between a
fermion and an antifermion. Condensation, if it occurs, w
here produce a net fermion number, spontaneously brea
C, CP, andCPT.7

Let us analyze this situation again more rigorously us
self-consistent-field theory methods, following Nambu a
Jona-Lasinio. For this we consider a fermion field with t
usual free LagrangianL05c̄( i ]” 2m0)c and pose as ou
self-consistent ansatz:

Ls52~m2m0!c̄c2 f c̄g0c. ~15!

The corresponding momentum-space propagator forL08
5L01Ls is, therefore,

S8~k!5 i ~k”2 f g02m!21. ~16!

Now let us suppose that the interaction term looks like

Li5
g

2
~ c̄gmc!2. ~17!

To obtain the Feynman rules corresponding to Eq.~17! we
note that this is what we would obtain in massive QED if w
replaced the chargee by ie and the usual photon propagat
by igmn/m2, with g5e2/m2. Therefore, to compute the sel
energy we will rely on the identity represented in Fig. 3.~In
QED the second diagram on the right-hand side of Fig
would vanish by Furry’s theorem, but in our case the pro
gator in the loop will have a chemical potential term th
breaks theC invariance on which Furry’s theorem depend!

To leading order ing, the self-energy is

S~0!52igE d4k

~2p!4

3~k02 f !g013kig
i22m

k0
22kW22m21 f 222 f k01 i es

,

~18!

wheres ~a function ofukW u, f, andm) takes values61 so as
to enforce the standard Feynman prescription for shifting
k0 poles: positivek0 poles are shifted down from the re
line, while negative poles are shifted up.

7At one point, Dyson argued that such a theory with attract
between particles of the same fermion number would be unst
and used this to suggest that perturbative series in QED migh
verge after renormalization of the charge and mass@28#. We will
address the issue of stability at the end of this section.

FIG. 3. The four-fermion vertex in the self-interacting theo
may be seen as the sum of two photon-mediated interactions w
massive photon that carries zero momentum and is coupled to
fermion via a purely imaginary charge.
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At first sight it might appear as if the self-energy in E
~18! could not be used to argue for the breaking of LI, b
cause the shift in the integration variablek°k85(k02 f ,kW )
would wipe outf dependence. This, however, is not the ca
as we will see. We may carry out thedk0 integration, for
which we must find the corresponding poles. These are
cated at

k05 f 6AkW21m2. ~19!

From now on, without loss of generality, we will takef to
be positive. The contour integral which results from closi
thed0k integral of Eq.~18! in the complex plain will vanish

unless f ,AkW21m2, because otherwise both poles in E
~19! will lie on the same side of the imaginary axis. In ligh
of the Feynman prescription used for the shifting of the po
away from the real axis, it would then be possible to clo
the contour at infinity so that there would be no poles in
interior. The pole shifting prescription, through its effect o
the dk0 integral, is what introduces an actualf dependence
into the expression for the self-energy.

By the Cauchy integral formula, we have

S~0!5
2g

4p3
E d3kF 3AkW21m2g012m

2AkW21m2

3u~AkW21m22 f !2
3

2
g0G , ~20!

where the second term in the right-hand side subtracts
contribution from closing the contour out at infinity in th
complex plane~note the branch cut in the logarithm th
results from computing that part of the contour integral e
plicitly !. We will introduce the cutoffkW2,L2 to make the
integral in Eq.~20! finite.8

n
le
i-

8Carrying out thedk0 integration separately from the spatial int
gral is legitimate and useful in light of the form of Eq.~18!, which
does not lend itself naturally to Wick rotation. But the use of
non-Lorentz invariant regulator may cause concern that any br
ing of LI we might arrive at could be an artifact of our choice
regulator. An alternative is to dimensionally regulate Eq.~20! by
replacingd3k with dd21k. The resulting equations are more com
plicated and the dependence on the range of energies where
non-renormalizable theory is valid is obscured, but the overall
gument does not change. It is also possible to multiply the integr
in Eq. ~18! by a cutoff in Minkowski spaceu(L21k2)5u(L2

1k0
22kW2). For kW2,L2 we get the same result as in Eq.~20!. For

kW2.L2 we must impose the condition thatk0
2.kW22L2, yielding an

additional, rather complicated term which does not affect the lo
of our discussion in this section. It should be pointed out that p
vious work on LI breaking has used 3-momentum cutoffs in co
puting self-energies@30#, although in that case there seems to be
physical interpretation for such a cutoff which does not apply to
present discussion. The original work of Nambu and Jona-Las
@11# considers cutoffs in Euclidean 4-momentum and
3-momentum, arriving in both cases at similar conclusions.

a
he
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FIG. 4. Plots of the left-hand side~in gray! and right-hand side~in black! of equation Eq.~25!. Definea[g/2p2. For each plot the
parameters are~a! L5100, m050, a50.001. ~b! L5100, m0515, a50.001. ~c! L5100, m051200, a50.001. ~d! L5100, m050,
a50.002. ~e! L5100, m0515, a50.002. ~f! L5200, m0515, a50.001.
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Note that the Heaviside step functionu(AkW21m22 f ) in
Eq. ~20! is always unity ifm. f , so that there will be nof
dependence at all in Eq.~20! unlessm< f . Assuming that
m< f we have

S~0!5
2g

2p2
@2~ f 22m2!3/2g01m3log~ f 1Af 22m2!

2m3log~L1AL21m2!1mLAL21m2

2m fAf 22m2#. ~21!

As before, we use the Schwinger-Dyson equation Eq.~8!,
and after summing up the right-hand side as a geome
series, we arrive at the self-consistency condition for
ansatz Eq.~15!:

m02m2 f g052S~0!

5
g

2p2 F2~ f 22m2!3/2g0

1m3logS f 1Af 22m2

L1AL21m2D
1mLAL21m22m fAf 22m2G . ~22!

Clearly Eq. ~22! will not admit a non-trivial solutionf
Þ0 unlessg is positive, which agrees with our intuition tha
the theory must exhibit attraction between particles of
same fermion number. The self-consistent condition Eq.~22!
may be separated into two simultaneous equations:
10500
ic
r

e

f 5
g

2p2
~ f 22m2!3/2 ~23!

and

m02m5
gm

2p2 Fm2logS f 1Af 22m2

L1AL21m2D 1LAL21m2

2 fAf 22m2G . ~24!

It is important to bear in mind that Eqs.~23! and ~24! were
written under the assumption thatf >m. For f ,m the f de-
pendence of the self-energy in Eq.~18! disappears. The
trivial, Lorentz invariant solutionf 50 to the self-consisten
equations will always be present for anym, as should be the
case when spontaneous breaking of a symmetry is obser

Equation~23! can be readily solved forf as a function of
m ~imposing the condition thatf be real and positive!, and
the resultingf (m) can be substituted into Eq.~24! to yield

m02m5
gm

2p2 Fm2logS f ~m!1Af 2~m!2m2

L1AL21m2 D 1LAL21m2

2 f ~m!Af 2~m!2m2G . ~25!

Equation~25! cannot be solved algebraically, but we ma
study some of its properties graphically. In Fig. 4 we ha
plotted the left-hand side and the right-hand side of Eq.~25!
for various values of the parametersg, m0 andL. As plot ~a!
illustrates,m050 impliesm50, i.e., we cannot dynamically
generate both a chemical potential and a mass term. Fom
5m050 we have
7-7
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FIG. 5. Plots of the left-hand side~in gray! and right-hand side~in black! of equation Eq.~25!. For all of thema[g/2p250.01. ~a!
L5m052. ~b! L5m058. ~c! L5m0512. ~d! L5m0516.
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Plot ~b! in Fig. 4 shows a 0,m0!L for which the cor-
respondingm will be significantly less thanm0 . Plot ~c! in
the same figure illustrates that a very largem0 is needed
beforem.m0 , but such solutions are not physically mea
ingful becausem0 itself is already well beyond the energ
scale for which our effective theory is supposed to hold.
comparing plot~b! to plot ~e! we may see the effect of in
creasingg for a givenm0 andL. A comparison of plots~b!
and ~f! should illustrate the effect of increasingL with the
other parameters fixed.

The plots in Fig. 5 illustrate the progression, as the
rameterL is increased for fixeda, from an unstable theory
in which bare massesm0 on the order ofL are mapped to
m.L, to a theory that maps such bare masses tom,L.
Such an analysis of Eq.~25! reveals that the condition fo
this mass stability is

0,
2p2

gL2
,1 ~27!

which is reminiscent of the condition Eq.~11! for chiral sym-
metry breaking in the NJL model~except that now the inter
action has the opposite sign!. Combining Eq.~27! with Eq.
~26! ~which was exact form0 but may serve approximatel
for m0 small! we arrive at the requirement

0, f 2,L2 ~28!

which would surely have to hold if our theory were stab
Indeed, we may interpret Eq.~28! as saying that if we pick
physically good parametersg, m0 and L, we will have a
stable theory with finite chemical potentialf. The parameters
for plots ~a!, ~b!, ~d!, ~e!, and~f! in Fig. 4 all give examples
of such stable theories. As in NJL, the good parameters
volve g21/2 large with respect toL, suggesting that Eq.~17!
should be a low-energy approximation to a nonperturba
interaction of a full renormalizable theory that allows attra
tion between particles of the same fermion number sign.

The issue of how the form of the self-consistent equati
will depend on the choice of regulator for the integral in E
~18! is not an entirely straightforward matter. But it seems
be a solid conclusion that, for positive fermion self-coupli
g, the solutions to such self-consistent equations show
presence of LI-breaking vacua. In the next section of t
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paper we offer an alternative approach that strengthens
conclusion and that sheds further light on the issue of sta
ity.

V. CONSEQUENCES FOR EMERGENT PHOTONS

The theory

L5c̄~ i ]” 2m0!c1
g

2
~ c̄gmc!2 ~29!

is equivalent to

L85c̄~ i ]” 2A” 2m0!c2
A2

2g
. ~30!

Since we argued that Eq.~29! may spontaneously brea
LI by giving a finite ^c̄gmc&, we conclude thatAm in Eq.
~30! would also have a finite VEV, since, by the algebra
equation of motion,

Am52gc̄gmc. ~31!

This interpretation agrees with the observation that E
~30! has a vector boson field whose mass term carries
wrong sign ifg.0, indicating that the zero-field state is n
a good vacuum. To find the correct vacuum for the theory
must carry out the path integral over the fermion field
obtain the effective actionG@A#, and then minimize that
quantity. The fieldAm is minimally coupled toc, so that the
computation should proceed as in QED. By the Ward iden
we do not expect a correction to the mass term forAm, as
long as an adequate regulator is used. But we do expe
get terms in the effective action that go asA4 and higher
even powers of the auxiliary field.

Since we have reason to believe that QED is stable
any value of the chargee, it therefore seems logical to expe
that the effective action forAm in Eq. ~30! gives it a finite
time-like VEV, which would imply a finite VEV forc̄gmc in
the theory of Eq.~29!. We argued in the previous section th
g must be large for the theory described by Eq.~29! to be
stable. This too seems natural in light of Eq.~30!, because a
largeg makes theA2 term small, so that the instability cre
ated by it may be easily controlled by the interaction with t
fermions, yielding a VEV forAm that lies within the energy
range of the effective theory.
7-8
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SPONTANEOUS BREAKING OF LORENTZ INVARIANCE PHYSICAL REVIEW D69, 105007 ~2004!
Armed with Eq.~30! it would seem possible to carry ou
the program proposed by Bjorken, and by Kraus and To
boulis, in order to arrive at an approximation of QED
which the photons are composite Goldstone bosons. I
conceivable that a complicated theory of self-interacting f
mions, perhaps one with non-standard kinetic terms, m
similarly yield a VEV for c̄( i /2)(gm]W n2gm]Q n)c, allowing
the project of dynamically generating linearized gravity to
forward. We leave this for future investigation.

VI. PHENOMENOLOGY OF LORENTZ VIOLATION
BY A BACKGROUND SOURCE

A separate line of thought that might be pursued from t
work concerns a phenomenology of Lorentz violation
electrodynamics with a background source. That is, we m
imagine that the fermions of the universe have some inte
tion that plays the role of Eq.~17! in giving a VEV toc̄gmc,
and that in addition they have aU(1) gauge coupling~at this
stage we have abandoned the project of producing comp
photons!. Then theU(1) gauge field may interact with
charged background and we would be breaking LI in el
trodynamics by introducing a preferred frame: the rest fra
of the background source.

The possibility of a vacuum that breaks LI and has no
trivial optical properties has already been investigated
@29,30#. This work, however, deals with significantly mor
complicated models, both in terms of the interactions t
spontaneously break LI and of the optical properties of
resulting vacuum. To obtain a phenomenology for our o
simpler proposal, we consider a free photon Lagrangian
the form

L 0
photon52

1

4
Fmn

2 2 j mAm, ~32!

where j m5e^c̄gmc&, thought of as an external source. T
corresponding propagator for the free photon is

^T$Am~x!An~y!%&5DF
mn~x2y!1^Am~x!& j^A

n~y!& j ,
~33!

where Dmn(x2y) is the connected photon propagator a
^Am(x)& j is the expectation value ofAm in the presence o
the external source.

If we take j m constant and naively attempt to calculate t
classical expectation value ofAm in the presence of a con
stant source by integrating the Green function for electro
namics, we will get a volume divergence. We may attemp
regulate this volume divergence by introducing a pho
massm, which gives the result

^Am~x!& j5
j m

m2
. ~34!

~It is trivial to check that this is a solution to]2Am1m2Am

5 j m, the wave equation for the massive photon field with
source.! This is not satisfactory because the disconnec
term in Eq.~33! will be proportional tom24 and Feynman
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diagrams computed with our modified photon propaga
would produce results that depend strongly on what we t
for a regulator. In fact the mass is physical and analogou
the effective photon mass first described by the Lond
brothers in their theory of the electromagnetic behavior
superconductors@31#. @Using the language of particle phys
ics we may say that, in the presence of aU(1) gauge field,
the VEV ^c̄gmc& spontaneously breaks the gauge invarian
and gives a mass to the boson, as in the Higgs mechani#

Photons in a superconductor propagate through a cons
electromagnetic source. In a simplified picture, we may th
of it as a current density set up by the motion of char
carriers of massm and chargee, moving with a velocityuW .
The proper charge density isr0 . The proper velocity of the

charge carriers ishm5(1,uW )/A12u2. The source is then
j m5r0hm5r0pm/m, wherepm is the classical energy mo
mentum of the charge carriers. We may think ofm andr0 as
deriving from the solutions to the parameters in a se
consistent equation such as we had in Eq.~25!.

The canonical energy momentumPm of the system is
Pm5mhm1eAm5m jm/r01eAm. As is discussed in the su
perconductivity literature~see, for instance, Chap. 8 in@32#!,
the superconducting state has zero canonical energy mom
tum, which leads to the London equation

j m52
er0

m
Am. ~35!

With this j m inserted into the right-hand side of]2Am5 j m

~the wave equation for the photon field in the Lorenz gaug!,
we find that we have a solution to the wave equation o
massiveAm with no source and a massm25er0 /m:

]2Am1
er0

m
Am50. ~36!

If we solve forAm in Eq. ~35! and substitute this back into
Eq. ~33!, we get that

^T$Am~x!An~y!%&5DF
mn~x2y!1

m2

e2 j 2
j m j n. ~37!

Notice that if j m(x) is not constant, then Fourier transfo
mation of the second term in Eq.~37! will not yield, in
Feynman diagram vertices, the usual energy-momentum
serving delta function. Therefore, presumed small violatio
of energy or momentum conservation in electromagne
processes could conceivably be parametrized by the sp
time variation of the background source.9

With Eq. ~37! and a rule for external massive photon leg
one may then go ahead and calculate the amplitude for v
ous electromagnetic processes with this modified pho
propagator, and parametrize supposed observed violation
LI ~see@34–36#! by j m. If we can make an estimate of th

9This line of thought could connect to work on LI violation from
variable couplings as discussed in@33#.
7-9
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ALEJANDRO JENKINS PHYSICAL REVIEW D69, 105007 ~2004!
size of the massm of the background charges, experimen
limits on the photon mass (,2310216 eV according to
@37#! will provide a limit on the VEV ofc̄gmc, in light of
Eq. ~35!.

VII. OTHER POSSIBLE CONSEQUENCES
OF THIS MECHANISM

There are other consequences of a VEV^c̄gmc&Þ0 on
which we may speculate. Such a background may have
mological effects, a line of thought which might connect, f
instance, with@38#. Also, it is conceivable that such a VEV
might have some relation to the problem of baryogene
since it gives the background finite fermion number a
spontaneously breaksCPT, a violation which can ease th
Sakharov condition of thermodynamical nonequilibriu
@39#.

It has recently been suggested that the standard m
might be formulated without a Higgs scalar field, by intr
ducing instead fermion self-interactions which do not dest
the renormalizability of the theory if there are nonzero U
fixed points under the renormalization group operation@40#.
That work, published after the first manuscript of the pres
paper had appeared in the pre-print archive, might well re
to the mechanism we have described, particularly in ligh
what was discussed in the previous sections of this pape

All these tentative ideas are left for possible considerat
in the future.

VIII. CONCLUSIONS

We have presented a stable effective theory in whic
chemical potential term is dynamically generated, thus sp
taneously breaking LI~as well asC, CP, andCPT!. The main
reasons why this theory might be interesting are the follo
ing: ~a! that it might serve as the starting point for mode
with emergent gauge bosons,~b! that it could conceivably
point to LI breaking in other more natural theories that sh
its fundamental attribute: attraction between particles of
same fermion number sign~something that is seen in non
.

10500
l

s-

s,
d

el

y

t
te
f

n

a
n-

-

e
e

Abelian gauge theories such as QCD, which allows bou
states with nonzero baryon number!, and~c! that it produces
something that could perhaps interest those who study
phenomenology of Lorentz violation in electrodynamics: t
breaking of LI by introducing a background source with
own rest frame.

All of these remain somewhat problematic because~a! our
work applies directly not to the more interesting case of g
erating emergent gravitons, but only to photons,~b! so far we
have not been able to produce models that spontaneo
break LI that are significantly more natural than Eq.~29!,
which is a nonrenormalizable theory in which the fermi
self-coupling has the opposite sign to what is obtained
integrating out a heavyU(1) gauge boson,10 and ~c! it re-
mains to be seen whether a phenomenology of electro
namics with a background source is of any interest to
effort of explaining the supposed indications of Lorentz v
lation in cosmic ray data and other measurements. These
all areas that would need to be explored in order to m
more concrete and useful the ideas presented here.
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