
ar
X

iv
:m

at
h/

00
09

02
5v

1 
 [

m
at

h.
A

G
] 

 3
 S

ep
 2

00
0

BPS STATES OF CURVES IN CALABI-YAU 3-FOLDS

JIM BRYAN AND RAHUL PANDHARIPANDE

Abstract. The Gopakumar-Vafa conjecture is defined and studied for the
local geometry of a curve in a Calabi-Yau 3-fold. The integrality predicted
in Gromov-Witten theory by the Gopakumar-Vafa BPS count is verified in a
natural series of cases in this local geometry. The method involves Gromov-
Witten computations, Möbius inversion, and a combinatorial analysis of the
numbers of étale covers of a curve.
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1. Introduction and Results

1.1. Gromov-Witten and BPS invariants. Let X be a Calabi-Yau 3-fold and
let Ng

β (X) be the 0-point genus g Gromov-Witten invariant of X in the curve class

β ∈ H2(X,Z). From considerations in M-theory, Gopakumar and Vafa express
the invariants Ng

β (X) in terms of integer invariants ng
β(X) obtained by BPS state

counts [8]. The Gopakumar-Vafa formula may be viewed as providing a definition
of the BPS state counts ng

β(X) in terms of the Gromov-Witten invariants.
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2 JIM BRYAN AND RAHUL PANDHARIPANDE

Definition 1.1. Define the Gopakumar-Vafa BPS invariants nr
β(X) by the for-

mula: ∑

β 6=0

∑

g≥0

Ng
β (X)t2g−2qβ =

∑

β 6=0

∑

g≥0

ng
β(X)

∑

k>0

1
k

(
2 sin(kt2 )

)2g−2
qkβ .(1)

Matching the coefficients of the two series yields equations determining ng
β(X) re-

cursively in terms of Ng
β(X) (see Proposition 2.1 for an explicit inversion of this

formula).

From the above definition, there is no (mathematical) reason to expect ng
β(X)

to be an integer. Thus, the physics makes the following prediction.

Conjecture 1.2. The BPS invariants are integers:

ng
β(X) ∈ Z.

Remark 1.3. By the physical arguments of Gopakumar and Vafa, the BPS invari-
ants should be directly defined via the cohomology of the D-brane moduli space.

First, the D-brane moduli space M̂ should be defined with a natural morphism

M̂ →M to a moduli space M of curves in X in the class β. The fiber of M̂ → M
over each curve C ∈ M should parameterize flat line bundles on C. Furthermore,

there should exist an sl2 ⊕ sl2 representation on H∗(M̂,C) such that the diag-

onal and right actions are the usual sl2 Lefschetz representations on H∗(M̂,C)

and H∗(M,C) respectively — assuming M̂ and M are compact, nonsingular, and
Kähler. The BPS state counts ng

β(X) are then the coefficients in the decomposition

of the left (fiberwise) sl2 representation H∗(M̂,C) in the basis given by the coho-
mologies of the algebraic tori. After these foundations are developed, Equation (1)
should be proven as the basic result relating Gromov-Witten theory to the BPS
invariants.

The correct mathematical definition of the D-brane moduli space is unknown
at present, although there has been recent progress in case the curves move in a
surface S ⊂ X (see [12], [13], [14]). The nature of the D-brane moduli space in the
case where there are non-reduced curves in the family M is not well understood.

The fiber of M̂ → M over a point corresponding to a non-reduced curve may
involve higher rank bundles on the reduction of the curve. It has been recently
suggested by Hosono, Saito, and Takahashi [11] that the sl2 ⊕ sl2 representation can
be constructed in general via intersection cohomology and the Beilinson-Bernstein-
Deligne spectral sequence [1].

Remark 1.4. An extension of formula (1) conjecturally defining integer invariants
for arbitrary 3-folds (not necessarily Calabi-Yau) has been found in [16], [17]. Some
predictions in the non Calabi-Yau case have been verified in [2]. Though it is not yet
known how the relevant physical arguments apply to the non Calabi-Yau geometries,
one may hope a mathematical development will provide a unified approach to all
3-folds.

The physical discussion suggests that the BPS invariants will be a sum of integer
contributions coming from each component of the D-brane moduli space (whatever
space that may be). One obvious source of such components occurs when the
curves parameterized by M are rigid or lie in a fixed surface. The moduli space
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of stable maps has corresponding components given by those maps whose image is
the rigid curve or respectively lies in the fixed surface. These give rise to the notion
of “local Gromov-Witten invariants” and we expect that the corresponding “local
BPS invariants” will be integers.

1.2. Local contributions. In this paper we are interested in the contributions of
an isolated curve C ⊂ X to the Gromov-Witten invariants Ng

d[C](X) and the BPS

invariants ng
d[C](X).

To discuss the local contributions of a curve (also often called “multiple cover
contributions”), we make the following definitions:

Definition 1.5. Let C ⊂ X be a curve and let MC ⊂ Mg(X, d[C]) be the locus of

maps whose image is C. Let MC be an open component of Mg(X, d[C]). Define
the local Gromov-Witten invariant, Ng

d (C ⊂ X) ∈ Q by the evalution of the well-

defined restriction of [Mg(X, d[C])]
vir to H0(MC ,Q).

Definition 1.6. Let C ⊂ X satisfy the conditions of Definition 1.5. If

MC
∼=Mg(C, d)

then C is said to be (d, g)-rigid. If C is (d, g)-rigid for all d and g, then C is
super-rigid.

For example, a nonsingular rational curve with normal bundle O(−1)⊕O(−1) is
super-rigid. An elliptic curve E ⊂ X is super-rigid if and only if NE/X

∼= L⊕ L−1

where L→ E is a flat line bundle such that no power of L is trivial (see [16]). An
example where MC is an open component but MC 6∼= Mg(C, d) is the case where
C ⊂ X is a contractable, smoothly embedded CP1 with NC/X

∼= O ⊕O(−2). In
this case MC has non-reduced structure coming from the (obstructed) infinitesimal
deformations of C in the O direction of NC/X (see [4] for the computation of
Ng

d (C ⊂ X) in this case).
The existence of genus g curves in X with (d, g+h)-rigidity is likely to be a subtle

question in the algebraic geometry of Calabi-Yau 3-folds. On the other hand, these
rigidity issues may be less delicate in the symplectic setting. For a generic almost
complex structure on X , it is reasonable to hope super-rigidity will hold for any
pseudo-holomorphic curve in X .

Let h ≥ 0 and suppose a nonsingular genus g curve Cg ⊂ X is (d, g + h)-rigid.

Then Ng+h
d (Cg ⊂ X) can be expressed as the integral of an Euler class of a bundle

over [Mg+h(Cg, d)]
vir . Let π : U → Mg+h(Cg, d) be the universal curve and let

f : U → Cg be the universal map. Then

Ng+h
d (Cg ⊂ X) ∼=

∫

[Mg+h(Cg,d)]vir
c(R1π∗f

∗(NC/X)).

In fact, this we can rewrite the above integral in the following form:
∫
c(R1π∗f

∗NC/X) =

∫
c(R•π∗f

∗NC/X [1])

=

∫
c(R•π∗f

∗(OC ⊕ ωC)[1])

where all the integrals are over [Mg+h(Cg, d)]
vir . The first equality holds because

(d, g+h)-rigidity implies that R0π∗f
∗NC/X is 0. The second equality holds because
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NC/X deforms to OC ⊕ ωC , the sum of the trivial sheaf and the canonical sheaf
(this follows from an easily generalization of the argument at the top of page 497
in [16]). The last integral depends only upon g, h, and d. We regard this formula
as defining the idealized multiple cover contribution of a genus g curve by maps of
degree d and genus g + h.

We will denote this idealized contribution by the following notation:

Nh
d (g) :=

∫

[Mg+h(Cg,d)]vir
c(R•π∗f

∗(OC ⊕ ωC)[1]).

From the previous discussion, Nh
d (g) = Ng+h

d (Cg) for any nonsingular, (d, g + h)-
rigid, genus g curve Cg.

We define the local BPS invariants in terms of the local Gromov-Witten invari-
ants via the Gopakumar-Vafa formula.

Definition 1.7. Define the local BPS invariants nh
d(g) in terms of the local Gromov-

Witten invariants by the formula
∑

β 6=0

∑

h≥0

Nh
d (g)t

2(g+h−1)qd =
∑

d 6=0

∑

h≥0

nh
d(g)

∑

k>0

1
k

(
2 sin(kt2 )

)2(g+h−1)
qkd.

The local Gromov-Witten invariants Nh
d (g) are in general difficult to compute.

For g = 0, these integrals were computed in [6]. In terms of local BPS invariants,
these calculations yield:

nh
d(0) =

{
1 for d = 1 and h = 0,

0 otherwise.

For g = 1, complete results have also been obtained [16]:

nh
d(1) =

{
1 for d ≥ 1 and h = 0,

0 otherwise.

The local invariants of a super-rigid nodal rational curve as well as the local
invariants of contractable (non-generic) embedded rational curves were determined
in [4].

In this paper we compute certain contributions to the local Gromov-Witten
invariants Nh

d (g) for g > 1 and we determine the corresponding contributions to
the BPS invariants nh

d(g). We prove the integrality of these contributions. In the
appendix, we provide tables giving explicit values for nh

d(g).

1.3. Results. The contributions to Nh
d (g) we compute are those that come from

maps [f : D → C] satisfying either of following conditions:

(i) A single component of the domain is an étale cover of C (with any number
of auxiliary collapsed components simply attached to the étale component).

(ii) The map f has exactly two branch points (and no collapsed components).

The type (i) contributions, the étale invariants, correspond to the first level
in a natural grading on the set of local Gromov-Witten invariants which will be
discussed in Section 2.2. The étale invariants are easily computed in terms of
the number of degree d étale covers of a curve of genus g and the degree 1 local
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invariants (which were computed in [16]). The type (ii) contribution we compute
by a Grothendieck-Riemann-Roch calculation which is carried out in Section 4.

1.3.1. Type (i) contributions (étale contributions):

Definition 1.8. We define M
ét

g+h(C, d) ⊂Mg+h(C, d) to be the union of the mod-
uli components corresponding to stable maps π : D → C satisfying:

(a) D contains a single component C′ of non-zero degree étale over C.
(b) All π-collapsed components are all simply attached to C′ (the vertex in the

dual graph of the domain curve corresponding to C′ does not contain a cycle).

We define the étale Gromov-Witten invariants by

Nh
d (g)

ét :=

∫

[Mg+h(C,d)ét]vir
c(R•π∗f

∗(OC ⊕ ωC)[1])

and we define the étale BPS invariants nh
d(g)

ét in terms of Nh
d (g)

ét via the Gopakumar-
Vafa formula as before.

As we will explain in Section 2, any Gromov-Witten invariant can be written
in terms of primitive Gromov-Witten invariants. The étale invariants correspond
exactly to those that can be expressed in terms of degree 1 primitive invariants.

There is a range where the étale contributions are the only contributions to the
BPS invariant. Let dmin be the smallest divisor d′ of d that is not 1 and such that
µ( d

d′
) 6= 0, then

nh
d(g) = nh

d(g)
ét for all h ≤ (dmin − 1)(g − 1).(2)

This follows from Equation 5 (in Section 2) and the simple geometric fact that a
degree d stable map f : Dg+h → Cg must be of type (i) if h ≤ (d − 1)(g − 1) or if
d = 1.

Our main two Theorems concerning the étale BPS invariants give an explicit
formula for nh

d(g)
ét and prove they are integers.

Theorem 1.9. The étale BPS invariants are given by the generating function
∑

h≥0

nh
d(g)

étyh =
∑

k|d

k
dµ(

d
k )Ck,gy

(k−1)(g−1)P d
k
(y)k(g−1)

where the polynomial Pl is defined by

Pl(4 sin
2 t) =

sin2(lt)

sin2 t
.

The polynomial Pl can be written explicitly (see Lemma P1) as

Pl(y) =

l−1∑

a=0

l

a+ 1

(
a+ l

2a+ 1

)
(−y)a.

The rational number Ck,g is defined as the number of degree k, connected, com-
plete, étale covers of a curve of genus g, each counted by the reciprocal of the
number of automorphisms of the cover (so for example C2,g = (22g − 1)/2). The
function µ is the Möbius function: µ(n) = (−1)a where a is the number of prime
factors of n if n is square-free and µ(n) = 0 if n is not square-free.

Note that the formula given by the Theorem 1.9 shows that for fixed d and g,
nh
d(g)

ét is non-zero only if 0 ≤ h ≤ (d− 1)(g− 1). See Table 1 for explicit values of
nh
d(g)

ét for small d, g, and h.



6 JIM BRYAN AND RAHUL PANDHARIPANDE

Theorem 1.10. The étale BPS invariants are integers: nh
d(g)

ét ∈ Z.

Remark 1.11. A priori there is no reason (even physically) to expect that the
étale invariants nh

d(g)
ét are integers outside of the range where nh

d(g)
ét = nh

d(g).
The above theorem is very suggestive that the D-brane moduli space has a dis-
tinguished component (or components) corresponding to these étale contributions.
Furthermore, our results suggest that this component has dimension d(g−1)+1 and
has a product decomposition (at least cohomologically) with one factor a complex
torus of dimension g.

Theorem 1.9 follows from the computation of Nh
d (g)

ét by a (reasonably straight-
forward) inversion of the Gopakumar-Vafa formula that is carried out in Section 2.
Theorem 1.10 is proved directly from the formula given in Theorem 1.9 and turns
out to be rather involved. It depends on somewhat delicate congruence proper-
ties of the polynomials Pl(y) and the number of covers Cd,g. These are proved in
Section 3.

1.3.2. Type (ii) contributions. There is another situation where Mg+h(Cg, d) has a
distinguished open component. If

h = (d− 1)(g − 1) + 1,

then there are exactly two open components, namely the étale component M ét

and one other M̃ ⊂ Mg+h(Cg, d). The generic points of M̃ correspond to maps of

nonsingular curves with exactly two simple ramification points. Let Ñg(d) be the
corresponding contribution to the Gromov-Witten invariants so that

N
(d−1)(g−1)+1
d (g) = N

(d−1)(g−1)+1
d (g)ét + Ñd(g).

The component M̃ admits a finite morphism to Sym2(Cg) given by pointwise by
sending a map to its branched locus (see [6] for the existence of such a morphism).

We compute the invariant Ñd(g) in in Section 4 by a Grothendieck-Riemann-
Roch (GRR) computation. The relative Todd class required by GRR is computed
using the formula of Mumford [15] adapted to the context of stable maps (see
[6] Section 1.1). The intersections in the GRR formula are computed by pushing
forward to Sym2(Cg). The result of this computation (which is carried out in
Section 4) is the following:

Theorem 1.12.

Ñd(g) =

∫

M̃

c(R•π∗f
∗(OCg

⊕ ωCg
)[1]) =

g − 1

8

(
(g − 1)Dd,g −D∗

d,g −
1

27
D∗∗

d,g

)
.

The numbers Dd,g, D
∗
d,g, and D

∗∗
d,g are the following Hurwitz numbers of covers

of the curve Cg.

• Dd,g is the number of connected, degree d covers of Cg simply branched over
2 distinct fixed points of Cg.

• D∗
d,g is the number of connected, degree d, covers of Cg with 1 node lying

over a fixed point of Cg.
• D∗∗

d,g is the number of connected, degree d covers of Cg with 1 double ramifi-
cation point over a fixed point of Cg.
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The covers are understood to be étale away from the imposed ramification. Also,
Dd,g, D

∗
d,g, and D∗∗

d,g are all counts weighted by the reciprocal of the number of
automorphisms of the covers.

There is an additional Hurwitz numberD∗∗∗
g,d which is natural to consider together

with the three above:

• D∗∗∗
d,g is the number of connected, degree d covers of Cg with 2 distinct rami-

fication points in the domain lying over a fixed point of Cg.

However, D∗∗∗
d,g is determined from the previous Hurwitz numbers by the degener-

ation relation:

Dd,g = D∗
d,g +

1

3
D∗∗

d,g +D∗∗∗
d,g(3)

(see [10]). Theorem 1.12 therefore involves all of the independent covering numbers
which appear in this 2 branch point geometry (see Table 3 for some explicit values
of these numbers).

Theorem 1.12 can be used to extend the range where we can compute the full
local BPS invariants. Equation 2 generalizes to

nh
d(g) =

{
nh
d(g)

ét for all h ≤ (dmin − 1)(g − 1)

nh
d(g)

ét + ǫÑdmin
(g) for h = (dmin − 1)(g − 1) + 1

(4)

where ǫ is the rational number given by Equation 5,

ǫ = µ( d
dmin

)( d
dmin

)dmin(g−1)+2.

For example, if d is prime, then dmin = d and ǫ = 1. See Table 2 for explicit
values of nh

d(g) for small d, g, and h.
Since nh

d(g)
ét ∈ Z by Theorem 1.10, the integrality conjecture predicts that

ǫÑd(g) ∈ Z. In light of our formula in Theorem 1.12, this leads to congruences that
are conjecturally satisfied by the Hurwitz numbers Dd,g, D

∗
d,g, and D

∗∗
d,g.

Conjecture 1.13. Let Υd,g = 216Ñd(g), that is

Υd,g = (g − 1)
(
27(g − 1)Dd,g − 27D∗

d,g −D∗∗
d,g

)
.

Suppose that d is not divisible by 4, 6, or 9. Then,

Υd,g ≡ 0 (mod 216).

Although Dd,g, D
∗
d,g, and D

∗∗
d,g are not a priori integers, it is proven in [3] that

Υd,g ∈ Z. It is also proven in [3] that Conjecture 1.13 holds for d = 2 and d = 3.

Remark 1.14. Various congruence properties of Cd,g (the number of degree d
connected étale covers) will also be used in the proof of the integrality of the étale
BPS invariants nh

d(g)
ét (see Lemma C4). We speculate that these and the above

conjecture are the beginning of a series of congruence properties of general Hurwitz
numbers that are encoded in the integrality of the local BPS invariants.

1.4. Acknowledgements. The research presented here began during a visit to
the ICTP in Trieste in summer of 1999. We thank M. Aschbacher, C. Faber, S.
Katz, V. Moll, C. Vafa, R. Vakil, and E. Zaslow for many helpful discussions. The
authors were supported by Alfred P. Sloan Research Fellowships and NSF grants
DMS-9802612, DMS-9801574, and DMS-0072492.
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2. Inversion of the Gopakumar-Vafa formula and primitive invariants

In this section we invert the Gopakumar-Vafa formula in general to give an
explicit expression for the BPS invariants in terms of the Gromov-Witten invariants.
We then introduce the notion of a primitive Gromov-Witten invariants and show
that all Gromov-Witten invariants can be expressed in terms of primitive invariants.
In the case of the local invariants of a nonsingular curve, this suggests a natural
grading on the set of local Gromov-Witten invariants. We will see that the étale
invariants comprise the first level of this grading.

2.1. Inversion of the Gopakumar-Vafa formula. Let β ∈ H2(X,Z) be an
indivisible class. Then the Gopakumar-Vafa formula is:

∑

g≥0

∑

d>0

Ng
dβ(X)λ2g−2qdβ =

∑

g≥0

∑

d>0

ng
dβ(X)

∑

k>0

1
k

(
2 sin(kλ2 )

)2g−2
qkdβ .

Fix n and look at the qnβ terms on each side:
∑

g≥0

Ng
nβ(X)λ2g−2 =

∑

g≥0

∑

d|n

ng
dβ(X) dn

(
2 sin(nλ2d )

)2g−2
.

Letting s = nλ and multiplying the above equation by n we find
∑

g≥0

Ng
nβ(X)n3−2gs2g−2 =

∑

d|n

∑

g≥0

ng
dβ(X)d

(
2 sin s

2d

)2g−2
.

Recall that Möbius inversion says that if f(n) =
∑

d|n g(d), then g(d) =
∑

k|d µ(
d
k )f(k).

Applying this to the above equation (more precisely, to the coefficients of each term
of the equation separately), we obtain

∑

g≥0

ng
dβ(X)d

(
2 sin s

2d

)2g−2
=
∑

k|d

µ( dk )
∑

g≥0

Ng
kβ(X)( sk )

2g−2k.

Letting t = 2 sin s
2d and dividing by d we arrive at

∑

g≥0

ng
dβ(X)t2g−2 =

∑

g≥0

∑

k|d

µ( dk )(
d
k )

2g−3Ng
kβ(X)

(
2 arcsin t

2

)2g−2
.

By interchanging k and d/k in the sum and restricting to the t2g−2 term of the
formula we arrive at the following formula for the BPS invariants.

Proposition 2.1. Let β ∈ H2(X,Z) be an indivisible class, then the BPS invariant
ng
dβ(X) is given by the following formula

ng
dβ(X) =

g∑

g′=0

∑

k|d

µ(k)k2g−3αg,g′Ng′

dβ/k(X)

where αg,g′ is the coefficient of rg−g′

in the series

(
arcsin(

√
r/2)√

r/2

)2g′−2

.

In particular, ng
dβ(X) depends on Ng′

d′β(X) for all g′ ≤ g and all d′ dividing d such

that µ( d
d′
) 6= 0.
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Note that the local BPS invariants are thus given by

nh
d(g) =

h∑

h′=0

∑

k|d

µ(k)k2(g+h′)−3αh+g,h′+gN
h′

d/k(g),(5)

or in generating function form:

∑

d>0

∑

h≥0

nh
d(g)t

2(g+h−1)qd =
∑

k,n>0

∑

h≥0

µ(k)Nh
n (g)k

2(g+h)−3
(
2 arcsin t

2

)2(g+h−1)
qnk.

(6)

2.2. Primitive Gromov-Witten invariants.

Definition 2.2. We say that a stable map f : C → X is primitive if

f∗ : π1(C) → π1(X)

is surjective. Note that Im(f∗) ⊂ π1(X) is locally constant on the moduli space
of stable maps. Let Mg(X, β)G be the component(s) consisting of maps f with

Im(f∗) = G ⊂ π1(X). In particular, Mg(X, β)π1(X) consists of primitive sta-

ble maps. Define the primitive Gromov-Witten invariants, denoted N̂g
β (X), to

be the invariants obtained by restricting [Mg(X, β)]
vir to the primitive component

Mg(X, β)π1(X).

The usual Gromov-Witten invariants can be computed in terms of the primitive

invariants using the following observations. Let ρ : X̃G → X be the covering space
of X corresponding to the subgroup G ⊂ π1(X). Any stable map

[f : C → X ] ∈Mg(X, β)G

lifts to a (primitive) stable map [f̃ : C → X̃G] ∈ Mg(X̃G, β̃)G for some β̃ with

ρ∗(β̃) = β. Furthermore, this lift is unique up to automorphisms of the cover

ρ : X̃G → X . Conversely, any stable map in Mg(X̃G, β̃)G gives rise to a map in

Mg(X, β)G by composing with ρ. Note that the automorphism group of the cover
is π1(X)/N(G) where N(G) is the normalizer of G ⊂ π1(X). If G is finite index

in π1(X), then X̃G is compact and the automorphism group of the cover is finite.
This discussion leads to:

Proposition 2.3. Fix X, g, and β. Suppose that for every stable map [f : C → X ]
in Mg(X, β), the index [π1(X) : f∗(π1(C))] is finite. Then

Ng
β (X) =

∑

G

∑

β̃

1

[π1(X) : N(G)]
N̂g

β̃
(X̃G)

where the first sum is over G ⊂ π1(X) and the second sum is over β̃ ∈ H2(X̃G,Z)

such that ρ∗(β̃) = β.

Remark 2.4. In the case when [π1(X) : G] = ∞, X̃G will not be compact and
hence the usual Gromov-Witten invariants are not well-defined. However, this tech-
nique sometimes can still be used to compute the invariants (see [4]). This tech-
nique originated in [5] where it was used to compute multiple cover contributions
of certain nodal curves in surfaces.
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This technique is especially well-suited to the case of the local invariants of a
nonsingular genus g curve. In this case, the image of the fundamental group under
a (non-constant) stable map always has finite index. Furthermore, any degree k,
complete, étale cover of a nonsingular genus g curve is a nonsingular curve of genus
k(g − 1) + 1. Thus the formula in Proposition 2.3 reduces to

Nh
n (g) =

∑

l|n

Cl,gN̂
h−(l−1)(g−1)
n/l (l(g − 1) + 1)(7)

where Ck,g is the number of degree k, connected, complete, étale covers of a nonsin-
gular genus g curve, each counted by the reciprocal of the number of automorphisms.

In light of this formula, we can regard the primitive local invariants N̂h
d (g) as the

fundamental invariants. We encode these invariants into generating functions as
follows:

F̂k,g−1(λ) =
∑

h≥0

N̂h
k (g)λ

2(g+h−1).

Equation 7 can then be written in generating function form as
∑

h≥0

∑

n>0

Nh
n (g)q

nt2(g+h−1) =
∑

h≥0

∑

k,l>0

Cl,gN̂
h−(l−1)(g−1)
k (l(g − 1) + 1)qklt2(g+h−1)

=
∑

k,l>0

Cl,gF̂k,l(g−1)q
kl.

We re-index and rearrange Equation 6 below
∑

d>0

∑

h≥0

nh
d(g)t

2(g+h−1)qd =
∑

m>0

1
mµ(m)

∑

h≥0

∑

n>0

Nh
n (g)(q

m)n
(
2m arcsin t

2

)2(g+h−1)

and then substitute the previous equation to arrive at the following general equation
for the local BPS invariants:
∑

d>0

∑

h≥0

nh
d(g)t

2(g+h−1)qd =
∑

m,k,l>0

1
mµ(m)Cl,gF̂k,l(g−1)(2m arcsin t

2 )
2(g+h−1)qmkl.

The unknown functions F̂k,l(g−1) are graded by the two natural numbers k and
l. The contribution in the above sum corresponding to fixed l and k are from those
stable maps that factor into a composition of a degree k primitive stable map and a
degree l étale cover of Cg. Thus the étale BPS invariants (the type (i) contributions)
correspond exactly to restricting k = 1 in the above sum. Therefore we have
∑

d>0

∑

h≥0

nh
d(g)

étt2(g+h−1)qd =
∑

m,l>0

1
mµ(m)Cl,gF̂1,l(g−1)(2m arcsin t

2 )
2(g+h−1)qml.

Since a degree one map onto a nonsingular curve is surjective on the fundamental
group, it is primitive. The degree one local invariants were computed in [16], the
result can be expressed:

F̂1,g−1 =
∑

h≥0

Nh
1 (g)λ

2(g+h−1)

=
(
4 sin2 λ

2

)(g−1)

and so∑

d>0

∑

h≥0

nh
d(g)

étt2(g+h−1)qd =
∑

m,l>0

1
mµ(m)Cl,g

(
4 sin2(m arcsin t

2 )
)l(g−1)

qml.
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By definition of Pm, we have

4 sin2 χPm(4 sin2 χ) = 4 sin2(mχ)

and so letting χ = arcsin(t/2) or equivalently t = 2 sinχ, we get
∑

d>0

∑

h≥0

nh
d(g)

étt2(g+h−1)qd =
∑

m,l>0

1
mµ(m)Cl,g

(
t2Pm(t2))

)l(g−1)
qml.

Finally, by letting y = t2, dividing by yg−1, and re-indexing l by k, we get
∑

d>0

∑

h≥0

nh
d(g)

étyhqd =
∑

m,l>0

1
mµ(m)Ck,gy

(k−1)(g−1)Pm(y)l(g−1)qml,

and so the formula in Theorem 1.9 is proved by comparing the qd terms.

3. Integrality of the étale BPS invariants

In this section we show how the integrality of the étale BPS invariants (Theorem
1.10) follows from our formula for them (Theorem 1.9) and some properties of the
the polynomials Pl(y) and the number of degree k covers Ck,g.

The facts that we need concerning the polynomials Pl(y) are the following.

Lemma P1 (Moll). If l ∈ N, then Pl(y) is given by

Pl(y) =

l−1∑

a=0

l

a+ 1

(
a+ l

2a+ 1

)
(−y)a.

Lemma P2. If l is a positive integer, then Pl(y) is a polynomial with integer co-
efficients.

Lemma P3. For any α and β we have

Pαβ(y) = Pα(y)Pβ(yPα(y)).

Lemma P4. For p a prime number and b a positive integer, we have

(yPp(y))
pl−1b ≡ yp

lb mod pl.

We also will need some facts about Ck,g , the number of connected étale covers.

Lemma C1. Let Cg be a nonsingular curve of genus g, let Sk be the symmetric
group on k letters, and define

Ak,g = #Hom(π1(Cg), Sk).

Then

ak,g =
Ak,g

k!

is an integer.

Note that Ak,g is the number of degree k (not necessarily connected) étale cov-
ers of Cg with a marking of one fiber. Thus ak,g is the number of (not necessarily
connected) étale covers each counted by the reciprocal of the number of automor-
phisms. We remark that Lemma C1 was essentially known to Burnsides.
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Lemma C2. Let ak,g be as above with a0,g = 1 by convention, then

∞∑

k=1

Ck,gt
k = log(

∞∑

k=0

ak,gt
k).

Lemma C3. Define ck,g := kCk,g. Then ck,g is an integer.

We remark that in general, Ck,g is not an integer (see Table 3).

Lemma C4. Let p be a prime number not dividing k and let l be a positive integer.
Then

cplk,g ≡ cpl−1k,g mod pl.

We defer the proof of these lemmas to the subsections to follow and we proceed
as follows.

In light of Lemmas P2 and C3, we see from the formula in Theorem 1.9 that
nh
d(g)

ét ∈ Z if and only if Ξd,g ≡ 0 mod d, where

Ξd,g =
∑

k|d

µ( dk )ck,g(yPd/k(y))
k(g−1).

Suppose that pl divides d and that pl+1 does not divide d for some prime number
p. Let a = d/pl; then we get

Ξd,g =
∑

k|a

l∑

i=0

µ( d
pik )cpik,g

(
yP d

pik

(y)
)pik(g−1)

=
∑

k|a

−µ(ak )cpl−1k,g

(
yPp a

k
(y)
)pl−1k(g−1)

+ µ(ak )cplk,g

(
yP a

k
(y)
)plk(g−1)

.

Let χ = yPa/k(y). Then by Lemma P3 with α = p and β = a/k we have

yPp a
k
(y) = χPp(χ)

and so

Ξd,g =
∑

k|a

ξ(a/k)
{
−cplk,g (χPp(χ))

pl−1k(g−1)
+ cplk,gχ

plk(g−1)
}
.

Then by Lemmas P4 and C4 we have

Ξd,g ≡
∑

k|a

µ(a/k)cplk,g(−χplk(g−1) + χplk(g−1)) mod pl

≡ 0 mod pl

and so Ξd,g ≡ 0 mod d and thus nh
d(g)

ét ∈ Z.

3.1. Properties of the polynomials Pl(y): the proofs of Lemmas P1–P4.

This subsection is independent of the rest of the paper. We prove various properties
of the following family of power series:
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Definition 3.1. Let α ∈ R, we define the formal power series Pα(y) by

Pα(y) =
sin2(αt)

sin2 t

where

y = 4 sin2 t.

Note that Pα(y) ∈ R[[y]] since sin2(αt)/ sin2 t is a power series in t2 and y(t) =
4 sin2 t = 4t2 − 4

3! t
4 + . . . is an invertible power series in t2.

Proof of Lemma P3: We wish to show that Pαβ(y) = Pα(y)Pβ(yPα(y)). Let

t′ = αt and let y′ = 4 sin2(t′). Note that y′ = yPα(y). Thus

Pα(y)Pβ(y
′) =

sin2(αt)

sin2 t
· sin

2(βαt)

sin2(αt)

=
sin2(αβt)

sin2 t
= Pαβ(y).

Proof of Lemma P1: We prove the formula for Pl(y) with l ∈ N. This formula
and its proof was discovered by Victor Moll; we are grateful to him for allowing us
to use it.

From [19] page 170 we can express sin2(lt)/ sin2 t in terms of cos(2jt) for 1 ≤
j ≤ l − 1 and from [9] 1.332.3 we can in turn express cos(2jt) in terms of sin2 t.
Substituting, rearranging, and simplifying we arrive a formula for the coefficients

of Pl. Let Pl(y) =
∑l−1

n=0 pn,l(−y)n, then

pn,l =
1

n

l−1∑

j=n

(l − j)j

(
j + n− 1

j − n

)
.(8)

By standard recursion methods (see, for example, the book “A = B” [18]) one
can derive the identity for the binomial sum that transforms the above expression
for pn,l into the one asserted by the Lemma:

pn,l =
l

n+ 1

(
l + n

2n+ 1

)
.(9)

Proof of Lemma P2: We need to show that pn,l ∈ Z. By Equation 9, we
have that (n + 1)pn,l ∈ Z and by Equation 8, we have that npn,l ∈ Z. Thus
(n+ 1)pn,l − npn,l = pn,l ∈ Z.

Note that Pl(−y) has all positive integral coefficients.

Proof of Lemma P4: To prove the lemma, clearly it suffices to prove that

(yPp(y))
pl−1 ≡ yp

l

mod pl

for p prime and l ∈ N .
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For n < p− 1, we have that p divides pn,p since

pn,p =
p

n+ 1

(
p+ n

2n+ 1

)

and n+ 1 does not divide p (except n = 0). Noting that pp−1,p = 1 we have

yPp(y) = yp + pyf(y)

for f ∈ Z[y]. This proves the lemma for l = 1. Proceeding by induction on l, we
assume the lemma for l − 1 so that we can write

(yPp(y))
pl−1

= yp
l−1

+ pl−1g(y)

where g(y) ∈ Z[y]. But then

(yPp(y))
pl

=
(
yp

l−1

+ pl−1g(y)
)p

= yp
l

+ terms that pl divides

and so the lemma is proved.

3.2. Properties of the number of covers: the proofs of Lemmas C1–C4.

In this subsection we prove the properties concerning the numbers Ak,g, ak,g, Ck,g,
and ck,g that were asserted by the Lemmas.

We begin with a proposition from group theory due to M. Aschbacher:

Proposition 3.2 (Aschbacher). Let G be a finite group with conjugacy classes Ci,
1 ≤ i ≤ r. Pick a representative gi ∈ Ci; define

bi,j,k = |{(g, h) ∈ Ci × cj : gh = gk}|
and

βi = |{(g, h) ∈ G×G : [g, h] ∈ Ci}|.
Then

βk = |G| ·
r∑

i=1

bi,k,i

so, in particular, |G| divides βk.
Proof: We use the notation h−g := g−1h−1g. For (g, h) ∈ G×G,

[g, h] = g−1h−1gh = h−gh ∈ (h−1)G · hG.
Furthermore, [x, h] = [y, h] if and only if h−x = h−y if and only if xh−1 ∈ CG(h),
so

βj,k = |{(g, h) ∈ G× Cj : [g, h] = gk}| = |CG(gj)| · bj′,j,k
where Cj′ is the conjugacy class of g−1

j . Of course

βk = |Ck|
r∑

j=1

βj,k

so

βk = |Ck| ·
r∑

j=1

|CG(gj)|bj′,j,k.
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Let

Ωj,k = {(g, h) ∈ Cj′ × Cj : gh ∈ Ck}.
Then

|Ωj,k| = |Cj | · |{g ∈ Cj′ : ggj ∈ Ck}|
= |Cj | · |{(g, h) ∈ Cj′ × Ck : gj = g−1h}|
= |Cj |bj,k,j

and similarly

|Ωj,k| = |Ck| · |{(g, h) ∈ Cj′ × Cj : gh = gk}|
= |Ck|bj′,j,k

so |Ck|bj′,j′k = |Cj |bj,k,j . Therefore

βk =

r∑

j=1

|CG(gj)|bj′,j,k|Ck|

=
r∑

j=1

|CG(gj)| · |Cj |bj,k,j

= |G|
r∑

j=1

bj,k,j

which proves the proposition.

Proof of Lemma C1: Recall that the lemma asserts that d! divides

Ak,g = #Hom(π1(Cg), Sd).

For x ∈ Sd let c(x) denote the conjugacy class of x. We will prove, by induction
on g, that d! divides the number of solutions (x1, . . . , xg, y1, . . . , yg) to

g∏

i=1

[xi, yi] ∈ c(z)(10)

where z is fixed. The lemma is then the special case where z is the identity.
The case of g = 1 is Proposition 3.2 where G = Sd. For each fixed r ∈ Sd, the

number of solutions to (10) with

g−1∏

i=1

[xi, yi] = r

is the number of solutions to

w[xg , yg]
−1 = r(11)

as w varies over c(z) and xg and yg each vary over Sd. The number of solutions to
(11) depends only on the conjugacy class of r since if q = srs−1, then (11) holds if
and only if

sws−1[sxgs
−1, sygs

−1]−1 = q
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holds. Thus the number of solutions to (10) can be counted by summing up over
{Ci}, the set of conjugacy classes of Sd, the product of

|{(xg, yg, w) ∈ Sd × Sd × c(z) : w[xg, yg]
−1 ∈ Ci}|

with

|{(x1, . . . , xg−1, y1, . . . yg−1) ∈ (Sd)
2g−2 :

g−1∏

i=1

[xi, yi] ∈ Ci}|.

By the induction hypothesis, this latter term is always divisible by d!, thus the sum
is also divisible by d!.

Proof of Lemma C2:

Ak,g is the number of k-fold (not necessarily connected), complete étale covers
of a nonsingular genus g curve Cg with a fixed labeling of one fiber (the bijection is
given by monodromy). Thus ak,g is the number of such covers (without the label),
each counted by the reciprocal of the number of its automorphisms.

The relationship between ak,g, the total number of k-covers, and Ck,g , the num-
ber of connected covers, is given by

ak,g =
∑

α=(1α12α2 ... )∈P (k)

1∏
i≥1 αi!

∏

i≥1

Cαi

i,g

where P (k) is the set of partitions of k (αi is the number of i’s in the partition so
k =

∑
iαi). This formula is easily obtained by considering how each cover breaks

into a union of connected covers (keeping track of the number of automorphisms).
Thus we have

∞∑

k=0

ak,gt
k =

∑

α1≥0

∑

α2≥0

· · ·
∞∏

i=1

1

αi!
Cαi

i,gt
iαi

=
∑

α≥0

1

α!

(
∞∑

i=1

Ci,gt
i

)α

= exp(

∞∑

i=1

Ci,gt
i)

and so
∞∑

k=1

Ck,gt
k = log(

∞∑

k=0

ak,gt
k)

which proves the lemma.

Proof of Lemma C3: Recall that the lemma asserts that ck,g := kCk,g is an
integer. From the previous lemma we have:

t
d

dt

(
∞∑

k=1

Ck,gt
k

)
= t

d

dt
log

(
∞∑

k=0

ak,gt
k

)

therefore
∞∑

k=1

ck,gt
k =

∑∞
k=1 kak,gt

k

∑∞
k=0 ak,gt

k
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which implies

lal,g =

l−1∑

n=0

an,gcl−n,g.

Now a0,g = 1 and so we can obtain the c’s recursively from the a’s and then
induction immediately implies that cl,g ∈ Z.

Proof of Lemma C4: We want to prove that if p is a prime number not
dividing k and l a positive integer, then

cplk,g ≡ cpl−1k,g mod pl.

We begin with two sublemmas:

Lemma 3.3. Let p be a prime, l a positive number, and x and y variables, then

(y + x)p
l ≡ (yp + xp)p

l−1

mod pl.

Proof: We use induction on l; the case l = 1 is well known. By induction, we
may assume that there exists α ∈ Z[x, y] such that

(y + x)p
l−1

= (yp + xp)p
l−2

+ αpl−1.

Thus

(y + x)p
l

=
(
(yp + xp)p

l−2

+ αpl−1
)p

= (yp + xp)p
l−1

+ terms divisible by pl

which proves the sublemma.

Lemma 3.4. Let 1 ≤ k ≤ l − 1 and let p be prime. Then pl−k divides
(
pl−1

k

)
.

Proof: Recall Legendre’s formula for vp(m!), the number of p’s in the prime
decomposition of m!:

vp(m!) =
m− Sp(m)

p− 1

where Sp(m) is the sum of the digits in the base p expansion of m.
Let (al−2, . . . , a0) and (bl−2, . . . , b0) be base p expansions of k and pl−1 − k

respectively, i.e.

k =
l−2∑

i=0

aip
i,

pl−1 − k =
l−2∑

i=0

bip
i.

Then

vp(

(
pl−1

k

)
) = vp(

pl−1!

k!(pl−1 − k)!
)

= vp(p
l−1!)− vp(k!)− vp((p

l−1 − k)!)

=
1

p− 1
((pl−1 − 1)− (k −

∑
ai)− (pl−1 − k −

∑
bi))

=
1

p− 1
(
∑

ai +
∑

bi − 1).
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Let n = vp(k) so that an is the first non-zero digit of k = (al−2, . . . , a0). Now
addition in base p gives (al−2, . . . a0)+ (bl−2, . . . , b0) = (1, 0, . . . , 0) so we have that
b0 = b1 = · · · = bn−1 = 0, bn = p − an, and bi = p − 1 − ai for n + 1 ≤ i ≤ l − 2.
Thus we see that

∑
ai +

∑
bi − 1 = (l − 1− n)(p− 1)

and so

vp(

(
pl−1

k

)
) = l − 1− n.

By the definition of n, k ≥ pn and so k ≥ n+ 1. Thus

vp(

(
pl−1

k

)
) = l− 1− n ≥ l − k

which proves the sublemma.
Now let a(t) =

∑∞
i=1 ai,gt

i so that Lemma C2 can be written

∞∑

i=1

ci,g
ti

i
= log(1 + a(t)).

Thus we have

cplk,g = plkCoefftplk{log(1 + a(t))}
cpl−1k,g = pl−1kCoefftplk{log(1 + a(tp))}

and so

cplk,g − cpl−1k,g = kCoefftplk

{
log

(
(1 + a(t))p

l

(1 + a(tp))pl−1

)}

= kCoefftplk

{
Q(t) +

Q2(t)

2
+
Q3(t)

3
+ . . .

}

where Q ∈ tZ[[t]] is defined by

(1 + a(t))p

1 + a(tp)
= 1−Q(t).

To prove Lemma C4 it suffices to prove that Q(t) ≡ 0 mod pl since then Q +
Q2/2 + Q3/3 + · · · ∈ Z(p)[[t]] and Q + Q2/2 + Q3/3 + · · · ≡ 0 mod pl which then

proves that cplk,g − cpl−1k,g ≡ 0 mod pl.
Thus we just need to show that

(1 + a(t))p
l ≡ (1 + a(tp))p

l−1

mod pl.

From Lemma 3.3 we have

(1 + a(t))p
l ≡ (1 + a(t)p)p

l−1

mod pl

≡ (1 + a(tp) + pf(t))p
l−1

mod pl

≡ (1 + a(tp))p
l−1

+

pl−1∑

k=1

(
pl−1

k

)
pkf(t)k(1 + a(tp))p

l−1−k mod pl.

By Lemma 3.4, pl divides all the terms in the sum and thus Lemma C4 is proved.
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4. The Grothendieck-Riemann-Roch calculation

In order to prove Theorem 1.12, we will apply the Grothendieck-Riemann-Roch

formula to the morphism π : U → M̃ of nonsingular stacks. The first step is to
compute the relative Todd class of the morphism π—that is:

Td(π) = Td(TU)/Td(π
∗(T

M̃
)).

As the singularities of the morphism π occur exactly at the nodes of the universal
curve (and the deformations of the 1-nodal map surject onto the versal deformation
space of the node), we may use a formula derived by D. Mumford for the relative
Todd class [15] (c.f. [6] Section 1.1).

Let S ⊂ U denote the (nonsingular) substack of nodes. S is of pure codimension
2. There is canonical double cover of S,

ι : Z → S

obtained by ordering the branches of the node. Z carries two natural line bundles:
the cotangent lines on the first and second branches. Let ψ+, ψ− denote the Chern
classes of these line bundles in H2(Z,Q). Let K = c1(ωπ) ∈ H2(U,Q). Mumford’s
formula is:

Td(π) =
K

eK − 1
+

1

2
ι∗

( ∞∑

l=1

B2l

(2l)!

ψ2l−1
+ + ψ2l−1

−

ψ+ + ψ−

)
.

Since U is a threefold and S is a curve, we find:

Td(π) = 1− K

2
+
K2

12
+

[S]

12
.(12)

Let γ0 + γ1 + γ2 ∈ H∗(M̃,Q) denote the cohomological π push-forward of Td(π).
The evaluations:

γ0 = −g − (d− 1)(g − 1), γ1 = π∗

(K2 + [S]

12

)
, γ2 = 0,(13)

follow from equation (12).
The Grothendieck-Riemann-Roch formula determines the Chern character of the

π push-forward:

ch(R•π∗f
∗(OC)) = π∗(ch(f

∗(OC)) · Td(π)).
The right side is just γ0 + γ1 + γ2. By GRR again,

ch(R•π∗f
∗(ωC)) = π∗(ch(f

∗(ωC)) · Td(π)).(14)

We may express the right side as

γ̃0 + γ̃1 + γ̃2 ∈ H∗(M̃,Q)

by the following formulas:

γ̃0 = g − 2− (d− 1)(g − 1), γ̃1 = π∗

(K2 + [S]

12
− K ·W

2

)
,(15)

γ̃2 = π∗

(K2 ·W + [S] ·W
12

)
.

These equations are obtained by simply expanding (14) where we use the notation:

W := f∗(c1(ωC)).
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The Chern characters of R•π∗f
∗(OC ⊕ ωC) determine the classes of the expres-

sion:

c(R•π∗f
∗(OC ⊕ ωC)[1]).

A direct calculation shows:
∫

M̃

c(R•π∗f
∗(OC ⊕ ωC)[1]) =

∫

M̃

γ̃2 +
γ21 + γ̃21

2
+ γ1γ̃1.(16)

Therefore, our next step is to compute the intersections of the γ and γ̃ classes in

H4(M̃,Q).

4.1. Sym2(C). Let Sym2(C) be the symmetric product of C. Sym2(C) is a non-
singular scheme. There is a canonical branch morphism

µ : M̃ → Sym2(C)

which associates the branch divisor to each point [f : D → C] ∈ M̃ (see [7]). The

degree of the morphism µ is Cd,g. We will relate the required intersections in M̃ to

the simpler intersection theory of Sym2(C).
Let L ∈ H2(Sym2(C),Q) denote the divisor class corresponding to the subvari-

ety:

Lp = {(p, q) | q ∈ C }.
Let ∆ denote the diagonal divisor class of Sym2(C). It is easy to compute the
products:

L2 = 1, L ·∆ = 2, ∆2 = 4− 4g

in Sym2(C).

4.2. R, S, and T . An analysis of the ramification of the universal map f : U → C

is required to relate the integrals (16) over M̃ to the intersection theory of Sym2(C).
Consider first the maps:

U
α→ M̃ × C

β→ M̃

where α = (π, f) and β is the projection onto the second factor. Let

R ⊂ U,

B ⊂ M̃ × C,

denote universal ramification and branch loci respectively. Certainly,

α∗([R]) = [B](17)

as the α restricts to a birational morphism from R to B. By the Riemann-Hurwitz
correspondence, we find:

K =W + [R] ∈ H2(U,Q).(18)

After taking the square of this equation and pushing forward via α, we find the
equation

α∗(K
2) = 2[B] · c1(ωC) + α∗([R]

2)(19)

holds on M̃ × C.
The term α∗([R]

2) in (19) may be determined by the following considerations.
The line bundle ω∗

π|R is naturally isomorphic to OU (R)|R at each point of R not
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contained in the locus of nodes S or the locus of double ramification points T . A
local calculation shows the coefficients of [S] and [T ] are 1 in the following equation:

[R]2 = −K · [R] + [S] + [T ].(20)

To compute the coefficient of [S] it suffices to study the local family U = xy−t ⊂ C3

with the map f = x + y. A direct calculation then yield the [S] term. For the
coefficient of [T ], we note ω∗

π is the π-vertical tangent bundle of U on T . Near T ,

R is a double cover of M̃ with simple ramification at T . Hence, the natural map
on R near T :

ω∗
π|R → OU (R)|R

has a zero of order 1 along T. The coefficient of [T ] in (20) is thus 1. We may
rewrite (20) using (18)

[R]2 =
−W · [R] + [S] + [T ]

2
,

which will be substituted in (19).
The final equation for α∗(K

2) using the above results is:

α∗(K
2) =

3

2
[B] · c1(ωC) + α∗

( [S] + [T ]

2

)
.(21)

Note the branch divisor B is simply the µ pull-back of the universal family

BS ⊂ Sym2(C)× C.

Let βS denote the projection of Sym2(C) × C to the first factor. Applying β∗ to
(21) and using the µ pull-back structure of B, we find:

π∗(K
2) = β∗α∗(K

2) = µ∗βS∗

(3
2
[BS ] · c1(ωC)) + π∗

( [S] + [T ]

2

)
.

A simple calculation in Sym2(C) × C then yields:

βS∗([BS ] · c1(ωC)) = (2g − 2)L,

We finally arrive at the central equation:

π∗(K
2) = µ∗

(3
2
(2g − 2)L

)
+ π∗

( [S] + [T ]

2

)
.(22)

Equation (22) will be used to transfer intersections on M̃ to Sym2(C).

4.3. Proof of Theorem 1.12. We will calculate all terms on the right side of
integral equation:

∫

M̃

c(R•π∗f
∗(OC ⊕ ωC)[1]) =

∫

M̃

γ̃2 +
γ21 + γ̃21

2
+ γ1γ̃1.(23)

Consider first the class γ̃2. By equation (15),
∫

M̃

γ̃2 =

∫

M̃

π∗(K
2 ·W ) + [S] ·W

12
.(24)

The first summand on the right may be computed from the relation:

π∗(K
2 ·W ) =

[S] ·W + [T ] ·W
2

.

The definition of the Hurwitz numbers D∗
d,g and D∗∗

d,g imply:

[S] ·W = D∗
d,g(2g − 2),
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[T ] ·W = D∗∗
d,g(2g − 2).

Using the above formulas, we find:
∫

M̃

γ̃2 =
g − 1

12

(
3D∗

d,g +D∗∗
d,g

)
.

For the quadratic terms involving γ1 and γ̃1 in equation (23), we will need to
compute several integrals. The first two integrals are:

∫

M̃

π∗([S])
2 = (4− 4g)D∗

g,d,

∫

M̃

π∗([T ])
2 =

4− 4g

3
D∗∗

g,d.

Both equations require a study of the local geometry of the morphism µ. As µ is
étale at the points of π(S), the self-intersection of the curve π(S) is simply ∆2 ·D∗

d,g.

As µ has double ramification at the points of π(T ), the self-intersection of the curve
π(T ) is one third of ∆2 ·D∗∗

d,g (see [10]). The integral :
∫

M̃

π∗(K
2)2 =

9

4
(2g − 2)2Dd,g + (5g − 5)D∗

d,g +
17g − 17

3
D∗∗

d,g.

then follows easily from (22).
Next, the integral

∫

M̃

π∗(K
2) · π∗([S]) = (4g − 4)D∗

g,d

follows from the intersection theory of Sym2(C) and the definition of the Hurwitz
numbers.

Finally, as π∗(K ·W ) = µ∗((2g − 2)L), the remaining integrals:
∫

M̃

π∗(K
2) · π∗(K ·W ) =

3

2
(2g − 2)2Dd,g + (2g − 2)(D∗

d,g +D∗∗
d,g),

∫

M̃

π∗([S]) · π∗(K ·W ) = (4g − 4)D∗
g,d,

∫

M̃

π∗(K ·W )2 = (2g − 2)2Dd,g,

are easily obtained.
The final formula for Theorem 1.12 is now obtained from the above integral

equations together with (13), (15), and (23):
∫

M̃

c(R•π∗f
∗(OC ⊕ ωC)[1]) =

g − 1

8

(
(g − 1)Dd,g −D∗

d,g −
1

27
D∗∗

d,g

)
.

Appendix A. Tables of numbers.

The tables in this appendix list the values of the invariants studied in the paper
in the first few cases:

(1) The étale BPS invariants nh
d(g)

ét (for small values of d, g, and h) as given by
Theorem 1.9.

(2) The full local BPS invariants nh
d(g) (again for small values of d, g, and h) in

the range where they are known as given by Equation 4 — question marks
where they are unknown.

(3) The various Hurwitz numbers that arise.
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nh
2 (g)

ét h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9
g = 2 −2 8 0 0 0 0 0 0 0 0
g = 3 −8 4 31 0 0 0 0 0 0 0
g = 4 −32 24 −6 128 0 0 0 0 0 0
g = 5 −128 128 −48 8 511 0 0 0 0 0
g = 6 −512 640 −320 80 −10 2048 0 0 0 0
g = 7 −2048 3072 −1920 640 −120 12 8191 0 0 0

nh
3 (g)

ét h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 −3 2 73 0 0 0 0 0
g = 3 −27 36 −18 4 2641 0 0 0
g = 4 −243 486 −405 180 −45 6 93913 0
g = 5 −2187 5832 −6804 4536 −1890 504 −84 8
g = 6 −19683 65610 −98415 87480 −51030 20412 −5670 1080
g = 7 −177147 708588 −1299078 1443420 −1082565 577368 −224532 64152

nh
4 (g)

ét h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 0 −60 30 1315 0 0 0 0
g = 3 0 0 −4032 4032 −1512 252 689311 0
g = 4 0 0 0 −261120 391680 −244800 81600 −15300
g = 5 0 0 0 0 −16760832 33521664 −29331456 14665728

nh
5 (g)

ét h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 −5 10 −7 2 −1935 + a5,2 0 0 0
g = 3 −125 500 −850 800 −455 160 −34 4
g = 4 −3125 18750 −50625 81250 −86250 63750 −33625 12750
g = 5 −78125 625000 −2312500 5250000 −8181250 9275000 −7910000 5175000

Table 1. The étale BPS invariants nh
d(g)

ét for small d, g, and h.

The Hurwitz numbers were computed from first principles and recursion when possi-
ble (see [3] for example), and by a naive computer program elsewhere. The Hurwitz
numbers that were beyond either of these methods are left as variables in the tables.
Note that by Lemma C2, the rational numbers Cd,g can be expressed in terms of
the integers ad,g; it is easy to write a computer program that computes the ad,g’s
(albeit slowly).

If the étale BPS invariants do indeed arise from corresponding component(s) in
the D-brane moduli space (see Remark 1.11) then the horizontal rows of the tables
for the étale invariants should be the coefficients of the sl2 ⊕ sl2 decomposition
of the cohomology of that space. So for example, the zeros in the beginning of
the nh

4 (g)
ét table suggest that this space factors off (cohomologically) a torus of

dimension 2g− 1 (as oppose to the torus factor of dimension g for the other cases).
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[1] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on
singular spaces, I (Luminy, 1981), pages 5–171. Soc. Math. France, Paris, 1982.



24 JIM BRYAN AND RAHUL PANDHARIPANDE

nh
2 (g) h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9
g = 2 −2 8 0 ? ? ? ? ? ? ?
g = 3 −8 4 31 8 ? ? ? ? ? ?
g = 4 −32 24 −6 128 96 ? ? ? ? ?
g = 5 −128 128 −48 8 511 768 ? ? ? ?
g = 6 −512 640 −320 80 −10 2048 5120 ? ? ?
g = 7 −2048 3072 −1920 640 −120 12 8191 30720 ? ?

nh
3 (g) h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 −3 2 73 5 ? ? ? ?
g = 3 −27 36 −18 4 2641 2800 ? ?
g = 4 −243 486 −405 180 −45 6 692352 278625
g = 5 −2187 5832 −6804 4536 −1890 504 −84 8
g = 6 −19683 65610 −98415 87480 −51030 20412 −5670 1080
g = 7 −177147 708588 −1299078 1443420 −1082565 577368 −224532 64152

nh
4 (g) h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 0 −60 30 ? ? ? ? ?
g = 3 0 0 −4032 3520 ? ? ? ?
g = 4 0 0 0 −261120 367104 ? ? ?
g = 5 0 0 0 0 −16760832 32735232 ? ?

nh
5 (g) h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
g = 2 −5 10 −7 2 −1935 + a5,2 ∗ ? ?
g = 3 −125 500 −850 800 −455 160 −34 4
g = 4 −3125 18750 −50625 81250 −86250 63750 −33625 12750
g = 5 −78125 625000 −2312500 5250000 −8181250 9275000 −7910000 5175000

Table 2. The local BPS invariants nh
d(g) for small d, g, and h.

Note: the value of ∗ in the above table is 1
8 (D5,2 −D∗

5,2 − 1
27D

∗∗
5,2).

[2] Jim Bryan. Evidence for a conjecture of Pandharipande, 2000. To appear in the proceedings
of the Gökava Geometry and Topology conference, arXiv:math.AG/0008036.

[3] Jim Bryan. Multiple cover formulas for Gromov-Witten invariants and BPS states, 2000.
To appear in Proceedings of “Algebraic Geometry and Integrable systems related to string
theory, RIMS.

[4] Jim Bryan, Sheldon Katz, and Naichung Conan Leung. Multiple covers and the integral-
ity conjecture for rational curves in Calabi-Yau threefolds. Preprint, math.AG/9911056, To
appear in Jour. of Alg. Geom.

[5] Jim Bryan and Naichung Conan Leung. The enumerative geometry of K3 surfaces and mod-
ular forms. J. Amer. Math. Soc., 13(2):371–410, 2000.

[6] C. Faber and R. Pandharipande. Hodge integrals and Gromov-Witten theory. Invent. Math.,
139(1):173–199, 2000.

[7] B. Fantechi and R. Pandharipande. Stable maps and branch divisors. Preprint:
math.AG/9905104.

[8] Rajesh Gopakumar and Cumrun Vafa. M-theory and topological strings–II, 1998. Preprint,
hep-th/9812127.

http://arxiv.org/abs/math/0008036
http://arxiv.org/abs/math/9911056
http://arxiv.org/abs/math/9905104
http://arxiv.org/abs/hep-th/9812127


BPS STATES OF CURVES IN CALABI-YAU 3-FOLDS 25

Cd,g g = 1 g = 2 g = 3 g = 4 g = 5 g = 6
d = 2 3/2 15/2 63/2 255/2 1023/2 4095/2
d = 3 4/3 220/3 7924/3 281740/3 10095844/3 362968060/3
d = 4 7/4 5275/4 2757307/4 a4,4 − 408421/4 a4,5 − 13985413/4 a4,6 − 492346021/4

Dd,g g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7
d = 2 2 8 32 128 512 2048 8192
d = 3 8 280 9688 343960 12334168 443574040 15964479448

D∗
d,g g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7

d = 2 2 8 32 128 512 2048 8192
d = 3 7 235 7987 281995 10096867 362972155 13062280147

D∗∗
d,g g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7

d = 2 0 0 0 0 0 0 0
d = 3 3 135 5103 185895 6711903 241805655 8706597903

Table 3. The Hurwitz numbers Cd,g, Dd,g, D
∗
d,g, and D∗∗

d,g for
small d and g.

[9] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Academic Press
Inc., San Diego, CA, fifth edition, 1996. CD-ROM version 1.0 for PC, MAC, and UNIX
computers.

[10] J. Harris and I. Morrison. Slopes of effective divisors on the moduli space of stable curves.
Invent. Math., 99(2):321–355, 1990.

[11] S. Hosono, M.-H. Saito, and A. Takahashi. In preparation.
[12] S. Hosono, M.-H. Saito, and A. Takahashi. Holomorphic anomaly equation and BPS state

counting of rational elliptic surface. Adv. Theor. Math. Phys., 3(1):177–208, 1999.
[13] Sheldon Katz, Albrecht Klemm, and Cumrun Vafa. M-theory, topological strings and spinning

black holes. Preprint: hep-th/9910181.
[14] Albrecht Klemm and Eric Zaslow. Local Mirror Symmetry at Higher Genus. IASSNS-HEP-

99-55.
[15] David Mumford. Towards an enumerative geometry of the moduli space of curves. In Arith-

metic and geometry, Vol. II, pages 271–328. Birkhäuser Boston, Boston, Mass., 1983.
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