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Entropy of constant curvature black holes in general relativity
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We consider the thermodynamic properties of the constant curvature black hole solution recently found by
Barados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the
spacetime using the Einstein-Hilbert action of general relativity. The entropy we obtain is not associated with
the event horizon; rather it is associated with the Killing horizon of static observers, which is tangent to the
event horizon. This unusual feature of the constant curvature black hole has not been seen in other black hole
spacetimes.S0556-282(198)00216-1

PACS numbegps): 04.70.Dy, 04.20.Ha, 04.70.Bw

It is generally believed that black holes have a fundamenvariables is obtained when the action of general relativity is
tal role to play in furthering our understanding of the quan-used[5]. We consider here CCBHs in the context of four-
tization of gravity. Indeed, a wide variety of spacetimes rep-dimensional general relativity, although our results may be
resenting black holes with unusual properties has beestraightforwardly generalized to any larger number of
discovered in the past decade as a consequence of an intafimensions.
sive study of the various approaches to quantum gravity. For definiteness, we consider the non-rotating CCBH
Further progress will necessarily entail a more thorough inspacetime. This spacetime has the line element
vestigation of the basic thermodynamics of the different spe-

cies of black holes. dsz_/4f2(r) [d6?—sirPa(dt /)2]+ dr? +r2dg?
A new type of black hole solution has been recently found T i f2(r)
by Barados[1]. This solution, which is one possible gener- (1)

alization of the(2+1)-dimensional black hol¢2] to higher

dimensions, represents a black hole in a spacetime with towith the metric function

oidal topology €3*x S') and constant curvature. The con-

stant curvature black hol€CBH) is an anti—de Sitter space- £2(r) =

time with identifications, and so it is a solution of any theory

that contains anti—de Sitter spacetines.

In this paper, we examine the thermodynamic propertieg—he quantityl’H is the circumferential radius of the “bolt” of

of the CCBH spacetime in general relativity. In general, athe event horizon, and’ is the length scale of the anti—de

given black hole solution can arise from a variety of theories Sitter spacetime curvature. The anglés periodic with pe-

and its thermodynamic properties are theory_dependent' |H0d 21, the coordinate SyStem is valid outside the black hole

order to understand the thermodynamic properties ofi-€., forr>ry) and for 0<¢<m. The details of the con-

CCBHSs, Bamdos considered the black hole to be a solutiorstruction of this spacetime from an ordinary anti—de Sitter

of a five-dimensional Chern-Simons supergravity theory. Inspacetime can be found in Rél]. Because this solution is

such a theory, the thermodynamic variables can be corinerely an anti—de Sitter spacetime with identifications, itis a

structed for a rotating solution, but the result is surprising:solution to the field equations arising from the Einstein-

the thermodynamic internal energy is associated with the arfdilbert action

gular momentum parameter of the solution while the thermo-

dynamic conjugate to the an_g_ular velocity is as_sociated with | = f L= ifM“e(R—ZA), 3)

the mass parameter. In addition, the entropy is found to be 16

proportional to the circumference of tiner horizon rather

than the outer horizon. Such phenomena also occur for theith a cosmological constant =—3//?. Here, L is the

(2+1)-dimensional black hole when the thermodynamicEinstein-Hilbert Lagrangian 4-fornfwith a cosmological

variables are computed from a Chern-Simons like adén  constantand “e is the volume form on the manifoll.

though a more conventional result for the thermodynamic The Lorentzian black hole spacetime is depicted in Fig. 1.
Notice that the foliation of the spacetime into leaves of con-
stant coordinate timeé is degenerate on the ax#s with 6

22
TH (2

IAn examination of all identifications in four dimensional anti—de
Sitter spacetime has been presented by Holst and ®P¢&athe
CCBH manifold described by Bados can be considered to be a 2The thermodynamics of other asymptotically anti—de Sitter black
submanifold of one of the solutions found in RE3]. holes with non-trivial spatial topology has been studied in R&f.
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FIG. 1. The Lorentzian CCBH spacetime. The two cones repre- F1G. 2. The Euclidean CCBH instanton. The azimuthal angle is
sent the future and past event horizons of the black hole, while théhe timer//" the polar angle i, and the radius is the proper radius
spacelike surfaceX, and 3, are surfaces of constant coordinate »=/dr/f(r) with p(r,,)=0. Each point represents a circle in the
time. The singularity within the event horizon is not shown. EachSuPpressed coordinai¢. The surfaceX is a surface of constant
point represents a circle in the suppressed coordigatEhe outer ~ time; its boundary consists of the quasilocal surfBcand the axis
boundaries ofS, and 3, are the quasilocal surfaces of constant A Of the sphere.
time and radius. The foliation is degenerate along the Axishich ) o ) )
is the bifurcation surface of the Killing horizon of the vector field Notice that the quantity in brackets is the line element of a
t2. The Killing horizon touches the event horizon along the thick WO sphere if 8< < 7 and 7 is periodic with period 2. If
dark lines in the middle of the Killing horizon. such an identification of the time is made, the Euclidean

manifold is regular and is depicted in Fig?2.
=0 and #=. Thus, in addition to the event horizons, there  The microcanonical action differs from the action of Eqg.
is a Killing horizon on which the Kiling vectort*  (3) by a boundary term on the histofly of the quasilocal
=(dlat) becomes nuff. It is an interesting feature of the surfaceB [8],
CCBH spacetime that the Killing horizon of static observers
of the black hole does not coincide with the event horizon of I micro=J mL— [rdtOq[ t]. (5

the black hole except along a particular surfausich is The boundary functional contains the Noether charge 2-

indi.cated. by _the thick dark lines in the_middle of the Killing form, q(t], associated with the covariance of the Lagrangian
horizon in Fig. 3. Note that along this surface the event under diffeomorphisms generated by the vedttor (5/at)2

hﬁnzotrr\] a;n? t?ﬁ Kllllntgthorlgon sharetha ge?eratc_)r. We V‘."'{%%:Il. On a two-dimensional submanifold with binormai®
show that, for these static observers, the entropy is associatgll /5 \ume elemente,,= & “e,p. 1%, the Noether charge

with the bifurcation surface of the Killing horizon. The ,_ o
guasilocal surfacé is taken to be a 2-surface of constant2 form is given by
time and radius =R>r,. 1

Let us begin our analysis of the properties of the CCBH qt]= 16m 2enV ,t, . (6)
with a calculation of the entropy. The entropy of a black hole

spacetime is equal to the value of the microcanonical actiofrhe microcanonical action can be evaluated on the Euclidean

of the Euclidean section of the spacetififé. In the case of manifold to yield the entropy. We follow the method of lyer
the CCBH, the Euclidean section is obtained by the Wickang wald[8] in computing the entropy. Because the space-

rotationt— r=it. The line element is time is stationary, we find
/4 (r dr? —Ad—
dSZZ - ( )[d02+5|n20(d7'//)2]+ : (r) +r2d¢>2. S AT[ fﬁEq[t]+IBq[t]]: (7)
H

(4 ~ With Ar=27/. From Fig. 2, itis clear tha. contains two
pieces: the quasilocal surfaBeand the axisA of the spheri-
cal instanton. Thus, the entropy only depends on the integral

3If a different static Killing vector had been chosen, there would
be some other axis along which the foliation into leaves of constant . S o ) .
coordinate time would become degenerate. We have assumed somel he period of identification satisfies the usual regularity condi-
arbitrary static Killing vector and chosen the coordin@tguch that  tion A 7=2mx/k with k=[ — %(Vatb)(Vatb)]1’2= 1// evaluated on
the axis ha®y=0 and 6= the Killing horizon.
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of the Noether charge 2-form over the aki®f the spherical My ‘

instanton. For a fixed time, the binormal # is n° §%= 167 7 T5R) [R?+/%f4(R)] (129
=2ul@m®! (evaluated on the axisvhereu? is the normal :

vector to the surface of constant time amd is the normal 1

vector to surfaces of constaft The Noether charge 2-form ShP= (12b)

is found to beq[t]=2€(87/) ! where 2¢ is the area ele- 87y

ment of the 2-surfac@. Integrating the Noether charge over ] N .

the boundaryA (which consists of both the portion wit for the quasilocal stress tensor. In addition, the inverse tem-

=0 and#=), we find that the entropy is peratureB(R) on the quasilocal boundary can be computed:
it is just the red-shifted period of identification of the Euclid-
S=m/?f(R) (8  ean time. We find
o2
wherer =R is the radius of the quasilocal surfaBeNotice _ 120 2w/ f(R)
. ) R)= R)|"Ar= —— . 13
that the entropy depends on the size of the quasilocal sur- B(RI=[gu(R)] T My sin 6 (13

face: this dependence occurs because the entropy is associ-
ated with the area of the cylindek which extends tor Notice that the temperature is not constant on the quasilocal
=R. surface. In particular, it diverges &=0 and 6=1. This is
We can also calculate the quasilocal thermodynamic varibecause the foliation becomes degenerate at these points.
ables in order to verify that the first law of thermodynamics The first law of thermodynamics is obtained by consider-
holds. The relevant quantities we need are the quasilocation of variations of the microcanonical action evaluated on
energy density and the surface stress tensor. These variablb® Euclidean manifold. As shown in Refg, 8],
are calculated using the definitions of Brown and Y[itR].
The quasilocal energy density derived from the Einstein- 6S=[7dOf57dp B[ 6E+S3P0yp]. (14
Hilbert action is given by
Because the quasilocal boundary is not an isotherm, the first
1 law of thermodynamics must be left in an integral form, i.e.,
&= 8 Jok. ©) the temperature cannot be factored out of the integral. Equa-
tion (14) can be explicitly verified using the quasilocal en-
Here, k is the trace of the extrinsic curvatuig, of the  ergy density of Eq(11), the quasilocal stress tensor of Eq.
quasilocal surfac® embedded in the spacelike surfake  (12), the temperature of Eq13) and the entropy of Eq8).
Kap=— oD N, WhereD, is the covariant derivative opera- Recall thato, is the metric on the quasilocal bounday
tor on’S, n? is the normal vector t® embedded irS, and The variations induced in the entropy, energy, and metric

o4 is the induced metric ofB. Similarly, the quasilocal 7ab are variations in both the constant of integratignand
surface stress tensor is the size of the quasilocal systdri Two unusual features of

the CCBH spacetime thermodynamics are the facts that the
1 entropy depends on the siieof the quasilocal system and
83=_——_ o[k~ o2°(k—n®a,)] (100 that the metric of the quasilocal boundary depends on the
16m constant of integration,,. Thus, under variations in the pa-
_a . . Lo . rameterr, alone, there is work done by the surface stress;
where a,=u®V,u, is the acceleration of the timelike unit similarly, a process involving a change in the size of the
normalu? to the surface®® embedded irT. In general, the quasiloc,al system alone is not adiabatic.
guasilocal energy density also has a contribution arising We have shown that it is possible to compute the thermo-
from an arbitrary background action functional; this contri- dynamic variables associated with the CCBH spacetime in
bution effectively provides a zero point for the energy in 832 1 gimensions as a solution to the theory of general rela-
reference spacetime. However, it is difficult to choose a refy i, 1 order to avoid the effects of the unusual asymptotic
erence spacetime for the CCBH because the intrinsic geonepayior of the spacetime, we have adopted quasilocal defi-
etry of the quasilocal surfac® depends on the constant of \ions of the thermodynamic variables. When the spacetime
integrationr . Fortunately, since thg first law of_thermody' is foliated into leaves associated with the timelike Killing
namics only depends on changes in the quasilocal energyector the Euclidean instanton has an unusual topology: the
the contribution from the reference spacetime is irrelevantjiation becomes degenerate on a cylinder that contains the
when analyzing the thermodynamics of the spacetime.  hifrcation circle of the event horizon. The entropy is asso-
The calculation of the quasilocal energy density and surgjated with the area of this cylinder, and it vanishes as the
face stress tensor is straightforward. From E§sand(10),  gyasilocal surface approaches the horizon. The entropy is
we obtain associated with the Killing horizon generated by the accel-
eration of static observers; such an entropy is also found for
[R%+/2%f4(R)] (11) accelerating observers in a Rindler yvedge of Mir)kow§ki
spacetime [11]. We should emphasize that, unlike in
Minkowski spacetime, a static observer is forced to see an
for the quasilocal energy density and acceleration horizon because of the black hole geometry. In

g:_

87TrH
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addition, the metric on the quasilocal boundary depends on We would like to thank Peter Peldaand Patrick Brady
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