
Using Announce-Listen with Global Eventsto Develop Distributed Control Systems*K. Mani Chandy, Adam Rifkin, and Eve SchoolerCaltech Department of Computer Science 256-80, Pasadena, CA 91125fmani,adam,schoolerg@cs.caltech.eduFebruary 6, 1998AbstractWe specify an abstract model for dynamic distributed control systems in which the component objectsmake local decisions based on system-wide constraints and approximate global state. We focus on the issueof distributed resource management, exploring a solution that is both compositional and scalable because itbuilds global events into the Java infrastructure by exploiting its multicast facilities.1 IntroductionA distributed control system consists of interacting component objects, each of which have persistent local stateand one or more threads of control. Abstractly, a simple speci�cation of a distributed control system consistsof the descriptions of several components: state, computation, events, and constraints .State. The state of a distributed system is de�ned in terms of its components. In our context, the componentsare the system's participating objects, as well as the communication infrastructure itself. The objects arepersistent, communicate with other objects, and have one or more local threads of control. Each object hasaccess to its own local state | the values of its variables, its pending inputs and outputs, and its threads ofcontrol. However, no object can directly access the local states of other objects, nor can it directly access theentire state of the distributed system itself.Computation. The computation of a distributed system speci�es the state of the components at a giventime. In control terms, we consider the computation to be the trajectory of the system's state.Events. A distributed system may receive inputs from its component objects or from the uncontrollableexternal environment. Likewise, its component objects may generate output that is directed either internallyor externally. Communications may have arbitrary delays.Constraints. A system's computation is determined both by its inputs and by the constraints of its objectivefunction, which determine its state transitions. An example of a constraint is that a high-priority request isalways serviced before a low-priority request for the same set of resources, if both requests are made at the sametime and place. An example of an objective function is to minimize the average response time for a request.*This work was supported under the Caltech Infospheres Project is sponsored by the Air Force O�ce of Scienti�c Research undergrant AFOSR F49620-94-1-0244, by the CISE directorate of the National Science Foundation under Problem Solving Environmentsgrant CCR-9527130, by the NSF Center for Research on Parallel Computation under Cooperative Agreement Number CCR-9120008, by a Microsoft Graduate Fellowship, and by Parasoft and Novell. More information about Infospheres is available athttp://www.infospheres.caltech.edu/ on the Web. 1

Design Challenges. Several aspects of distributed control systems make the problem of designing the controlchallenging:1. Because of their distributed nature, component objects do not have direct access to the state of the entiresystem, so they know neither the states of other objects, nor the status of communications in transit.2. New objects enter and leave the system dynamically, so an object may not know which other objects arein the system at any given point in a computation.3. Each object makes its own local decisions. By the constraints and objective function, however, we requirethe local decisions to result in an approximately optimal system-wide outcome.The distributed control model �ts a wide range of applications from
ight control of a
ock of uninhabitedautonomous vehicles to determining the proper scope for a multicast session-invitation application. The commonproblem is that each object has to make an autonomous decision based on old (and possibly partial) informationabout other parts of the system. In this paper, we restrict attention to resource management systems.2 Distributed Resource ManagementConsider the general problem of distributed resource management: consumers request resources from a �nitepool of providers.2.1 Problem Speci�cationSpecifying this problem involves choosing among several axes:� Consumers | collaborating (e.g., in metacomputing) or competing (e.g., for airline tickets).� Resources| indivisible tokens to represent individual resources (e.g., a particular time slot for scheduling)or slidebars to represent ranges of resource collections (e.g., a slice of bandwidth required).� Providers | collaborating (e.g., to piece together less expensive service packages) or competing (e.g., tokeep sensitive information hidden).An example of distributed resource management is arranging a ski trip. With the proper compositional structuresin a distributed vacation-control system, you might announce your requirements (for example, ski trip price, kindof slopes, and calibre of hotels) and have providers respond with competing proposals. An alternative approachinvolves middlemen objects that act on behalf of the consumers to search for service providers, putting togethercomplete packages by �ltering, aggregating, and collating information.2.2 Solution CategoriesSolutions to distributed resource management can be constructed along several axes:� State management | soft state (i.e., approximations or probabilities) or hard state (i.e., invariants).� Communication mechanisms | point-to-point casting (i.e, multiparty communication built on individualconnections), broadcasting, or multicasting (i.e., e�cient broadcast using announce groups).� Compositional structures | announcing, listening, or mediating (e.g., forwarding) requests and responses.In this paper, we investigate multicast algorithms for distributed resource management. We describe the conceptof soft state, and use it to build a consumer announce, provider listen model in which the consumers competefor resources (represented as tokens) from collaborating providers.2

3 A Framework for Distributed Resource ManagementAny distributed resource management algorithm requires the location, reservation, and scheduling of resources.Our algorithms to perform these tasks are based on soft state approaches | relying on approximate ratherthan absolute global snapshots. Each distributed object periodically announces its local state information andlistens for updates from other objects. In this section, we outline our messaging implementation, and describethe resource management components layered above it.3.1 Soft StateAn object estimates the current state of a distributed system based on information received earlier from otherobjects; thus the estimated soft state is based on old information. For instance, if an object B is listening ona multicast address at time t, then we may know with high probability that B will continue to listen for somemore time. If at time (t + t0), object A receives a message from B, timestamped t, stating that B is listening,then A has the \soft" information that B is listening at time (t + t0); and the state softness is quanti�ed interms of probability [4].By contrast, \hard" state is a property that follows from an invariant of the system. For instance, consider theinvariant: If variable x in object A has value 1, then variable y in object B has value greater than or equal to1. In this case, if x in object A has value 1, then object A \knows" that y in object B has value at least 1, andthis knowledge is hard [2].Whether soft state can be used depends on the nature of the problem, the relative frequency of announcementsto state changes, and the
exibility of constraints.3.2 Global EventsThe announce-listen paradigm is used at the messaging layer to assist in resource location, reservation, andscheduling. We have implemented this messaging facility in Java as global events.Java Beans provide local events as a mechanism by which a component informs other components that somethinginteresting has happened. These events can be thought of as active messages; for example, a button is pressed ata source, and channeled through an event listener, to trigger a method in an event observer automatically. Anevent propogates from an event source through an event noti�er to one or more event observers that respondto the events as they arrive. The noti�er routes the event to the observers using a control list, and observerscan ask the noti�er to be added or removed from this list without notifying the event source.Our global event structuring mechanism is identical to the local event model of Java Beans, except that insteadof Java Beans' referencing an object within a single Java Virtual Machine, we use a global name for the object,employing the Web's URL convention. Furthermore, because the components of the global event system aredistributed, multicast can be used for e�cient group communication, instead of Java Beans' local event point-to-point casting.Using global events, an event is announced by a source object in one virtual machine, and noti�ers for thatevent in other virtual machines anywhere on the Internet listen for the event and forward it to the appropriate(distributed) observers. Unlike the group communication in virtual synchrony [1], it is not necessary for theevent sources to know at any point who the event observers will be. Our global event model is useful not only todistribute events and the objects that use them, but also to compose event noti�ers, to �lter using predicates,and to provide security using access control lists at the event noti�er level.There are several advantages to using global events and soft state. The announce-listen paradigm is fault-resilient[7]; that is, if a resource provider goes away, the system adapts dynamically to continue to meet the requestsof the consumers. Furthermore, systems constructed using global events and multicast are compositional andscale; providers and consumers can add or remove themselves at any point dynamically. Unfortunately, suchsystems also have the potential for oscillation; that is, if state changes faster than the communication updates,then soft state may give a bad estimate of the current system state. We are currently exploring the tradeo�sthrough simulation and implementation. 3

3.3 An Algorithm for Consumer Announce, Provider ListenConsumers use global events to announce their requests for resources to providers, including estimates of howlong they will need those resources. Multicast allows us to limit the scope of announcements, as illustrated in�gure 1. Additionally, multicast is useful for progressively searching regions with wider scopes.
X

consumer

scope

providers within scope

(the only providers who can listen)

Figure 1: Only providers within the scope of the consumer announcements can hear the announced events.When a listening provider can give a partial or total basket of tokens ful�lling a given request, it uses global eventsto announce to the other providers what tokens it can commit to that consumer. Since providers collaborateto satisfy each consumer's request, the listening providers can ante up additional resources (or keep from doingso) based on previous information announced by providers and consumers.As illustrated in �gure 2, multicast provides a scalable bus abstraction that allows any number of objectsto participate in group communications; however, unlike virtual synchrony [1], multicast does not guaranteereliable delivery. Not all listening providers will receive all consumers' requests, but consumers can increaseannouncement scopes if they receive no viable responses to their requests.
Bus

dropped multicast
messages

group communication
participants

Figure 2: Multicast provides a scalable bus abstraction, but messages are not guaranteed reliable delivery.Deadlock Avoidance. This algorithm could present a problem if middlemen are used, because deadlock mayoccur if no consumer obtains all of the resources it needs. To solve this problem, we stipulate that consumersmust give up a provider's tokens, if asked by that provider, even if all of the requested tokens have not beenreceived yet. This scheme works using global priorities: the priority of a request event is based on the localtimestamp of that request, given by the requestor's local logical clock, with ties broken by the alphabeticcomparison of requestors' globally unique names. Global priorities represent the use of an invariant in analgorithm. We can assert that if a request R has a higher priority than another request R0 at one global object,then R has a higher priority than R0 at all global objects. All objects share \common knowledge" about theglobal priorities because they listen on the same multicast bus. The combination of soft state messaging withhard state invariants results in an algorithm that scales but is free from deadlock.Oscillation Avoidance. Using global priorities, a provider demands tokens back from its lowest priorityrequestor, who must then return them. Because requests and responses are shared among all participants(consumers, providers, or even middlemen) on the multicast bus, providers are able to make good estimates ofwhich consumers need which resources, and thereby avoid \oscillation" of requests for and returns of tokens.Here, system components use soft state to approximate the true current state of the system, which works well,provided the system state does not change rapidly compared with announcement frequency.Location Services. Because our architecture is based on multicast, introducing and removing system com-ponents is a simple operation. For example, a new consumer can easily locate middlemen and providers afterobtaining a small set of multicast addresses on which to announce requests and to listen for responses. Theresult is an automatically-con�gurable directory infrastructure for locating objects and resources. To prune thesearch space, announce-listen is also used to disseminate and to cache information closer to requestors.4

Flexible scoping is used to make our location algorithms more e�cient. When a consumer requests resources,listening providers can announce back the rough estimates of when their resources will be available. As illustratedin �gure 3, a consumer that does not want to wait then either increases its scope and re-announces its request,or sends its request to proxying agents outside the scope that announce the request elsewhere.
X

scope 1

scope 2

X

X
scope 1

Los Angeles

Pasadena

Pasadena

Santa Barbara

RPC
scope 2

Figure 3: To continue a search, a consumer increases its scope or uses a proxy to search in another scope.Reservation and Scheduling. Providers employ a calendar metaphor with time slots for arranging the usageschedules of their resources. Each slot for each resource is in one of three states: available for use by a consumer,reserved for a particular consumer but not yet locked, or scheduled. Each slot has an associated access list thatkeeps track of which consumers can obtain that lock.The reservation of a set of resources is determined when all of the resource managers agree to lock the slotsthat correspond to the same time. Consumers use a two-phase commit protocol to reserve and then to scheduledesired resources atomically [5, 6]. The action beginning with resource-request initiation and ending withresource-reservation commitment corresponds functionally to an Infosphere session [3].4 Status and Future WorkThe overall goal of any distributed resource management system is the e�cient matching of resource providersand requestors. The Infospheres Infrastructure 2.0 includes several packages to assist with this task. In thispaper, we have focused on building global events into Java, and exploiting its multicast facilities, to developdistributed control announce-listen algorithms that are both scalable and fault-tolerant. Presently, we areinvestigating the tradeo�s between soft state and hard invariants, between pushing and pulling resource requestsand responses, and between a hierarchy of middlemen and a
at requestor-provider structure.References[1] K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE ComputerSociety Press, Los Alamitos, California, 1994.[2] K. M. Chandy and J. Misra, `How Processes Learn', Journal of Distributed Computing, Volume 1, Number1, Pages 40{52, 1986.[3] K. M. Chandy and A. Rifkin, `Systematic Composition of Objects in Distributed Internet Applications:Processes and Sessions', Computer Journal, Oxford University Press, October 1997.[4] K. M. Chandy and E. M. Schooler, `Designing Directories in Distributed Systems: A Systematic Frame-work', Proceedings of the Fifth IEEE International Symposium on High Performance Distributed Comput-ing, Pages 318{328, Syracuse, New York, August 1996.[5] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993.[6] R. Ramamoorthi, A. Rifkin, B. Dimitrov, and K. M. Chandy, `A General Resource Reservation Frameworkfor Scienti�c Computing', Proceedings of the First International Scienti�c Computing in Object-OrientedParallel Environments (ISCOPE) Conference, Volume 1343 of Springer-Verlag's Lecture Notes in ComputerScience, Pages 283{290, Marina del Rey, California, December 1997.[7] E. M. Schooler, `A Multicast User Directory Service for Synchronous Rendezvous', Technical Report CS-TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California, 1996.5

