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Abstract

We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting
planet with a period of 9.29 days, a radius of 2.2 R⊕, and an upper limit on the mass of 20M⊕. The presence of a
second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters
of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs
measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N
spectrograph, using dynamical simulations we obtained a mass of 8.4±1.6M⊕ for Kepler-19b. From the same
data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1±2.7M⊕ for
Kepler-19c and discovered a Neptune-like planet with a mass of 20.3±3.4M⊕ on a 63-day orbit. By comparing
dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between
planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set
spans several years. With a density of 4.32±0.87 g cm−3 (0.78±0.16 ρ⊕) Kepler-19b belongs to the group of
planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized
only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins
the small number of systems that reconcile transit timing variation and radial velocity measurements.

Key words: planetary systems – planets and satellites: composition –

planets and satellites: dynamical evolution and stability – stars: individual (Kepler-19) –
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1. Introduction

After the discovery of thousands of planets with radii smaller
than 2.7 R⊕ from the NASA Kepler mission (Borucki
et al. 2011; Coughlin et al. 2016), a consistent effort has been
devoted to understanding the formation scenario and chemical
composition of such planets (e.g., Weiss & Marcy 2014;
Dressing et al. 2015 and Wolfgang & Lopez 2015). To
distinguish between a rocky composition and the presence of a
thick envelope of water or volatile elements, the radius derived

from the transit depth must be coupled with a precise mass
determination (better than 20%), either from radial velocity (RV)
measurements or transit timing variations (TTVs). Planets that
have been characterized with such a level of precision appear to
fall into two populations: one following an Earth-like
composition and a second one with planets larger than 2 Earth
radii, requiring a significant fraction of volatiles (e.g.,
Rogers 2015; Gettel et al. 2016 and López-Morales
et al. 2016). Recently, improved mass and radius determinations
of known planets have uncovered the existence of super-Earths
that fall between these two populations, such as 55 Cancri e
(Demory et al. 2016) and Kepler-20b (Buchhave et al. 2016).
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We need more planets in that mass regime with precise mass
and radius measurements to understand the undergoing physics.
For this reason we carried out an RV follow-up of Kepler-19b
(hereafter K19b), a planet with a period of 9.287 days and a
radius of 2.209±0.048 R⊕, orbiting a relatively bright
(V=12.1, K=11.9) solar-type star (Teff=5541±60K,

glog 4.59 0.10=  , [Fe/H]=−0.13±0.06). The planet
was detected by Borucki et al. 2011 and subsequently validated
by Ballard et al. (2011, hereafter B11) using adaptive optics and
speckle imaging to exclude a secondary source in the Kepler
light curve, Spitzer observations to verify the achromaticity of
the transit and Keck-HIRES high-resolution spectroscopy to rule
out the presence of massive, non-planetary perturbers. From
BLENDER analysis (Torres et al. 2011) the probability of a false-
positive scenario was constrained to less than 1.5×10−4. RVs
measured on high-resolution spectra were consistent with a mass
of 1.5M⊕ (0.5 m s−1) and an activity-induced RV jitter of
4 m s−1, but ultimately they lacked the required precision for a
robust determination of the planetary mass, and only an upper
limit of 20.3M⊕ was set. The existence of an additional planet,
Kepler-19c (hereafter K19c), with a period 160 days and mass
6Mjup, and further confirmation of the planetary nature of
K19b, were inferred by B11 from the presence of TTVs on eight
quarters of the K19b light curve.

In this paper we couple high-precision RV measurements
obtained with HARPS-N with updated measurements of transit
times (T0) encompassing all 17 quarters of Kepler data to
determine the orbital parameters of K19b, K19c, and a third,
previously unknown planet in the system, Kepler-19d (here-
after K19d). TTV and RV data sets are analyzed independently,
to understand which constraints they can provide to the
characterization of the system. Subsequently, a simultaneous
TTV and RV fit is performed using dynamical simulations to
take into account gravitational interactions between planets.
We perform this analysis under the assumption of coplanarity
between planets and then investigate the effect of different
mutual inclinations on the goodness of the fit. We confirm that
only the inner planet is seen transiting the host star. A
comparison between the RV obtained from dynamical simula-
tions and that when assuming non-interacting planets is
performed. We conclude by describing the role of K19b in
understanding the bulk densities of small planets.

2. Radial Velocities

We collected 101 spectra using HARPS-N at the Telescopio
Nazionale Galileo, in La Palma. The observations spanned over
two years, from 2012 June to 2014 November, overlapping the
Kepler observations during the first year. Every observation
consisted of a 30 minute exposure, with a median signal-to-
noise ratio of 37 at 550 nm, corresponding to a RV nominal
error of 2.8 m s−1. Given the faintness of the target,

observations were gathered with the objAB setting, i.e., the
second fiber (fiber B) was observing the sky instead of
acquiring a simultaneous thorium–argon (ThAr) lamp spec-
trum. Several observations demonstrated that the stability of the
instrument over 24hr is within 1 m s−1 (e.g., Cosentino
et al. 2014), thus the precision of the measurements was
dictated largely by photon noise. Data were reduced using the
standard data reduction software (DRS) using a G8 flux
template (the closest available one to the spectral type of the
target) to correct for variations in the flux distribution as a
function of the wavelength, and a G2 binary mask was used to
perform the cross-correlation (Baranne et al. 1996; Pepe et al.
2002). The resulting RV data, with their formal 1-σ
uncertainties, the FWHM of the cross-correlation function
(CCF) and its contrast (i.e., the depth normalized to the
continuum), the bisector inverse span (BIS), and the Rlog HK¢
activity index, are listed in Table 1.

2.1. Effect of Moon Illumination

A simple procedure was adopted to check the influence of the
moon illumination on the science fiber (labeled as fiber A).
First, the cross-correlation function of the sky spectrum
acquired with fiber B, CCFB, was recomputed18 using the same
flux correction coefficients as those for the target (CCFA) for
that specific acquisition. Then, CCFB was subtracted to the
corresponding CCFA and radial velocities were computed again
using the script from Figueira et al. (2013), which uses the same
algorithm implemented in the DRS. For 10 observations the
difference between the sky-corrected RV and the DRS RV was
greater than twice the photon noise, so we rejected those
observations, and used the remaining 91 RVs from the DRS in
the following analysis. A flag has been included in Table 1 to
identify the rejected observations.
While the rejected observations have in common a fraction

of the illuminated Moon greater than 0.9 and a barycentric RV
correction within 15 km s−1 from the absolute RV of the target
star, not all the observations that met this criterion were
affected by the sky contamination, suggesting that other
unidentified factors can determine whether or not contamina-
tion is negligible. An in-depth analysis of the outcome of the
observations is thus advised when measuring RVs for faint
stars.

3. Kepler Photometry

Kepler-19 was initially observed in long-cadence (LC) mode
during quarters 0–2, and then in short-cadence (SC) mode from
quarter 3 until the end of the mission in 2013 (at quarter 17). At

Table 1
HARPS-N Radial Velocities and Ancillary Measurements of Kepler-19

BJDUTC RV σRV FWHM Contrast BIS Rlog HK¢ logRHK
s ¢ Moon flag

(days) (m s−1) (m s−1) (km s−1) (m s−1) (dex) (dex)

2456100.608 −10608.31 2.31 6.745 48.83 −41.90 −4.975 0.039 0
2456100.629 −10610.99 2.09 6.735 48.91 −40.73 −5.039 0.031 0
2456101.606 −10613.07 3.56 6.732 48.70 −55.78 −4.961 0.060 0

Note. This table presents the epoch of the observations, the RV with associated noise, the FWHM and contrast of the CCF, the inverse bisector span, the Rlog HK¢
activity index with the associated error, and a flag indicating if the data have been contaminated by the Moon (1) or not (0); see Section 2.1.

18 When using the objAB setting, CCFB is computed by the DRS without flux
correction by default.
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the time of publication, B11 had at their disposal only the first 8
quarters. In an effort to make use of any additional information
coming from Kepler photometry, we redetermined the transit
times for all the quarters now available, in both LC and SC
light curves. Quarters already analyzed by B11 were examined
as well, to validate our T0 determination and to provide a
homogeneous set of measurements.

Transit identification was performed by propagating the
linear ephemeris of B11, with the inclusion of 3hr of pre-
ingress and post-egress around the expected transit time.

For each transit time, we first detrended the transit light
curve with a polynomial between the 1st and 10th degrees, with
the best-fit degree chosen according to the Bayesian informa-
tion criterion (BIC). Then, we determined a new T0 guess with
an automatic selection among different search algorithms,19

fitting the Mandel & Agol (2002) transit model, implemented
in PyTransit20 (Parviainen 2015), fixing all other para-
meters to the literature value. Finally, the T0s were refined
using the JKTEBOP program (Southworth et al. 2004) and the
associated errors were determined with a classical bootstrap
approach.

Transit times from LC and SC light curves were matched
together, keeping the SC measurements when available. Transit
times are reported in Table 2. A comparison with B11
measurements of the observed minus predicted time of transit
(O−C), using their linear ephemeris for both data sets, is
shown in Figure 1. The scatter of the residuals, well within the
error bars, shows that the methodologies are perfectly
consistent, i.e., that we are limited by photon noise, data
sampling, and/or unknown systematics rather than the exact
procedure followed to measure the transit times.

Due to an error in the Kepler archiving system, at the time of
B11’s publication the time stamps of all the Kepler light curves
were reported in the Coordinated universal Time system (UTC)
instead of the Barycentric Dynamical Time system (TDB).21

While this error was did not affect the internal consistency of
the B11 analysis, it must be taken into account when
comparing time series with timing accuracy better than a few
minutes. We corrected for this error before comparing B11 data
with our new T0 measurements.

4. Physical Parameters

Atmospheric stellar parameters of Kepler-19 were deter-
mined in B11 using Spectroscopy Made Easy (SME, Valenti &
Fischer 2005). Since this method may suffer from correlation
between derived parameters (Torres et al. 2012), and since we

have several high-resolution spectra from HARPS-N at our
disposal, we decided to carry out an independent determination
with an alternative approach, i.e., equivalent width measure-
ments of individual spectral lines instead of fitting of the whole
spectrum. We used all the spectra free from sky contamination
to obtain a coadded spectrum with an average S/N of 350.
Stellar atmospheric parameters were determined using the

classical line-of-growth approach. For this purpose we used the
2014 version of the line analysis and synthetic code MOOG22

(Sneden 1973), which works under the assumption of local
thermodynamic equilibrium, and we used the ATLAS9 grid of
stellar atmosphere models from Castelli & Kurucz (2004), with
the new opacity distribution functions and no convective
overshooting. Equivalent width measurements were carried out
with the code ARESv223 (Sousa et al. 2015) coupled with the
updated linelist of Malavolta et al. (2016), where the oscillator
strength of the atomic lines has been modified to correctly take
into account the chemical abundances from Asplund
et al. (2009).
Temperature and microturbulent velocity were determined

by minimizing the trend of iron abundances from individual
lines with respect to excitation potential and reduced equivalent
width, respectively, while the gravity glog was adjusted by
imposing the same average abundance from neutral and ionized
iron lines. For a detailed description of the procedure for the
atmospheric parameters and associated errors we refer the
reader to Dumusque et al. (2014). The derived atmospheric
parameters are summarized in Table 3.
Our stellar atmospheric parameters agree within the

uncertainties with the ones determined by B11, including the
surface gravity that is usually the parameter most difficult to
derive, and there is only a difference of 3 K in Teff despite the
use of two complementary approaches and independent data
sets. For this reason we adopted their determination for the
mass and radius of the star and the physical radius of K19b
based on light curve analysis.

5. Stellar Activity

Considerable effort has recently been devoted to analyzing
the effect of stellar activity on RV measurements and T0
determination (Mazeh et al. 2015; Ioannidis et al. 2016). The
HARPS-N DRS automatically delivers several diagnostics for
activity such as the FWHM of the CCF, the bisector inverse
span, and the Rlog HK¢ index, while several other chromospheric
indexes such as the Hα index (Gomes da Silva et al. 2011;
Robertson et al. 2013) can be determined from the spectra
themselves.24 In Figure 2 analyses of BIS and Rlog HK¢ are
reported as representative of all the indexes. For each index we
checked the presence of any correlation with time, either by
visual inspection (upper panels of Figure 2) or with the
Generalized Lomb–Scargle (GLS) periodogram (Zechmeister
& Kürster 2009), where the 1% and 0.1% false alarm
probabilities (FAPs) have been computed with a bootstrap
approach (middle panels of Figure 2). Finally, the presence of
any correlation with RVs was verified by calculating the
Spearman rank correlation coefficient ρ, the slope of the
linear fit m with its error, and the p-value using the weighted

Table 2
Transit Times of Kepler-19 from Q0-Q17

Transit Number T0 (BJDUTC) T0s (days)

0 2454959.7074 0.0014
1 2454968.9935 0.0023
2 2454978.2801 0.0020

19 Levenberg–Marquardt (Moré et al. 1980), Nelder-Mead (Nelder &
Mead 1965; Wright 1996), COBYLA (Powell 1994) as implemented in
scipy.optimize, and the Affine Invariant Markov Chain Monte Carlo
(MCMC) Ensemble sampler implemented in emcee (Foreman-Mackey
et al. 2013), which is available at https://github.com/dfm/emcee.
20 Available at https://github.com/hpparvi/PyTransit.
21 http://archive.stsci.edu/kepler/timing_error.html

22 Available at http://www.as.utexas.edu/~chris/moog.html.
23 Available at http://www.astro.up.pt/~sousasag/ares/.
24 The code to retrieve the activity indexes is available at https://github.com/
LucaMalavolta/.
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least-square regression25 (lower panels of Figure 2). We
omitted the FWHM from the analysis since a few changes to
the spectrograph focus during the first year of observations
modified the instrumental profile, and hence the measured
FWHM (however, the measured RVs were unaffected.

The absence of significant peaks in the periodogram of the
indexes under analysis around the expected rotational periods
of 32 days (from B11 following Noyes et al. 1984),
34±6 days, and 36±3 days (from HARPS-N Rlog HK¢ ,
following Noyes et al. 1984 and Mamajek & Hillenbrand 2008,
respectively), and the lack of statistically significant correla-
tions between the indexes and RVs, confirmed the low activity
level of the star that was already deduced by B11, and is
consistent with Rlog HK¢ =−5.00±0.04.26

We also searched for stellar variability on the most recent
Kepler Pre-search Data Conditioning (PDC) light curve, which
presents several improvements that correct instrumental trends
(and thus is better suited to search for activity modulation) with
respect to the light curve available at the time of B11’s
publication. Most of the time the star is photometrically quiet,
while in some parts of the light curve a clear signal, likely due
to stellar activity, is detected. We applied the autocorrelation
function technique over these portions of light curve and we
estimated a rotational period of 30 days. This signal is
characterized by a short timescale of decay (a few rotational
periods) and a rapid loss in coherence. We comment on the
impact on the RV in Section 7.

6. TTV Analysis

Dynamical analysis of the system was performed with
TRADES27 (TRAnsits and Dynamics of Exoplanetary Systems,
Borsato et al. 2014), an N-body integrator with the capability of
fitting RVs and T0s simultaneously to determine the orbital
parameters of the system through χ2 minimization.
Since only the innermost planet is transiting, it is extremely

difficult to constrain the orbital parameters of all the planets in
the system by TTV alone. In fact, attempts to fit the T0s with a
two-planet model resulted in a strong degeneracy between the
mass and the period of the second planet, i.e., O–C diagrams
with similar shapes could be produced by jointly increasing the
mass and the period of K19c. The amplitude and shape of the
T0s, however, can still give us upper limits on the mass and
period of the non-transiting planet if we compare the outcome
of the dynamical simulations with the maximum mass
compatible with the observed semi-amplitude of the RVs.
We proceeded as follows. We used TRADES to perform a fit

of the T0s by assuming a two-planet model and fixing the mass
of K19b to a grid of values between 2.5 and 20M⊕ and a
spacing of 2.5M⊕, with its period already measured from the
Kepler observations. To each point on this grid we assigned
several values for the mass of K19c randomly selected between
5 and 250M⊕. For each combination of K19b and K19c
masses, the other orbital parameters of the system were left free
to vary and their best-fitting values were determined by χ2

minimization through the Levenberg–Marquardt algorithm. We
discarded those solutions with at least one planet having an
eccentricity greater than 0.3, assuming that interacting planets
meeting this condition are likely to be unstable.
In Figure 3 we show the results obtained for the mass of

K19c as a function of its period. The expected RV semi-
amplitudes of K19c as a function of mass and period are
superimposed. We note that many of the orbital configurations
reported in the plot could be unstable, since dynamical stability
was not yet checked at this stage (stability analysis is
introduced in Section 8). We can attempt to estimate a lower
limit to the periods and masses of the non-transiting planets
according to the observed semi-amplitudes of the RVs by
taking advantage of the correlation between the mass and
period of K19c. Our RVs have a peak-to-peak variation of
23 m s−1, so if we take into account the additional signal of
K19b (a few m s−1 in the case of a Neptune-like density), K19c
amplitude should necessarily lie below the K=10 m s−1 line.
This fact suggests that a short period (50 days) for K19c
should be expected, while nothing can be said regarding K19b

Figure 1. Difference between the observed and the predicted (from the linear
ephemeris) times of transit for K19b. In red are the measurements from Ballard
et al. (2011), and in black are our new measurements for all the Kepler quarters.
In the lower plot the difference between the two measurements is shown for the
data points in common, with the error bars obtained by summing in quadrature
the errors from the two estimates. The small scatter of the residuals with respect
to the size of the error bars demonstrates that we are not influenced by the exact
methodology used to measure the T0s.

Table 3
Astrophysical Parameters of the Star

Parameter B11 This Work

Teff (K) 5541±60 5544±20
glog 4.59±0.10 4.51±0.03

ξt (km s−1) L 0.88±0.05
[Fe/H] −0.13±0.06 −0.08±0.02
Må (Me) 0.936±0.040 L
Rå (Re) 0.859±0.018 L
Age (Gyr) 1.9±1.7 L

Rlog HK¢ −4.95±0.05 −5.00±0.04

25 StatsModels is available at http://statsmodels.sourceforge.net/.
26 Note, however, that this value could be affected by interstellar medium
absorption and could be higher than measured (Fossati et al. 2017). 27 TRADES is available at https://github.com/lucaborsato/trades.

4

The Astronomical Journal, 153:224 (14pp), 2017 May Malavolta et al.

http://statsmodels.sourceforge.net/
https://github.com/lucaborsato/trades


from TTV alone. We remind the reader that this analysis cannot
be considered conclusive due to the reduced number of points
and their scatter around the best linear fit.

7. RV Analysis

While only one planet is transiting Kepler-19, the presence
of at least one additional planet was inferred by the presence of
TTVs. To reveal such planets, we first performed a frequentist
analysis on the RV data set by computing the GLS period-
ogram and iterating over the residuals until no significant
periodicity was present. This analysis revealed two signals at
28.6 and 62.3 days with FAPs lower than 1%, while the signal
corresponding to K19b at 9.3 days was barely detected
(Figure 4).

The signal at 28 days is very close to the second-order 3:1
mean motion resonance (MMR), which is among the possible
configurations listed by B11 as the cause of the TTVs of K19b.
While the FAP of this signal is below the traditional threshold
for RV planet detection claims (;10−3), we can compare it
with the probability of observing K19c near another MMR
resonance. In order to do so, we scrambled once again the RV
observations and calculated the fraction of periodograms that
had a stronger peak with respect to the untouched data set, in a
frequency range of 5% around the interior and exterior 1:2, 2:3,

and 3:4 first-order resonances; the 1:3 and 3:5 second-order
resonances; and the 1:4 and 1:5 higher-order resonances. The
FAP of the signal at 28 days computed in this way decreases to
8×10−4, i.e., it is unlikely that the signal at 28 days is a
spurious signal caused by a planet in another MMR
configuration.
The signal at ;28.6 days is consistent with the rotational

period of the star obtained from the active regions on the
Kepler light curve, which, however, have the characteristic of
rapidly decaying and reappearing later at different phases and
intensities. We checked if the RV signal had the same
properties by performing a jacknife analysis by splitting the
RV data set into two parts (at BJD=2456700 days) and
determining the phase and amplitude of the signal in each data
set.28 We obtained K=2.6±1.1 m s−1, f=3.0±0.3 rad
for the first half of the data set, and K=3.0±0.6 m s−1,
f=2.8±0.2 rad for the second half, i.e., the signal is stable
over several years, and therefore unlikely to be due to stellar
activity. As an additional check, we computed the stacked
Bayesian Generalized Lomb–Scargle (BGLS) periodogram
(Mortier & Collier Cameron 2017). The S/N is increasing
with the square of the number of observations, as expected for a

Figure 2. The bisector inverse span (left panels) and the Rlog HK¢ index (right panels) are shown as an example of the analysis conducted on CCF asymmetry and
activity indexes. Upper panels: indexes as a function of time; the seasonal medians for the first and third quartiles are indicated in red. Middle panels: GLS
periodograms of the indexes; the rotational period of the star is indicated with a red vertical line. The 1% and 0.1% FAP levels are displayed as dashed and dotted
horizontal lines, respectively. Lower panels: indicators as a function of RV. The best fit is represented by the dashed red line.

28 We imposed as a prior the period P=28.57±0.02 days to compensate for
the scarcity and poor sampling of the split data sets.
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coherent (planetary) signal, although the plot is heavily affected
by the poor sampling and the signal of K19b near the 3:1
MMR, as we verified by performing the same analysis on
synthetic data sets with the same temporal sampling. The
absence of RV modulation due to stellar activity is supported
by the analysis performed in Section 5, where no periodicity or
correlation with RVs is seen for any of the activity indexes.

The semi-amplitudes of these signals, however, cannot be
inferred by the frequentist analysis alone, since an offset in RV
between the data taken before and after 2012 September may
exist due to the failure of the first CCD of HARPS-N (see
Bonomo et al. 2014). The value of this offset cannot be
determined a priori, even when observations of RV standard
stars are available, since it may depend primarily on the
spectral type of the star (i.e., the two CCDs may have a
different efficiency as a function of wavelength). Introducing
an RV offset as a free parameter is a common procedure for
non-overlapping data sets, e.g., see Benatti et al. (2016).
We then performed a tentative fit using the MCMC code

PyORBIT29 (Malavolta et al. 2016), allowing for two different
systemic velocity γ of the star and using a three-planet model to
fit the data. We attempted two different fits with both circular
and Keplerian orbits. For planets c and d we set uniform priors
in the ranges of [10, 50] days and [50, 90] days, respectively,
while the other parameters were left to vary within their
physically meaningful range (e.g., positive-definite RV semi-
amplitude). The results are shown in Table 4.
The eccentricities and arguments of pericenter for each of the

three planets are poorly constrained by the RVs alone, thus
affecting the precision on mass of the presumed planets. A
combined analysis of RVs and TTVs is then required to
unambiguously detect and characterize the planets in the
system.

8. Combined RV and TTV Analysis

The amplitude of dynamical perturbations between planets is
very sensitive to the eccentricity and angular parameters (i.e.,
the argument of pericenter ω and mean anomaly at reference
time 0 ) of the planetary orbits, which, however, can be only
poorly constrained by the RVs, especially for planets in nearly
circular orbits. For this reason we expect an overall

Figure 3. The mass of K19c vs. its period, determined by fitting K19b T0s for a
grid of masses of the two planets. The three lines represent the expected RV
semi-amplitude of K19c only as a function of its mass and period. A linear fit to
the data is marked with a dashed–dotted blue line.

Figure 4. Upper panel: the RV data set. The vertical line divides data taken
before and after the substitution of HARPS-N CCD. Lower panels: GLS
periodograms computed starting from the initial data set and iterating over the
residuals. The 1% and 0.1% false alarm probabilities were estimated following
a bootstrap approach for each periodogram. The red lines mark the best-fit
periods at 28.6, 9.29, and 62.3 days.

Table 4
Orbital Parameters for a Three-planet Model for the

Kepler-19 System Obtained from RV-only, except for the Period of K19c,
which is Constrained by the Kepler Light Curve

K19b K19c K19d

Circular Orbits

Period (days) 9.28699±10−5 28.61±0.24 63.0±0.3
K (m s−1) 2.3±0.5 1.7±0.8 3.8±0.6
f (deg) 194.4±0.3 185±43 174±6
Mass (M⊕) 7.4±1.7 7.8±3.6 22.5±3.8

Keplerian Orbits

Period (days) 9.28699±10−5 28.54±0.27 62.9±0.3
K (m s−1) 2.6±0.6 1.95±0.8 4.0±0.7
f (deg) 198±8 192±29 172±8

e cosw 0.0±0.2 0.0±0.4 0.31 0.31
0.20

-
+

e sinw 0.0±0.3 0.0±0.3 0.25 0.22
0.35- -

Mass (M⊕) 8.0±1.8 8.6±3.5 23.1±3.8
e �0.13 �0.30 �0.32
ω (deg) unconstrained unconstrained 36 35

65- -
+

Note. The reference time for the orbital elements is Tref =
2456624.82263024 days.

29 Available at https://github.com/LucaMalavolta/PyORBIT.
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improvement on the precision of the orbital parameters by
simultaneously fitting RVs and TTVs.

Dynamical simulations are extremely time-consuming, and
we have to use all the information at our disposal to reduce the
extension of the parameter space. We used the results from the
RV fit in Section 7 to put a constraint to the ranges of period,
mass, and orbital phase of each planet.

We followed an iterative approach to avoid being trapped in
a local minimum of the χ2. We started 10 separate runs of
TRADES with the Particle Swarm Optimization algorithm and
loose priors on the periods (±10 days around the expected
period of each planet from the RV analysis), masses (between 0
and 40M⊕), and eccentricities (e�0.5), taking into account
the limits imposed by photometry and RVs. We checked the
stability of the outcome of each run and then we ran TRADES
again on a range of parameters that was half the size of that
from the previous run and that was centered of the outcome of
the previous run with the lowest χ2 among those that satisfied
the stability requirement. Convergence was considered
achieved when all the runs resulted in similar parameters
(within 5% from the mean) and similar χ2 (10% from
the mean).

Following Gladman (1993), during the numerical integration
we checked the stability criterion for each pair of planets:

R i j2 3 ,HD = ( ), where a aj iD = - is the semimajor axis
difference between the jth and ith planet, and RH(i, j) is the
mutual Hill radius between planets i and j. At the end of each
TRADES fit we performed an N-body integration with SymBA
(Duncan et al. 1998) and checked the stability of the result with
the Frequency Map Analysis tool (Laskar et al. 1992;
Laskar 1993a, 1993b) with the prescriptions of Marzari et al.
(2002). A system is considered stable if the coefficient of
diffusion is lower than 10−5, in an unstable or chaotic state
otherwise.

We used the value measured by B11 for the inclination i of
K19b. Several attempts to fit the mutual inclinations of the non-
transiting planets along with the other parameters resulted in
unstable solutions with high mutual inclinations. We took
advantage of the low mutual inclinations of planetary orbital
planes inferred from Kepler multi-planet systems (Fabrycky
et al. 2014) and the additional information coming from
systems characterized with high-precision RVs (Figueira et al.
2012) to impose coplanarity with K19b for the other planets,
while the longitude of the ascending node Ω was fixed to zero
for all the planets. This assumption allowed us to drastically
reduce computational time. The orbital period and mass of the
planet, the eccentricity e, the argument of periastron ω, and the
mean anomaly at the reference epoch  were left as free
parameters.

Differing from Borsato et al. (2014), we fitted e cosw and
e sinw instead of e cosw and e sinw, and the mean longitude

at the reference epoch l w= + + W (where Ω is the
longitude of the ascending node, fixed to zero to be
unconstrained by the data) instead of . We used scaled
stellar and planetary masses, as commonly done in TTV
analysis (e.g., Nesvorný et al. 2012). An RV offset between the
data taken before and after 2012 September was included as a
free parameter to take into account the change of the CCD (see
Section 7).

We used the solution obtained with the global exploration of
the parameter space as a starting point for the Bayesian
analysis. For this purpose we expanded TRADES functionalities

with the emcee package (Foreman-Mackey et al. 2013), an
affine invariant MCMC ensemble sampler, and made it
available to the community in the TRADES repository.
Following Feigelson & Babu (2012), we calculated the log-
likelihood ln from the χ2 using Equation (1), where dof is the
degree of the freedom of the problem.

ln ln 2
dof

2

ln

2 2
. 1

2 2
 p

s c
= - - å -( ) ( )

We tested three different scenarios. The first model assumed
that the signal at ;28 days (the first one being detected in the
RV periodogram) is the only planet in the system other than
K19b. The second model is still a two-planet model, but here
we assumed that the signal at ;28 days is due to activity
(without any effects on the T0s) and that the system consists of
two planets at ;9.2 and ;62 days. The third model assumed
that all the RV signals have planetary origins. The results are
presented in the following subsections. We note that a planet in
a strong MMR with K19b could still produce the TTVs while
having a RV semi-amplitude below our detection sensitivity.
Following B11, the TTVs of K19b could be explained by a
planet in [2:1, 3:2, 4:3] MMRs with masses of [4, 2, 1]M⊕,
respectively. The signal of the perturbing planet would have an
RV semi-amplitude on the order of [1, 0.6, 0.3]m s−1, i.e.,
beyond the reach of modern velocimeters given the magnitude
of our target. However, this scenario requires an activity origin
for the 28-day signals, which is not supported by the analysis of
Section 5 and the coherent nature of the RV signal over years
of observation, and is in opposition to the short timescale decay
of the spots observed in Kepler photometry, as shown in
Section 7. For these reasons we can regard this scenario as
unlikely.

8.1. Two-planet Model

We tested the two-planet model following the steps
described in Section 8, with the only additional constraint
being that K19c should have a period lower than 40 days. We
ran the MCMC sampler for 50,000 steps, with a number of
chains being twice the dimensionality of the problem. We
checked the convergence of the chains using the Gelman–
Rubin statistic (R 1.03<ˆ , Gelman & Rubin 1992; Ford 2006),
and we built the posterior distributions with the last 20,000
steps and a thinning factor of 200.
Our results are listed in Table 5. Rather than using the

median or the mode, we summarize the outcome of the analysis
by selecting from the chains the sample with the nearest χ2 to
the median of its distribution and selecting parameters within
their confidence intervals. Confidence intervals are computed
by taking the 15.87th and 84.14th percentiles of the
distributions, and are reported in the table with respect to the
selected sample.

8.2. Two-planet and Stellar Activity Model

The presence of the activity signal can potentially affect the
analysis, but TRADES is not equipped to deal with non-
planetary signals in RV data sets. For this reason we decided to
remove such signals from the RV time series before starting the
global exploration of the parameter space, using as a data set
the residuals of the first iteration of the GLS analysis in
Section 7. The global solution was used as starting point for an
MCMC analysis with PyORBIT, this time using the original
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RV data set and the activity signal modeled with a Keplerian
curve (as similarly done in Pepe et al. 2013). RV and T0
calculations regarding the two interacting planets were
performed by calling the dynamical integrator of TRADES
through a FORTRAN90 wrapper. As additional test cases, we
ran TRADES, using the two-planet model and the no-activity
model on both the original RV data set (imposing a lower limit
of 40 days for the period of K19c, to avoid repeating the case
analyzed in Section 8.1) and the GLS-cleaned data set. In all
cases we repeated the analysis without imposing any constraint
on eccentricity, since the eccentricities of both planets were
moving toward the upper boundary imposed in Section 8. We
followed the same methodology described in Section 8.1 to run
the MCMC and extract the results reported in table.

The eccentricity of K19b is extremely high in all the cases
we considered. The most likely explanation is that high
eccentricities for both planets are required to produce the same
T0s while keeping their masses within the boundaries set by the
RVs. Following Burke (2008) we computed the ratio τ of the
transit duration of an eccentric orbit with respect to a circular
orbit, and we obtained τ=0.64±0.04 for the original RV
data set, τ=0.58±0.06 for the GLS-cleaned case, and
0.54±0.10 for the planets+activity case. All these values are
well below the value of τ=0.7 that B11 considered as the
minimum reasonable value for the transit duration ratio due to
the eccentricity of the planet from the analysis of the Kepler
light curve. We note that the period-mass combinations we
obtained for the outer planet fall in an empty region of Figure 3,
which was obtained by selecting those solutions with e<0.3
for at least one of the planets.

8.3. Three-planet Model

Bayesian analyses for the three-planet model were performed
using TRADES combined with emcee (see Section 8). From a
preliminary analysis we noted that the chains were affected by
poor mixing, with a Gelman–Rubin statistic R 1.3ˆ (Gelman
& Rubin 1992; Ford 2006). We decided to run 100 chains for
an extensive number of steps (250,000) to overcome the poor
mixing and perform a proper exploration of the parameter
space, knowing that we already reside near the global minimum
of the χ2. After the first 150,000 iterations we did not see any
variation of the posterior distributions while increasing the
length of the chains, which made us confident of the robustness
of our result. We finally built the posterior probability by
drawing 40,000 independent samples from the chains, after
removing the burn-in part and applying a thinning factor equal
to their auto-correlation time (;100 steps).
Our results are listed in Table 5. The posterior distributions

of the fitted parameters are shown in Figure 5. The confidence
intervals of the posteriors are computed by taking the 15.87th
and 84.14th percentiles of the distributions, and they are
reported as error bars around a sample solution selected as in
8.2. From now on, we will use the reported values as a
representative solution of the orbital parameters of the planets.
Posterior distributions of the fitted parameters for the three-
planet model for the Kepler-19 system are shown. In Figure 6
we show the solutions overplotted on T0s and RVs, with their
respective residuals.
In Table 6 we compare the outcomes of the different models

under examination. The three-planet solution is the favorite one
according to the BIC (having a ΔBIC>10 with respect to all

Table 5
Orbital Parameters of the Planets in the Kepler-19 System Obtained from TTV+RV MCMC Analysis Using Different Assumptions for the

Number of Planets and the Stellar Activity The Reference Time for the Orbital Elements is Tref=2456624.82263024 days

Planet Period (days) Mass [M⊕] e cosw e sinw λ(deg) e ω(deg) deg( )

Two-planet Model, Pc<40 days

K19b 9.287108 0.00003
0.00006

-
+ 8.2 1.4

1.6
-
+ 0.23 0.02

0.04
-
+ 0.21 0.05

0.03
-
+ 188.9 1.5

0.9
-
+ 0.10 0.01

0.01
-
+ 42.5 11.6

5.7
-
+ 146.4 5.1

10.5
-
+

K19c 28.723 0.007
0.0005

-
+ 17.0 2.4

2.4
-
+ 0.48 0.04

0.01
-
+ 0.15 0.11

0.02
-
+ 175.5 7.0

3.0
-
+ 0.25 0.04

0.01
-
+ 17.3 12.7

2.9
-
+ 158.1 1.0

6.8
-
+

Two-planet Model, Pc>40 days

K19b 9.286970 0.00005
0.00009

-
+ 8.6 1.7

1.9
-
+ 0.09 0.06

0.11- -
+ 0.64 0.05

0.04
-
+ 201.6 6.3

3.5
-
+ 0.42 0.05

0.06
-
+ 97.9 9.9

5.5
-
+ 103.7 2.2

3.6
-
+

K19c 63.128 0.007
0.010

-
+ 21.7 3.7

1.8
-
+ 0.11 0.02

0.25- -
+ 0.59 0.02

0.02- -
+ 167.7 0.1

14.4
-
+ 0.36 0.02

0.011
-
+ 100.4 1.2

23.9- -
+ 268.1 10.1

0.2
-
+

Two-planet Model, GLS-cleaned RV Data Set

K19b 9.28696 0.00006
0.00006

-
+ 8.4 1.6

1.3
-
+ 0.08 0.17

0.02- -
+ 0.74 0.11

0.02
-
+ 201.1 1.5

10.2
-
+ 0.551 0.11

0.03
-
+ 95.9 1.7

14.8
-
+ 105.2 4.8

0.3
-
+

K19c 63.128 0.008
0.011

-
+ 17.4 2.9

2.9
-
+ 0.07 0.08

0.11- -
+ 0.57 0.03

0.01- -
+ 169.3 3.3

10.2
-
+ 0.332 0.006

0.035
-
+ 97.4 7.4

10.9- -
+ 266.7 3.4

6.26
-
+

Two-planet and Activity Model

K19b 9.28696 0.00004
0.00008

-
+ 7.8 1.9

2.1
-
+ 0.02 0.11

0.19- -
+ 0.71 0.06

0.09
-
+ 197.9 11.3

6.4
-
+ 0.50 0.07

0.17
-
+ 91.7 14.8

9.2
-
+ 106.2 1.8

2.6
-
+

Act 28.57 0.11
0.08

-
+ 2.3 0.3

1.1
-
+( )a 0.22 0.68

0.31
-
+ 0.34 0.23

0.31
-
+ 178.4 23.6

2.0
-
+ 0.160.01

0.45+ 56.4 36.1
84.4

-
+ 122.0 86.7

31.4
-
+

K19c 63.139 0.019
0.003

-
+ 16.2 2.7

2.4
-
+ 0.11 0.24

0.02
-
+ 0.58 0.02

0.04- -
+ 178.3 15.6

1.16
-
+ 0.35 0.04

0.02
-
+ 79.0 23.6

1.3- -
+ 257.4 1.7

9.0
-
+

Three-planet Model

K19b 9.28716 0.00006
0.00004

-
+ 8.4 1.5

1.6
-
+ 0.17 0.03

0.05
-
+ 0.29 0.06

0.04
-
+ 190.3 1.9

1.0
-
+ 0.12 0.02

0.02
-
+ 59.1 11.7

68.9
-
+ 131.2 6.1

10.4
-
+

K19c 28.731 0.005
0.012

-
+ 13.1 2.7

2.7
-
+ 0.42 0.03

0.04
-
+ 0.19 0.05

0.10
-
+ 181.5 4.5

6.0
-
+ 0.21 0.07

0.05
-
+ 23.8 6.8

11.1
-
+ 157.6 6.6

3.1
-
+

K19d 62.95 0.30
0.04

-
+ 22.5 5.6

1.2
-
+ 0.13 0.38

0.17
-
+ 0.18 0.19

0.21
-
+ 170.1 0.3

12.3
-
+ 0.05 0.01

0.16
-
+ 55.2 57.4

76.8
-
+ 114.9 70.5

63.7
-
+

Notes.
a Semi-amplitude of the signal in m s−1.
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the other models under analysis, Kass & Raftery 1995), and the
considerations at the end of Section 8.2 further strengthen this
result. Our three-planet solution has a total reduced 1.25r

2c =
(χ2=272.7, BIC=365.5), where the contributions from RV
and TTV are respectively 0.37 and 0.88.30 The standard
deviation of the residual RVs is 2.9 m s−1, consistent with the
average error of the measurements, and while several peaks can
be found in the periodogram, none of them reach the 1% false

alarm probability threshold (Figure 7). Similarly, the standard
deviation of the TTV of 2.2 minutes is consistent with the
average error of 2.1 minutes.
We determined the masses of the three planets with

precisions of 1.6Mbs = M⊕ (error of 19% on planetary mass)
for K19b, 2.7Mcs = M⊕ (error of 21%) for K19c, and

3.4Mds = M⊕ (error of 17%) for K19d. We included in the
computation the uncertainty on the stellar mass and the effect
of orbital inclinations, assuming as representative distributions
for the latter a normal distribution with ic=id=89°.94
anddispersions of σi=5° for K19c and σi=15°.0 for
K19d, following Section 9. Knowing that K19c and K19d

Figure 5. Posterior distributions of the fitted parameters for the three-planet model for the Kepler-19 system. The dashed blue lines identify the reference solution
listed in Table 5.

30 These two values do not correspond to the individual red
2c of RVs and

TTVs, since the sum of residuals of each data set is divided by the total number
of data points.
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should have a transit depth greater than 0.5 mmag (Winn 2010),
a visual inspection of the Kepler light curve confirmed that the
planets are not transiting.

Our solution agrees with the solution in Table 4, except for
the mass of K19c, with a 2σ difference between the RV-only
and RV+TTV determinations. The origin of this discrepancy is
likely due to the uncertainty in the orbital phase and
eccentricity from the RV-only analysis, with one planet
absorbing the signal of the other, possibly coupled with the
effect described in Section 10.

The RV offset between the old and new CCD is ;2 m s−1,
i.e., within the RV noise. We do not expect any influence of the
RV offset on the outcome of the analysis, since the three
planets have periods fully contained within the time span of
both old and new CCD data sets.

9. Mutual Inclinations

In Section 8 we assumed coplanarity with K19b (the only
planet with known inclination) to derive the orbital parameters
of the additional planets in the system. To check if this
assumption was still valid after determining the orbital period

of the additional planets, we determined the upper limit on
inclination for which a transit is visible for a given planet by
inverting Equation(7) of Winn (2010) with the assumption for
the impact parameter btra=1. To properly take into account
variation with a time of e and a ω induced by dynamical
interactions, we selected 1000 (e, ω) pairs for each planet by
randomly sampling in time the integration of our best solution
over the Kepler observational time span. Error in the stellar
radius was included by generating random samples from a
normal distribution with mean Rå and standard deviation Rs as
reported in Table 3. We obtained imin=88°.72±0°.03 for
K19c and imin=89°.24±0°.02 for K19d. Since we assumed
ib = 89.94 (from B11), the coplanarity assumption cannot hold
for K19c. We assessed the influence of orbital inclinations on
the validity of our solution by running dynamical simulations
for a grid of ic and id (from 60 to 120 degrees, with steps of
0°.25 for ic and 0°.5 for id), with the remaining orbital
parameters fixed to our best solution; and we determined the
reduced χ2 as in Section 8. As shown in Figure 8, the reduced
χ2 increases rapidly, with K19c going farther from coplanarity
with K19b, reaching a value of ≈1.6 for i i 5b c- ∣ ∣ , while
K19d can span a larger interval in inclinations without affecting
the outcome (although increasing i ib d-∣ ∣ would negatively
affect the stability of the system). Assuming ic = 88.72
(grazing scenario) the outcome of the fit is nearly the same,

1.26red
2c = , which is very close to the value obtained when

assuming coplanarity (χ2=1.25; see Section 8). It is likely
that the system is very close to orbital alignment, as observed
for the majority of transiting multi-planet systems, e.g.,
Figueira et al. 2012; Fabrycky et al. 2014; Ballard & Johnson
2016; Becker & Adams 2016.

10. Dynamical versus Non-interacting Orbits

Dynamical simulations include by definition the effects of
gravitational interactions between planets. This is different
from the usual approach followed in the exoplanet literature,
where a series of non-interacting Keplerian orbits is used to
derive the planet parameters in multiple systems. While the
assumption of negligible interactions between planets may hold
in most of the cases, in the presence of TTVs we know that
such interactions are happening. It is then worthwhile to
analyze the differences in the RVs between the two approaches,
i.e., dynamical versus non-interacting Keplerian orbits. In order
to do so, we have simulated the expected RVs of the Kepler-19
system at the observational epochs of our data set, using the
planetary parameters in Table 5 and assuming non-interacting
orbits, and we have subtracted the outcome from the
dynamically derived RVs from the same orbital parameters.
The results are shown in Figure 9. The RV RVTTV Kep-

Figure 6. Top panels: Observed–Calculated (O–C) transit times and residuals
for K19b. Lower panels: RVs and residuals of the Kepler-19 system. The red
empty circles represent the predicted values from the solution obtained with
TRADES. The radial velocity curve of the Kepler-19 system obtained from the
dynamical integration is shown in gray.

Table 6
Statistical Indexes for the Different Models Under Examination

Model N Parameters dof χ2
red
2c ln BIC

2 planets Pc<40 days 12 223 323.8 7.4
5.5

-
+ 1.45 0.02

0.01
-
+ 498.6 3.7

1.0
-
+ 389.4 1.9

5.5
-
+

2 planets, Pc>40 days 12 223 324.0 3.4
4.4

-
+ 1.45 0.01

0.02
-
+ 499.5 2.2

1.6
-
+ 389.5 3.4

4.4
-
+

2 planets, GLS-cleaned RVs 12 223 318.8 3.5
4.4

-
+ 1.43 0.02

0.02
-
+ 502.1 2.2

1.8
-
+ 384.3 3.5

4.4
-
+

2 planets and activity 17 218 319.5 6.1
8.8

-
+ 1.47 0.03

0.04
-
+ 506.3 4.4

3.0
-
+ 412.3 6.1

8.8
-
+

3 planets 17 218 276.7 5.27
6.9

-
+ 1.27 0.02

0.03
-
+ 527.7 3.4

2.6
-
+ 369.5 5.3

6.9
-
+

Note. The number of parameters in the fit, the degree of freedom (dof), the χ2 and its reduced value, the log-likelihood ln, and the Bayesian information criterion
(BIC), are reported.
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residuals show a peak-to-peak variation of 0.30 m s−1, with a
prominent periodicity at 29.3 days, i.e., very close to the orbital
period of K19c, although these values depend strongly on the
assumed orbital parameters. Note that the difference between
dynamical and Keplerian RVs diverges the further you move
from the reference time of the orbital parameters Tref. This
occurs because of small variations of the orbital parameters
with time caused by planet interactions, which are implicitly

taken into account in dynamical integration but are ignored in
the Keplerian approach. For the Kepler-19 system, after two
years of observations from Tref, the peak-to-peak difference has

Figure 7. Orbital solution and RV residuals for K19b (upper left panels), K19c (lower left panels), and K19d (upper right panels), phased on the period of the
corresponding planet after removing the RV contribution from the other planets. These plots have been obtained using non-interacting Keplerian orbits, and are
intended for illustrative purposes only. In the lower right panels, both the RV residuals after subtracting the dynamical solution from TRADES and their periodogram,
show no evidence of additional signals that are statistically significant.

Figure 8. Distribution of red
2c as a function of K19c and K19d inclinations,

with the other orbital parameters fixed to our solution (Table 5). Contour lines
for several values of the red

2c are shown for reference. Values of inclination for
which one of the planets would transit are shadowed in gray.

Figure 9. Analysis of the RV difference (ΔRV) obtained by subtracting the RV
from dynamical simulations (RVDyn) from the RV from non-interacting
Keplerian orbits (RVKep), assuming planets with the same orbital parameters in
both cases. In the upper panel, the ΔRV at the HARPS-N epochs and for a 5 yr
time span are shown as black dots and a black line, respectively. The reference
time of the orbital parameters T0 is marked with a dashed red line, to emphasize
the increase in ΔRV when moving further from T0. In the middle panel, the
periodogram of this difference reveals the presence of a periodicity at 29.3days
(red line). As a comparison, the periods of the three planets in the system are
highlighted in blue. The ΔRV phased at such a period is shown in the lower
panel, with the sinusoidal model marked with a red line.
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already reached ;0.6 m s−1, i.e., a value that can negatively
affect the mass determination of the planets. Assuming that
non-interacting planets when modeling the RVs can thus
mislead the determination of the orbital parameters, e.g., in the
case of a data set spanning several years.

11. Discussion

The transiting planet Kepler-19b was previously validated by
Ballard et al. (2011). A period of 9.23 days and an upper limit
of 20M⊕ were determined from the analysis of the light curve
and high-resolution spectroscopy. From the presence of TTV in
8Kepler quarters they deduced the presence of a second, non-
transiting planet with a period of 160 days and mass of
6Mjup. In this paper we presented the first precise mass
measurement for K19b (8.4±1.6M⊕) and the characterization
of two non-transiting Neptune-mass companions, K19c
(P=28.73±0.01 days, M=13.1±2.7M⊕), and K19d
(P=62.9±0.2 days, M=20.3±3.4M⊕), obtained by
simultaneously modeling TTVs and RVs through dynamical
integration. We excluded stellar activity as a possible origin for
the RV signal at P;28 days, using all the activity diagnostics
at our disposal, including the latest reduction of the Kepler light
curve. Nevertheless, we performed standard model selection
between the three-planet and two-planet models, either with the
hypothesis that the outer planet causes the TTVs and different
assumptions for the activity signal, or the hypothesis that the
perturber has period of ;28 days and no outer planets. In all
cases the three-planet model was favored, with a high degree of

confidence. A planet in a strong MMR with K19b could still
produce the TTVs while having an RV semi-amplitude below
our detection sensitivity, but only under the condition that the
28-day signal is due to stellar activity, which is not supported
by our data.
With a period ratio Pc/Pb=3.09, the system is very close to

a 3:1 MMR. The sinusoidal shape of the TTV is then induced
by the 3:1 MMR of the inner planets, with a modulation caused
by the outer planet. We performed a comparison between
dynamical RVs and those calculated assuming non-interacting
planets, using the orbital parameters of the Kepler-19 system,
and showed that, for this specific system, the difference for a
data set spanning several years is at the limit of detection with
the state-of-the-art instruments used for planet search and
characterization.
Our new determination of K19b mass disagrees with the

most likely value of 1.6M⊕ (semi-amplitude of 0.5 m s−1),
which was obtained by B11 while attempting a fit with only 8
Keck-HIRES RVs and assuming only 1 planet in the system.
As a consequence of this assumption, they derived a likely RV
jitter of ;4 m s−1, which is not confirmed by our analysis. In
general, RV analysis performed on a small number of
measurements should always be handled with extreme care,
since the results could be affected by additional non-transiting
planets that have little influence on the TTV of the transiting
planets but have significant RV semi-amplitude, such as K19d.
K19b falls in the region of super-Earths with rocky cores and

a significant fraction of volatiles or H/He gas, in opposition to
the low-density planets characterized by TTVs only (Weiss &
Marcy 2014; Jontof-Hutter et al. 2016), and well separated
from the group of rocky planets with radii smaller than 2 R⊕, as
can be seen in Figure 10. If we assume that the planet
composition is a mixture of an H/He envelope with a solar
composition atop a rocky core with Earth-like rock/iron
abundances, we can estimate the internal structure of K19b. By
employing theoretical models from Lopez & Fortney (2014),
and assuming an age of 2 Gyr, an envelope of 0.4±0.3% of
the total mass is required to explain the observed mass and
radius of K19b. Despite the fairly high level of irradiation, its
atmosphere is only moderately vulnerable to photoevaporation,
due to the relatively large mass of the planet (Lopez
et al. 2012). Employing the same models, we found that the
mass of the primordial envelope was approximately twice
(;1%) that of the current envelope mass.
Although the radii of the Neptune-mass planets are

unknown, we can still speculate on their possible internal
composition. By using the gas accretion scaling relations from
Lee & Chiang (2015), we expect for K19c and K19d to have
accreted significantly larger envelopes than K19b, likely
unaffected by photoevaporation due to the larger masses of
these two planets. Using Equation(22) from Lee & Chiang
(2015), we can get a rough estimate of the sizes of these
envelopes and find that K19c should have an H/He envelope of
;4.5% of its total mass and a radius of ;3.2 R⊕, while K19d
should have a fraction of volatiles around 10%–20%, and a
radius of 4–5 R⊕.
Our results confirm that TTV and RV techniques can

converge to planetary densities similar to the ones obtained
only with the RV data set, if enough data are available from
both sides. This result supports the analysis of Steffen (2016),
where the discrepancy between the planetary density obtained
from the TTV and RV noted by Weiss & Marcy (2014) is

Figure 10. Mass–radius for transiting exoplanets with measured masses
(automatically retrieved in 2017 February from the Nasa Exoplanet Archive,
http://exoplanetarchive.ipac.caltech.edu). Planets are color-coded according to
the incident flux on the planet Fp, relative to the solar constant F⊕. The line
thickness reflects the precision on density measurements. The blue error bars
identify planets with TTV detection. The dashed lines are theoretical mass–
radius curves for different internal compositions, while Earth-like compositions
and a mixture of Earth-like core plus H/He envelopes of 1% in mass are
represented by solid red and blue lines, respectively (Lopez et al. 2012). The
shaded gray region marks the maximum value of iron content predicted by
collisional stripping (Marcus et al. 2010). K19b is highlighted with a black dot.
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explained as a selection effect rather than as an intrinsic
problem of one of the two techniques. Previous notable
examples of agreement between RV and TTV masses are
represented by the WASP-47 (Becker et al. 2015; Weiss et al.
2016) and Kepler-18 systems (Cochran et al. 2011), and the
independent RV confirmation by Dai et al. (2016) of the TTV-
derived masses of the planets in the K2-19 system (Barros
et al. 2015). It should be noted, however, that by combining
TTV and RV measurements, Nespral et al. (2016) derived a
higher mass for K2-19b, consistent within 1σ with the value
calculated by Barros et al. (2015) only. In the case of the KOI-
94 system, the RV (Weiss et al. 2013) and TTV (Masuda
et al. 2013) planetary masses agree except for planet d, where
the TTV mass measurement is half that of the mass obtained by
high-precision RVs. Until now, most of the targets character-
ized with TTVs were too faint for a precise, independent mass
characterization with RVs. Future space-borne missions such as
TESS (Transiting Exoplanet Survey Satellite; Ricker
et al. 2014) and PLATO (PLAnetary Transits an stellar
Oscillations, Rauer et al. 2014) will finally shed light on this
problem by providing a large number of targets bright enough
for mass measurement with both techniques independently.
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