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Abstract—In many problems in wireline networks, it is known
that achieving capacity on each link or subnetwork is optimal for
the entire network operation. In this paper, we present examples
of wireless networks in which decoding and achieving capacity
on certain links or subnetworks gives us lower rates than other
simple schemes, like forwarding. This implies that the separation
of channel and network coding that holds for many classes of
wireline networks does not, in general, hold for wireless networks.
Next, we consider Gaussian and erasure wireless networks where
nodes are permitted only two possible operations: nodes can either
decode what they receive (and then re-encode and transmit the
message) or simply forward it. We present a simple greedy algo-
rithm that returns the optimal scheme from the exponential-sized
set of possible schemes. This algorithm will go over each node at
most once to determine its operation, and hence, is very efficient.
We also present a decentralized algorithm whose performance can
approach the optimum arbitrarily closely in an iterative fashion.

Index Terms—Forward/decode scheme, separation principle,
wireless networks.

I. INTRODUCTION

I N A WIRELINE network having a single source and a single
destination, we can think of information flow in the same

terms as fluid flow, and obtain a max-flow min-cut result to get
capacity. This treatment closely follows that of the Ford–Fulk-
erson [1] algorithm to give us a neat capacity result. This has
been well understood for many years. However, until recently,
similar min-cut capacity results were not known for any other
class of network problems. Before we describe the recent re-
sults obtained in network problems, let us understand the gen-
eral network problem. This can be stated in the context of a mul-
titerminal network [2] as follows. We have a set of nodes, and
the “channel” between these is specified by a probability tran-
sition function which governs the relationship between the sig-
nals transmitted by the nodes and how these are received by the
other nodes. Every node can have messages that it wants to send
to every other node. Because of the generality of this model, it
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can be tailored to describe many practical systems easily. For
instance, several wireless, as well as wireline, systems, (sta-
tionary) ad hoc and sensor networks, etc., can be modeled by
choosing a suitable probability transition function.

In recent years, large ad hoc networks have received a lot
of attention, starting with the work of Gupta and Kumar [3].
Most results involving these networks use relaying as a tool and
consider issues like throughput, power efficiency, distortion. In
addition, cooperation is a technique that has been shown to be
very effective [4]. However, these methods study asymptotically
large networks and give scaling laws, rather than exact results,
for the performance measures that they study. In fact, finding
the exact capacity region in this general setting is extremely
challenging. In [2], outer bounds on the capacity region can be
found. These have the form of “min-cut” upper bounds. Such an
upper bound formalizes the intuitively satisfying notion that the
rate from node to node cannot exceed the rate that any cutset
of edges from to can support. However, determining whether
schemes of network operation that reach this upper bound exist
or not has proved to be very difficult. Even in simple relay net-
works, i.e., networks having one source node, one destination
node, and a single other node (called the relay node), the an-
swer to this question is not known, in general [2]. Only in spe-
cial cases of the probability transition function (defined as “de-
graded” distributions) do we know schemes that can reach the
upper bounds and thus attain capacity.

In this context, the results in [5] and [6] are remarkable. They
say that in a wireline network setting, we can indeed achieve
the min-cut upper bounds for a special case of a certain class of
problems called multicast problems. In this problem, we have
one source node and several sink nodes that want to receive the
same message from the source. It turns out that using network
coding techniques, we can achieve the min-cut capacity of the
network. Further, [7] put this problem in an algebraic frame-
work and presented linear schemes that also achieved this ca-
pacity. In addition, for some more general multicast problems,
capacity has been shown to be achievable using linear network
coding [7]. The work of [8]–[10] demonstrates the strengths of
this algebraic approach.

We introduce the work presented in this paper by first exam-
ining a feature of the recent results in wireline networks and
trying to determine if this feature is applicable in more general
networks, viz., that in all the capacity-achieving schemes we
have referred to above, the min-cut upper bounds are reached
through separate channel and network coding. This means that
there exists an optimal strategy in which each link in the wire-
line network can be made error-free by means of channel
coding and network coding can be employed separately on
top of this to determine which messages should be transmitted
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on which link. This is quite unexpected, and leads us to wonder
if such a separation can be optimal in more general network
settings.

In the early sections of this paper, we will present simple
wireless networks where this principle of separation fails. Thus
we will show that operating wireless networks in a multihop
manner, where each relay node decodes the message it receives,
is not necessarily the right approach. This observation was first
made in [11] and [12]. We will also suggest some schemes of
operation that will outperform those that require the ability of
relay nodes to decode.

We will focus attention on two specific wireless network
models. The important features that characterize a wireless net-
work are broadcast and interference. We will look at Gaussian
wireless networks (GWNs) and erasure wireless networks
(EWNs). The former has Gaussian channels as links and incor-
porates broadcast as well as interference. The second model
has erasure channels as links and incorporates broadcast, but
not interference. For these models, we will show that making
links error-free can sometimes degrade the performance. In
fact, asking nodes to simply forward their data rather than
decoding it is sometimes more advantageous. This tells us
that wireless networks need to be understood differently from
wireline networks. We will see some explanations as to why
this is the case later in the paper.

In our study of wireless networks, we propose a scheme of
network operation that permits nodes only two operations. One
is decoding to get the original data and then resending the same
message as the source. The other is forwarding the data as re-
ceived. Since each node has two options, we have an exponen-
tial-sized set of possible operations. We will present an algo-
rithm that goes over each node at most once to find the op-
timal operation among this set of restricted operations. This will
be a greedy algorithm that avoids searching over the exponen-
tial-sized set of possible operation allocations. We also present
an algorithm that can approach the best rate arbitrarily closely
in an iterative manner. This will be a “decentralized” algorithm,
in the sense that each node needs only one bit of information
from the destination in every iteration and no knowledge of the
rest of the network in order to determine its own operation.

The organization of this paper is as follows. In Section II, we
present two wireless network models. These will be the GWNs
and EWNs. In Section III, we show that with these wireless
models, making links or subnetworks error-free can be subop-
timal. In Section IV, we will formally state the two operations
that nodes will be permitted to perform. With this setup, we
will state our problem of allocating appropriate operations in
Section V. In Section VI, we will see how rates are calculated
for all nodes in the network, and how asking certain nodes to
decode and others to forward can affect the rate of the network.
In Section VII, we will state our algorithm to find the optimal
policy. In Section VIII, we will prove optimality of the algo-
rithm. We will see some examples in Section IX that will show
that the gap between the “all nodes decode” strategy and our
method can be significant. In Section X, we will discuss the
decentralized algorithm. We present upper bounds on the rate
achievable by our scheme in Section XI. Conclusions and fur-
ther questions are presented in Section XII.

Fig. 1. Example of a network.

II. TWO WIRELESS NETWORK MODELS

In this section, we formalize two wireless network models.
These are GWNs and EWNs. In both cases, the network con-
sists of a directed, acyclic graph where is the set
of vertices, and is the set of directed edges where each edge is a
communication channel. We will denote and .
Also, we will have and

is an edge . We will assume, without loss of generality,
that is the source node and is the destination.
The remaining nodes are the relay nodes which must aid com-
munication between and . We will assume that every edge is
on some directed path from to . If we have edges other than
these, we remove them, and what remains is our graph . We
will denote the message transmitted by vertex by and
that received by node by . Fig. 1 represents a network
with six vertices and nine edges, where is the source and

is the destination . is the message transmitted by
and is that received by .

Gaussian Wireless Networks: In these networks, each edge
of the network is a Gaussian channel with some fixed

attenuation factor associated with it. In a practical system,
this may be some path loss that depends on the physical dis-
tances between the nodes. We will assume to be a nonneg-
ative constant. We will assume that nodes broadcast messages,
i.e., a node transmits the same message on all outgoing edges.
Assuming that Fig. 1 represents a GWN, is the message
transmitted on edges and . We will also assume
interference, i.e., the received signal at node is the sum of
all the signals transmitted on edges coming in to it and additive
white Gaussian noise of variance . Therefore, in general,
we have

All ’s are assumed independent of each other as well as the
messages. For Fig. 1, this implies that

. We will assume that all transmitting nodes have
a power constraint of .

Erasure Wireless Networks: In these networks, each edge
of the network is a binary erasure channel with erasure

probability . In addition, we assume that nodes (other than
the source node) can transmit erasures, and they are received
as erasures with probability 1. Denoting erasure by , this as-
sumption means that edges can also take as input, and this is
always received as . In short, the channel for edge (for

) is modified as in Fig. 2. We incorporate broadcast in
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Fig. 2. Modified erasure channel.

the model, i.e., each transmitting node must send out the same
signal on each outgoing edge. Now assuming that Fig. 1 repre-
sents a wireless erasure network, transmits on edges

and .However, we do not permit interference.
This means that a node having several incoming edges sees mes-
sages from each edge without their interfering with each other.
In general, if has incoming edges, it will see mes-
sages that do not interfere with each other.1 In Fig. 1, we see that

consists of two received messages, the message coming
in on edge (which is with some bits erased) and
the message coming in on edge (which is with
some bits erased). Finally, we mention that instead of the reg-
ular binary erasure channel, we can consider a channel with any
finite alphabet as the input alphabet and get a more general
EWN model. Our results go through for this also, but for sim-
plicity, we restrict ourselves to binary inputs.

For both networks, we will assume instantaneous transmis-
sion on all links.

III. OPTIMIZING OVER SUBNETWORKS DOES NOT WORK

Theorem 1: For the wireless networks described in Section II,
making subnetworks error-free can be suboptimal.

Proof: We give some examples to demonstrate this.
Gaussian Relay Networks: Consider a Gaussian par-

allel relay network consisting of two relay nodes and one
source–destination pair. See Fig. 3(a). All four channel coeffi-
cients are assumed to be 1. The relay nodes and are solely
to aid communication from source to destination. We assume
that the noise power at each receiver is and the transmit
power at each node is . Let be the signal-to-noise
ratio (SNR).

One way to view the network is as a cascade of a broad-
cast channel (from to ) and a multiple-access channel
(from to ). This is equivalent to assuming that the re-
lays decode their messages correctly and code them again and
transmit. If the relays are receiving independent information at
rates and , we have as the capacity

1There exist network models in the physical layer that incorporate interfer-
ence, which when abstracted to an erasure network model, act similarly to the
interference-free model we have described here. For instance, simple division
multiple-access schemes, such as TDMA, FDMA, or CDMA can be used to
eliminate the interference.

region. These rate pairs can be supported by the mul-
tiple-access channel, and hence, the maximum rate from to
is no greater than . If the relays are receiving exactly
the same information from the source, the maximum rate of this
is . In this case, the multiple-access channel is used for
correlated information, and can support rates up to .
In either case, asking the relay nodes to decode limits the rate
from to to . (We note also that the broadcast sub-
network is the bottleneck in both cases.)

Now consider another strategy in which the relay nodes do
not decode, but only normalize their received signal to meet the
power constraint and transmit it to the destination. In this case,
the received signal at the destination is

where , , , , are, respectively, the trans-
mitted signal from the source, the received signal at the des-
tination, and the noises introduced at , and . Thus, the
signal received by is a scaled version of with additive
Gaussian noise. The maximum achievable rate, denoted by ,
is

where is as before. Here, the subscript stands for for-
warding.We note that decoding at one of the relay nodes and
forwarding at the other is always suboptimal.

In general, if we have relay nodes in parallel rather
than two, it can be easily checked that

and

With this, we get a critical value of below
which decoding is better, and above which forwarding is better.
Clearly, this goes to zero for large . Therefore, in the limit of

, it is always favorable to forward.
It turns out that this fact is also true for Gaussian relay net-

works in the presence of fading. The work of [11] shows that
for fading Gaussian relay networks with nodes, the asymp-
totic capacity achievable with the relay nodes decoding (and
re-encoding) scales like , whereas with the forward
scheme, it scales like .

Similar problems are considered in [13] and [14]. The former
considers bounds and achievable rates for the Gaussian network
with two parallel links, and the latter considers a network with
a single source and destination and the other nodes acting as re-
lays. The second result shows that the maximum rate achievable
is . This is the same as that achieved by forwarding in
our scheme.

Erasure Relay Network: Consider, once again, the network
of Fig. 3(a), where now, each link represents an erasure channel
with erasure probability . Since we have broadcast, node

transmits the same messages to relay nodes and . If the
relay nodes decode and re-encode, the rate is bounded by the
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Fig. 3. Proof of Theorem 1. (a) Graph representation of a relay network with two relay nodes. (b) Critical value of erasure probability for k relay nodes.

sum-rate capacity of the broadcast system, which gives
.

If the relay nodes simply forward what they receive, it is easy
to see that the destination sees an effective erasure probability of

. (We will spell out how to do this calculation for a
general network in Section VI.) Forwarding erasures is possible
since we are assuming the modified erasure channel of Fig. 2.
With this, we have . Comparing and

, we can see that is a critical value, above
which decoding and re-encoding is better, and below which for-
warding is better.

Thus we see that for this network also, making the broadcast
subnetwork error-free is not always optimal.

In general, if we have relay nodes in parallel rather than
two, we have

and

and the critical value of is as plotted in Fig. 3(b). Below this,
forwarding is better, and above this, decoding is better. In the
limit of large , it is always better to forward.

From this, we see that making links or subnetworks error-free
does not ensure optimal network operation. It can sometimes be
provably suboptimal.

In this proof, a simple operation like forwarding the received
data proved to be better than decoding it. We understand this
as follows. Because of the broadcast present in wireless net-
works, the same data naturally gets passed on to the destina-
tion along many different paths. Therefore, some nodes receive
better versions of the data on incoming links than other nodes,
and are automatically in a better position to decode. Forcing all
the nodes to decode and be error-free only imposes additional
bottlenecks on the rate. Therefore, it is beneficial to carefully
check the quality of the effective signal that various nodes get
to see, and then decide whether to ask them to decode or not.

IV. A POSSIBLE SET OF NETWORK OPERATIONS

It follows from the previous discussions that to obtain the
optimum rate over wireless networks, the nodes must perform
operations other than just decoding. Determining what the op-
timum operation at each node should be, especially for a gen-
eral wireless network, appears to be a daunting task. We shall
therefore simplify the problem by allowing one of only two op-
erations at every node. One will be the decode and re-encode
operation as before. The other is the far simpler operation of for-
warding the received data as is. The first operation, decode and
re-encode, is typically the only operation used in multihop net-
works and many wireline networks. In effect, we are attempting
to attain higher rates by introducing the additional operation of
forwarding.

We will assume that the network operates in blocks of length
. We assume that the source has a set of message indices

and an encoding function , where is for the
GWN and {0,1} for the EWN. To transmit message , the
source transmits . With this, the source operates at rate .

is the set of codewords or possible
transmitted messages. This set is called the codebook, and is
denoted by . We assume that all nodes have the codebook. For
the Gaussian network, we will assume that the codebook meets
the power constraint, i.e., .

In this paper, we restrict the relay nodes to two operations.
These have been introduced in the examples of Section III, “for-
ward” and “decode and re-encode.” We now state them for-
mally.

Decode and Re-encode: This operation implies that when
node receives message , it performs maximum-like-
lihood (ML) decoding of to determine which message
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index was transmitted by . Since it has the codebook, it re-en-
codes the message using the same codeword that the source
would have used, and transmits the same codeword. In short, it
should act like a copy of the source.

However, for this to happen, we need that the decoding be
error-free. This implies that the rate at which the source oper-
ates should be no greater that the maximum rate at which node

can decode. We will see the relevance of this constraint in
Section V.

Forward: We will describe this operation separately for the
two network models. In the Gaussian network, node receives
message given by

(1)

“Forwarding” implies that the node normalizes this signal to
meet the power constraint and then transmits the message.
Therefore, it transmits given by

We will assume that is known to .
For the erasure network, nodes either decode without error

and transmit the original codeword or “forward” the received
data. Consider node which sees data coming in on several
edges, in the form of -length blocks of bits and erasures. For
the th bit of such a block, it either sees erasures on every edge
(and this sees an effective erasure), or gets to see the bit on at
least one incoming edge. (It cannot happen that the node sees
1 on a particular edge and 0 on another edge for the th posi-
tion. This is because of our assumption that whenever an earlier
node decodes, it does so without error.) Therefore, in our inter-
ference-free model, every relay node sees an effective erasure
channel from the source, i.e., it sees the codeword transmitted
by the source with some bits erased. “Forwarding” means broad-
casting this sequence of bits and erasures.

Note that the effective erasure probability seen by node is a
function of the network topology and parameters, . We will
see in Section VI-C how this effective erasure probability can
be calculated.

By restricting ourselves to only two operations, we have en-
sured that all nodes in the network see a Gaussian channel (with
some effective SNR) or erasure channel (with some effective
erasure probability) with respect to the transmitted codeword.
Therefore, they can do ML decoding or typical set decoding if

is no greater than the rate that they can support. We will al-
ways ensure that satisfies this constraint.

We can think of both operations as specific forms of network
coding. In both networks and with both operations, all the in-
formation coming in at a node on different edges gets pooled
together. This happens automatically in the Gaussian network
and is done by the node itself in the erasure network. But the
node has the choice of trying to decode, thus imposing a rate

constraint, or can simply forward the information, hoping that
some other node would have a better chance of decoding.

Having described the two operations permitted to the relay
nodes in the two networks, we are now ready to formally state
the problem.

V. PROBLEM STATEMENT

Since we allow only two operations to nodes, decode and
re-encode and forward, and every relay node must perform one
of these, it is enough to specify the set of relay nodes that de-
code and re-encode in order to completely specify the working
of the network. The source and destination will always be ex-
cluded from this set.

If a set is the set of nodes that decode and
re-encode, we will call a policy for network operation.

Under policy , each node of the network sees an effective
(Gaussian or erasure) channel from the source. Let the effective
SNR that node sees under policy be denoted by
for Gaussian networks. For erasure networks, we denote the ef-
fective erasure probability seen by node under policy by

. Therefore, the rate that node can support under policy
is or for Gaussian or erasure net-

works, respectively. In general, we will call this . Nodes
in as well as the destination must be able to perform error-free
decoding. This means that the rate at which the source transmits
must be no greater than the rates at which these nodes can de-
code. This tells us that under policy , the rate at which we
can operate the network is constrained by

(2)

We denote this minimum by

(3)

Intuitively, asking some nodes to decode means that there are
more copies of the source in the network, and hence, the rate
which the destination can support increases. On the other hand,
asking a node to decode introduces a constraint on the rate .
This is the tradeoff for any policy . For instance, in Fig. 1,
consider nodes and . If forwards, node sees an effec-
tive erasure probability of . (We will
see how this has been calculated in Section VI-C.) On the other
hand, if decodes, node is at an advantage, since it sees
a lower effective erasure probability, . However, asking

to decode puts a constraint on the rate as seen by (2), since
the rate that can support is only . This constraint is

.
Our problem is to find the policy that gives the best rate, i.e.,

to find such that is maximized

First we need to address the question of finding , i.e.,
of finding the rate at node under policy . Recall that
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and are the transmitted and received messages at node .
If we are using policy , we will denote these by and

. We may drop the subscript if it is clear which policy
we are referring to. Note that for the source, the transmitted
message is , irrespective of the policy.

VI. DETERMINING THE RATE AT A NODE,

In this section, we describe a method to find the rate at an ar-
bitrary node when the set of decoding nodes is given by .
Therefore, we need to find the effective SNR or erasure proba-
bility of the received signal . In order to do that, we need
the concept of a partial ordering on the nodes.

A. Partial Ordering of Nodes

Consider two distinct nodes and of the network. Exactly
one of the following will occur.

1) There is a directed path from to . In this case, we will
say that .

2) There is a directed path from to . In this case, we will
say that .

3) There is no directed path from to or from to . In
this case, we will say that and are incomparable.

Note that since we assume acyclic networks, we cannot have di-
rected paths both from to and from to . Thus, we have a
partial ordering for nodes in the network. For example, in Fig. 1,
we have , but and are incomparable. Note that
the partial ordering gives us a (nonunique) sequence of nodes
starting with , such that for every , all the nodes that satisfy

are before it in the sequence [15]. Call such a sequence
. A possible sequence for Fig. 1 is .
Next we address the issue of determining the rate under a

particular policy. We discuss this separately for GWNs and
EWNs.

B. Finding the Rate in GWNs

Recall that is the received signal at under policy
. Once we know , we can determine the signal power

and the noise power in it. Denote these by and ,
respectively. Consider node . If it is decoding,

. If it is forwarding

We now outline a method for finding the rate for all the nodes
by proceeding in the order given by . Without loss of gener-
ality, assume that the nodes are already numbered according to
a partial ordering. Therefore, .
Then, for , we only have an edge coming in from , and hence

Let our induction hypothesis be that we know for
. For , we now have

(4)

By our hypothesis, we know all the that occur in the
last summation. Substituting for these, we get . Careful
observation indicates that this will be a linear combination of

and the noise terms .
In general, if this linear combination is given by

we have and .
Once these are known, the SNR is simply

, and the rate can be calculated as
. Clearly, the complexity of this procedure is

.

C. Finding Rate in EWNs

We first put this problem in a graph-theoretic setting. We
are given a directed, acyclic graph where certain nodes act as
sources. For us, the set is the set of source nodes.
All the edges of the graph have certain probabilities of failing,
i.e., of being absent. For us, these are the erasure probabilities
of the channel. With this setup, for every node in the net-
work (excluding , but including those in ), we need to find
the probability that there exists at least one directed path from
some source node to this node. This is the network reliability
problem in one of its most general formulations [16], [17]. This
is a well-studied problem and is known to be -hard [17].
Although no polynomial-time algorithms to solve the problem
are known, efficient algorithms for special graphs are known.
An overview of the network reliability problem can be found in
[18]. In the rest of this section, we propose two straightforward
methods to compute the probabilities of connectivity that we are
interested in. We will also mention some techniques that can re-
duce the computation involved in these methods.

Assume we have a policy . Consider a node of the
network. To find , we need to find . A bit is
erased at node if it is erased on all incoming links. With each
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edge in the graph, associate a channel random variable
. This takes the value 0 when a bit is erased, and the

value 1 when a bit is not erased. Thus, it is a Bernoulli random
variable with probability .

Consider all the directed paths from to . Let there
be paths. Denote the paths by . Let path

consist of edges. We specify path by writing
in order the edges it traverses, i.e., with the sequence

. We know that
and . Consider the set of vertices excluding that
are on path , i.e., . Some nodes in this
set may belong to , i.e., they are decoding nodes. In this case,
we know that they transmit the original codeword exactly. Let
be the largest index in this set such that decodes. Therefore,

will not receive bit along path only if an erasure occurs
on an edge that comes after in the path. We associate with
path the product of the random variables that affect this

This product is zero if one of the random variables takes value
zero, which, in turn, means that an erasure occurred on that edge.

Now, sees an erasure only when none of the paths from
to itself manage to transmit the bit to it. Therefore, sees

an erasure when for all the paths , .
Therefore, we have

One way to evaluate this is by checking all possible combina-
tions of values that the variables can take and finding the total
probability of those combinations that satisfy .
This procedure has complexity . One observation that can
make this procedure more efficient is that if we know that set-
ting a certain subset of the variables to 1 is enough to make
the event happen, then for every superset of this
subset, setting all the variables in that superset to 1 is also
enough to make the event happen. With this, we
may have to check out fewer than the possible combinations
of values for the variables and reduce the complexity.

Another way to evaluate this is by using the inclusion–exclu-
sion principle [15]. This gives us

Since we have paths, the above expression has terms.
A general term of the form can be
evaluated by first listing all the variables that occur in at least
one of the terms. Say these are . Now

is given by the product

. This procedure has complexity , where
is the . In this procedure, the complexity of listing all

the variables in a certain set of terms can be reduced by storing
the lists that one makes for sets of terms and simply
adding on the terms from the th term to the appropriate list.

VII. ALGORITHM TO FIND OPTIMUM POLICY

In general, since we have relay nodes and each node has
two options, forwarding and decoding and re-encoding, we have

policies. To find the optimum policy, we can analyze the
rate for each of these policies and determine the one that gives
us the best rate. This strategy of exhaustive search requires us
to analyze policies.

Here, we propose a greedy algorithm that finds the optimum
policy which maximizes the rate. This algorithm requires us
to analyze at most policies. In the next section, we will
give a proof of correctness for this algorithm.

1) Set .
2) Compute for all . (Use techniques of

Section VI.)
Find .

3) Find .
4) If , terminate. is the optimal strategy.
5) If , find the largest such that ,

.
Let .
Return to 2.

At each stage of the algorithm, we look for nodes that are
seeing a rate as good as or better than the current rate of net-
work operation. If there are no such nodes, the algorithm termi-
nates. If there are such nodes, we choose the best from among
them. Thus, in every iteration, the nodes we add are such that
they do not put additional constraints on the rate of the network.
Therefore, the rate of the network can only increase in succes-
sive iterations.

Note that since we assume a finite network, this algorithm
is certain to terminate. Also, since cannot have more than

nodes, the algorithm cycles between steps 2–5 at most
times. This is significantly faster than the strategy of

exhaustive search that requires us to analyze policies.
The complexity of the algorithm depends on how fast the

computation of can be done. We have seen techniques
for this computation in Section VI.

VIII. ANALYSIS OF THE ALGORITHM

We first prove a lemma regarding the effect of decoding at a
particular node on the rates supportable at other nodes.

Lemma 1: When node is added to the decoding set , the
only nodes that may see a change in rate are . This
change can only be an increase in rate, i.e., such that ,
we have . Every other node is unaf-
fected, i.e., .

Proof: We give a proof for the Gaussian network. We omit
the proof for erasure networks, since it uses the same ideas.

Gaussian Network: Recall the computation of de-
scribed in Section VI-B. The computation for depends
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only on (some of) the where is an edge. There-
fore, inductively, it is clear that (and hence, ) de-
pends only on the nodes where . Therefore, the only
nodes that are affected when changes its operation (from for-
warding to decoding and re-encoding) are . The rest are
unaffected.

Consider one of the terms in (4). Note that each
of these are of power of which some power is the signal
power and the rest is the noise power. If changes its oper-
ation from forwarding to decoding, , i.e., the
signal power increases to and the noise power goes to 0. If

is forwarding, is only a scaled version of .
Since it is always of power , if the SNR at node increases,
the signal power in increases while the noise power de-
creases. From (4), we see that in both these cases, there is an
increase in the signal power of and a decrease in the
noise power. This implies an increase in the SNR.

Therefore, when is added to , by induction, for all nodes
, the SNR, if affected, can only undergo an increase.

Naturally, we have the same conclusion for the rate.
This lemma tells us that adding nodes to the set of decoding

nodes can only increase the rate to other nodes. While this
sounds like a good thing, it also puts a constraint on the rate, as
indicated by (2). It is this tradeoff that our algorithm seeks to
resolve by finding the optimal set of decoding nodes.

A. Proof of Optimality

Theorem 2: The algorithm of Section VII gives us an optimal
set of decoding nodes.

Proof: Let be an optimal set of decoding nodes. Let be
the set returned by the algorithm. We will prove that .
Then, since is optimal, we will have .

We prove in two steps. First we show that
. Then we show that , i.e., . This

will complete the proof.
Step 1: In every iteration, the algorithm finds subsets and

adds them to . Denote by the subset that is added to in
the th iteration. Assuming the algorithm goes through itera-
tions, we have where the union is over dis-
joint sets. In the algorithm, when is added to , all the nodes
in it are decoding at the same rate, which is for

. We will call this rate . Consider the smallest
such that , i.e., is not already entirely in .

Claim: Adding to does not decrease the rate, i.e.,
.

Proof: Because of the acyclic assumption on the graph, we
will have some nodes such that , we either
have , or and are incomparable. Let be the set of
all such nodes . Note that by Lemma 1, node supports a rate

. By (3), for every we have the necessary
condition

(5)

Also note that are all in , and by the definition
of and Lemma 1, we have

(6)

We now consider two cases.
• If for some , we also have , then from

(5) and (6), we have
.

• On the other hand, if none of the nodes in are in , pick
any node . We have . We now consider two
subcases.

i) Let . We note from Steps 3
and 5 of the algorithm that it picks out from
the set of nodes not in , all nodes with the
best rate. Since does not get picked, we have

. This, along with (5) and
(6), gives us .

ii) The other possibility is that .
Since the ’s are disjoint, there is a unique such
that . Since , by Lemma 1,

. With the same argument as that
for (6), we have . But
since the algorithm never decreases rate from one
iteration to the next, we have .
Putting these together, we get

. With (5), this gives us
.

Therefore, in every case, we have shown that .
This implies that adding the rest of the nodes from to will
not put additional constraints on , and hence, cannot decrease
the rate. Therefore, we have .

Since is optimal, this proves that also achieves
optimal rate. We can now call this set , and for the next value
of such that , we can prove that has optimal
rate. Continuing like this, we have that is optimal, or, in
other words, .

Step 2: Next, we wish to show that , i.e.,
. Let us assume the contrary. Let . Therefore,

but . Thus, where
and are disjoint. Consider such that ,
we either have or and are incomparable. We have

. By Lemma 1, .
Also, the constraint of (2) tells us that . Fi-
nally, note that since the algorithm terminates without adding
to , we have . Putting these inequalities together,
we have . But
this contradicts the fact that is optimal. Thus, we have

, i.e., .
From Steps 1 and 2, we have . But since was an

optimal policy, is also an optimal policy. This proves that the
algorithm does indeed return an optimal set of decoding nodes.

The only case in which this proof does not go through is when
the algorithm returns and . In this case, con-
sider node , where is as defined earlier. Since
the algorithm does not pick up , we have . But

from (5). Thus, . But this
contradicts the optimality of . Therefore, if there exists an op-
timal, nonempty , the algorithm cannot return an empty .

Corollary 1: The algorithm of Section VII returns the largest
optimal policy .

Proof: In the proof above, we have shown that for any op-
timal policy , we have . This implies that is the
largest optimal policy.
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Fig. 4. Multistage relay network. (a) Model of a multistage relay network. (b) Rate for the multistage erasure relay network as given by the algorithm (solid curve)
is much higher than that with all nodes decoding (dashed curve).

IX. EXAMPLES

In this section, we present some examples of networks and
show how the algorithm runs on them.

A. Multistage Erasure Relay Networks

In Fig. 4(a), we have depicted a multistage relay network. In
this, we have a single source and destination and layers of
relay nodes. The th layer consists of nodes. Between the th
and the th layer, we have a complete bipartite graph where
all the edges are directed from the th layer to the th. We
assume that each of these edges has erasure probability . The
source is connected to all the nodes in the first layer by erasure
channels with erasure probability , and all the nodes in the th
layer are connected to the destination by erasure channels with
erasure probability . We will also call the th layer
and .

Because of the structure of this network, finding the rate under
a particular policy is easier than indicated in Section VI-C. De-
note by the probability that in layer there are nodes that
do not see an erasure. This defines for
and . With this, for we obtain

(7)

For , we can show the recursion

(8)

Denote by the probability that the at least one node in the
th layer does not see an erasure. We can show that

Note that by symmetry, whenever a node decides to decode,
all the nodes in that layer decode. When layer decides to de-
code, we set and for and continue
with the recursion of (8) for the other layers. This also extends
to the case when more than one layer decodes.

Now, our algorithm proceeds as before, but operates on layers
rather than nodes, and the effective erasure probability at layer

is . As an explicit example, consider a multistage relay net-
work with four layers between the source and destination. Let

, , , , and , , ,
, where is any number in the interval [0,1]. For

a fixed value of , we can find the optimum policy for the net-
work, and this will give us the optimal rate. Fig. 4(b) shows this
optimal rate for the parameter going from 0 to 1 (solid curve).
This is not a smooth curve. The point where the right and left
derivatives do not match is where either the optimum policy or
the rate-determining layer changes. The rate with all nodes de-
coding has also been plotted (dashed curve). This rate is ,
and we see that the algorithm gives us dramatically higher rates.

B. Multistage Gaussian Relay Networks

We consider a multistage network similar to the one of the
previous section, but in which the links represent Gaussian
channels with fading coefficients and with additive noise

at layer . The indexing is identical to that in the erasure
network (see Fig. 5).

Because of the structure of the network, it is easy to compute
SNRs. Let denote the SNR at layer . Then, in the situa-
tion where all the nodes are forwarding, the following recursion
gives us the SNR. We initialize the recursion as follows:

For the rest of the layers, i.e., , we have

As with the erasure relay network, whenever a node decides
to decode, all the nodes in that layer decode. If some layers
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Fig. 5. Rate for the multistage Gaussian relay network as given by the algo-
rithm (solid curve) is much higher than that with all nodes decoding (dashed
curve).

decide to decode, a simple modification of the above recursion
gives us the new rates. If is the smallest number such that the
th layer decodes, then, clearly, the above recursion gives us

rates for layers to . For , we set and
. We have as before,

and we can continue with the recursion above for layers ,
etc. We repeat this modification for each layer that decodes.

Once theSNRata layer isknown, the rate isgivenby
asusual.Withthisprocedureforcalculatingrates,weusethealgo-
rithm of Section VII. It now operates on layers rather than nodes.

As an explicit example, consider a multistage relay network
with three layers between the source and destination. Each node
is restricted to using power . Let , , ,
and , , , . We will have

, , , where can be
any positive real number. For a fixed value of , we can find
the optimum policy for the network and this will give us the
optimal rate. Fig. 4(b) shows this optimal rate for the parameter

going from 0.5 to 1.5 (solid curve). As with the multistage
erasure network, the curve is not smooth at points where the
optimum policy or the rate-determining layer changes. We also
see the advantage compared with the case when all nodes decode
(dashed curve).

C. Erasure Network With Four Relay Nodes

Consider the relay network of Fig. 6(a). All the links have the
same erasure probability , where is any number between 0
and 1. For this range of , the algorithm has been used to find the
optimum rates and policies. The rate is plotted in Fig. 6(b) (solid
curve). Throughout, the optimal policy is . The
rate with all nodes decoding is and is also plotted (dashed
curve). As expected, the algorithm outperforms the all-decoding
scheme.

D. Gaussian Network With Three Relay Nodes

In Fig. 7(a), we see a Gaussian network with three relay
nodes. We assume that each node is restricted to use power

. Let the additive noise variances be , ,

, , where can be an arbitrarily chosen real
number. In Fig. 7(b), we see the rate returned by the algorithm
for the optimal policy for (solid curve). The rate
with all nodes decoding is also plotted (dashed curve). In the
region , we see that the optimal policy is, in
fact, that of decoding at all nodes and the two curves match.
After that, the optimal policy changes, and hence, we see that
the optimal rate curve is not smooth.

E. Gaussian Network With Four Relay Nodes

In Fig. 8(a), we see a Gaussian network with four relay nodes.
Each node, including the source, is restricted to using power

. The attenuation factors associated with the edges are ,
, , , , , ,
, . The additive noise variances associated

with the nodes are , , , ,
, where can be any positive real number. In Fig. 8, we

see the rate returned by the algorithm for the optimal policy for
(solid curve). The rate with all nodes decoding is also

plotted (dashed curve). We see that the forward/decode scheme
gives us significant improvements in the rate.

X. A DISTRIBUTED ALGORITHM FOR THE OPTIMAL POLICY

The algorithm as proposed in Section VII requires that the
network parameters (noise variances or erasure probabilities) be
known before the network operation begins, so that the optimum
policy is known beforehand. With the algorithm in its current
form, the nodes cannot determine for themselves if they should
decode or forward. In this section, we propose a scheme that can
permit nodes to determine their own operation.

The algorithm works iteratively to converge to a rate. In each
iteration, the rate of operation of the network is incremented or
decremented, depending on whether the previous transmission
was successful or not. In every iteration, all the nodes get to
decide their operation for themselves.

Let be the maximum rate of the network. This is not
known beforehand. We assume that parameters , and are
known to all the nodes beforehand. The block length is also
predetermined and known to all the nodes. In addition, we re-
quire that the nodes have a common source of randomness, so
that they can generate the same random codebook individually.
With this, consider the following algorithm.

1) All nodes generate the (same) codebook for rate . They
all set .

2) transmits a randomly chosen codeword .
3) Every relay node attempts to decode the received

message .
If it can decode without error, it transmits the decoded
codeword.2

Else, it forwards the received message (with appropriate
scaling, for the Gaussian network).

4) The destination attempts to decode the received message.
If it decodes without error, it sends back bit 1 to all the
other nodes to indicate successful decoding.

2One method of error detection is for a node to perform typical set decoding,
and assume an error if it finds more than one codeword that is jointly typical with
the received message. Other methods of error detection are the introduction of
cyclic redundancy checks (CRCs) or an automatic repeat request protocol, e.g.
[19].
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Fig. 6. Erasure network with four relay nodes. (a) Erasure network with four relay nodes. (b) Rate for the erasure network with four relay nodes as given by the
algorithm (solid curve) is much higher than that with all nodes decoding (dashed curve).

Fig. 7. Gaussian network with three relay nodes. (a) Gaussian network with three relay nodes. (b) Rate for the Gaussian relay network with three relay nodes as
given by the algorithm (solid curve) is much higher than that with all nodes decoding (dashed curve).

Fig. 8. Gaussian network with three relay nodes. (a) Gaussian network with four relay nodes. (b) Rate for the Gaussian relay network with four relay nodes as
given by the algorithm (solid curve) is much higher than that with all nodes decoding (dashed curve).
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Else, it sends back bit 0 to all other nodes.
5) All nodes increment . .

If transmitted bit was zero, all nodes set .
If transmitted bit was one, all nodes set .

6) While , go to Step 1.

Theorem 3: If the maximum rate of the network is in the
range , the previous algorithm converges to it with
an accuracy of .

Proof: The source starts by transmitting at rate . Each
relay node receives messages on all incoming links and decodes
the message if it can. If it cannot, it simply forwards what it has
received. With this procedure, nodes decide their own operation.
(The order in which they decide this is a partial order in the
sense defined in Section VI-A.) After the destination receives
all its incoming messages, it tries to decode. If , the
destination will definitely not be able to decode. If ,
we claim that the destination will be able to decode. This is
because when a node decodes, it only improves the rates for
other nodes. Also, note that an arbitrary node decides whether
to decode or not only after all the nodes before it in the partial
order have already determined if the rate they can support is
greater or smaller than . Since, by Lemma 1, these are the only
nodes that affect the rate for and they decode whenever they
can, node always gets to see the best situation it can, as far as
rate is concerned. This is true for the destination also.

Therefore, depending on whether the destination can decode
or not, we can say if is greater or smaller than . If this bit of
information is transmitted back to the source and other nodes,
they can accordingly decide whether to increase or decrease the
rate for the next transmission. Thus, we have a decision tree of
rates such that the ability or inability of the decoder tells us
which path to traverse in that tree we can finally converge on
a rate sufficiently close to the actual rate .

This algorithm provides a very natural mode of network oper-
ation that obviates the need for a central agent to know the entire
network and decide the optimum policy. Although some com-
munication from the destination to the source and other nodes
is required, this is minimal and should be easily possible in a
practical network setting.

We mention that the algorithm we present can be made more
sophisticated, such that it works for all values of , rather than
just those in the interval . We omit the details in
the interests of brevity.

XI. UPPER BOUNDS ON THE MAXIMUM RATE

The algorithms of Section VII as well as Section X converge
to the maximum rate possible with the decode/forward scheme,
but we have no way of simply looking at the network and saying
what this maximum rate will be. In this section, we present
upper bounds on the rate achievable with the limited operations
that we use in this paper.

A. Definitions

An cut is defined as a partition of the vertex set into
two subsets and such that and .
Clearly, an cut is determined simply by . For the

cut given by , let the cutset be the set of edges defined
as

Finally, we define and as

Thus and denote the nodes transmitting and re-
ceiving messages across the cut, respectively.

B. Upper Bound for Gaussian Networks

For Gaussian networks, it is evident that making the additive
noise zero at certain nodes can only increase the maximum rate
available at . In particular, let us make the additive noise zero at
all nodes except . Therefore, the received messages (and
the transmitted messages) at all nodes in are exactly the same
as that transmitted by the source. Now, if we permit the nodes in

to decode cooperatively, the rate at which they can decode
will give usanupper bound on the rate that the destination canget.

Note that the SNR at node is

Since our codebook and noise are Gaussian distributed, the op-
timum scheme for decoding cooperatively is taking a suitable
linear combination of received messages and then decoding that.
For optimal decoding, we find the linear combination that gives
us the best SNR. It is easy to show that the best SNR possible is
the sum of the SNRs seen by each node in .

Therefore, an upper bound on the rate is

for every cut .

C. Upper Bound for Erasure Networks

As in the above section, we can obtain an upper bound on the
rate for erasure networks by making certain links perfect, or free
of erasures. Therefore, we can obtain an upper bound on the rate
by making all edges other than those in perfect. With this,
all the received (and transmitted) messages in are exactly the
same as the codeword transmitted by the source. Now, it is clear
that the rate at which the nodes in can decode coopera-
tively is an upper bound on the rate available at the destination.

Clearly, the effective erasure probability seen by the set of
nodes is This gives us an upper bound
on the rate. We have

for every cut .
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Note that in [20], a different min-cut upperbound is proposed
and is shown to be achievable. This gives the capacity of the
network under the assumption that the destination has perfect
side-information regarding erasure locations from across the
network. This is very different from the setup of this paper.

XII. CONCLUSIONS AND FURTHER QUESTIONS

To summarize, we have shown that making each link error-
free in a wireless network is suboptimal. Thus, a multihop
approach, in which every relay node decodes the received
message, is not necessarily the correct approach for wireless
networks. We have proposed a scheme for network operation
that is of use in practical networks, and in which operations
performed by a node are restricted to decoding and forwarding,
both of which are common operations performed in a network
setting. We have suggested an algorithm that finds the optimum
policy without exhaustive search over an exponential number of
policies, and also proposed a method to converge to the correct
policy without having a central decision-making agent.

The algorithm of Section VII can find the maximum rate and
optimum policy for any GWN or EWN. In addition, the bounds
presented in Section XI give us some idea of what sort of op-
timal rates to expect. However, we still do not know what sort
of policies are optimal in what ranges of erasure probabilities or
SNR. The examples of Section III suggest that when the links
are poor (high erasure probabilities or low SNR), it is better to
decode. It would be interesting to know if this is true for gen-
eral networks, and what thresholds exist below which a certain
operation is always preferred.

Also, Corollary 1 tells us that the algorithm returns the
largest decoding set. Since decoding is the more costly of the
two operations considered here, an algorithm that finds the
smallest decoding set such that the maximum rate is obtained
is of interest.

We note that both operations can be thought of as specific
ways of doing network coding. We can also imagine a larger set
of operations and optimal choice of operation from among these.
The most general form of this would be when every node is free
to use any function to encode the received data. This puts the
problem in an information-theoretic setting, and a general so-
lution for erasure networks is proposed in [20], where network
coding techniques are used to obtain the precise capacity re-
gion for several multicast settings in erasure networks, assuming
certain side-information. Naturally, this capacity region is an
upper bound for the rates we have obtained in the absence of
this side-information. Finding practical schemes that reach this
capacity is an interesting avenue for future work.
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