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Abstract— Autonomous robotic systems (observers) equipped
with range sensors must be able to discover their surroundings,
in an initially unknown environment, for navigational pur-
poses. We present an implementation of a recent environment-
mapping algorithm [1] based on Essentially Non-oscillatory
(ENO) interpolation [2]. An economical cooperative control
tank-based platform [3] is used to validate our algorithm. Each
vehicle on the test-bed is equipped with a flexible caterpillar
drive, range sensor, limited onboard computing, and wireless
communication.

I. INTRODUCTION

In this paper we present an implementation of a path-

planning algorithm which allows a group of autonomous

vehicles equipped with range-sensors (observers) to explore

an unknown bounded region and construct the map of the

explored environment. This algorithm was introduced in [1]

and is based on determining visible portions of a bounded

two-dimensional region from a given vantage point. To test

the robustness of our algorithm, we consider the problem

of mapping an unknown environment using multiple mobile

inexpensive sensors where noise is an issue.

The outline of the paper is as follows. In section II we

present some of the existing algorithms for generating visi-

bility in an unknown environment and visibility based path-

planning. Then, in section III we describe the Visibility In-

terpolation algorithm first introduced in [1] and its extension

for multiple observers. Section IV discusses environment

navigation algorithm based on Visibility Interpolation. In

section V we introduce the test-bed and the robot-vehicles

used for navigation as well as the range sensors. Finally,

section VI contains the results of implementation on the test-

bed.
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II. PREVIOUS WORK

In this section we provide a brief survey of related work

in the area of visibility based navigation, sensing, and coop-

erative control. Computational geometry and combinatorics

are currently the main tools for solving visibility-based

navigation problems [4], [5], [6]. The combinatorial approach

is mainly concerned with defining visibility on polygons

and other special types of planar environments. Simplified

planar polygonal environment is the main limitation of

combinatorial approach.

In [7] a visibility function and obstacle boundaries are

represented by level set functions [8]. This formulation is

used in [9] to solve various optimization problems related

to visibility. The method works on general types of en-

vironment, however, it requires a priori knowledge of the

occluding objects to construct a level set representation. Such

information may not be available in some real applications.

In [10], an algorithm extracting planar information from

point clouds is introduced and used in mapping outdoor

environment. In [11], depth to the occluding objects is

estimated by a trinocular stereo vision system and is then

combined with a predetermined “potential” function so that

a robot can move to the desired location without crashing

into obstacles.

Motivation for the visibility formulation and subsequent

navigation algorithms in [1] comes from work of Tovar et

al. [12], [13], [14], [15], and [16]. In [16], a single robot

(observer) must be able to navigate through an unknown sim-

ply or multiply connected piecewise-analytic environment.

The robot is equipped with a sensor that maps onto a circle

relative locations of discontinuities in depth information

(gaps) in the order of their appearance with respect to the

robot’s heading. Each gap corresponds to a connected portion

of space that is not visible to the robot.

To navigate the environment, the robot approaches one

of the gaps. No distance or angular information is utilized

unlike in [1], where an additional map of the original domain

in cartesian coordinates is used to aid the path planning.

The Gap Navigation Tree (GNT), described in [12], en-

codes paths from the current position of the robot to any

place in the environment and is updated dynamically as

the robot moves. The exploration is complete when all the

gaps have been approached. A minimal representation of

the environment is constructed in form of the dynamic tree

based on gaps. In contrast, in [1], an implicit representation

of the obstacles in the environment is reconstructed at the

termination of the path.
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In [13] the GNT based algorithm [16] was tested on a

Pioneer 2-DX platform equipped with two SICK laser range

sensors which provide an omnidirectional view. The gap

sensor implementation combined the data of these two sen-

sors. Simple test environments were chosen to be within the

sensor range. Wall-following capabilities were implemented

to avoid collisions.

Another wall-following control algorithm is discussed in

[17]. In this work, curvature-based control algorithms from

[18] are tested using real range sensors. Curvature is com-

puted from the range data obtained by SICK LMS-200 laser

range sensors. Unlike range sensors used in our experiment,

the range-finder in [17] has a range of 10 m and relative

error less then 0.8%.

Even with such a high precision, curvature estimates have

significant inaccuracies in the absence of filtering. The noise

in curvature computations is related to the computation of

derivatives of the range data which are prone to noise. To deal

with this problem, ENO interpolation was introduced in [1],

to obtain high order representation of the range data, so that

derivatives can be easily estimated away from discontinuities

(see Fig. 2).

In another work [19], a multiple vehicle cooperative con-

trol algorithm is described. The model problem is extended

from the classical Art Gallery Problem [6]. Here, each robot

must find a location in a non-convex polygonal environment,

so that each point of the environment is visible to at least

one robot. In [19] the visibility-based deployment problem is

solved under the assumption that all the vehicles are initially

collocated.

In this paper we describe a multiple vehicle environment

exploration algorithm based on a Visibility Interpolation for-

mulation introduced in [1]. This algorithm works on general

types of environment and is easy to scale for an arbitrary

number of observers. As a result of the exploration a map

of the environment is produced, where obstacle boundaries

are represented by high order polynomial curves.

III. VISIBILITY INTERPOLATION

The visibility formulation from [1] is described below. It

is then applied to the problem of environment exploration by

single and multiple observers.

The range-sensor attached to an autonomous vehicle is

used to sample data from opaque objects in the environment.

The obtained point cloud is then sampled onto a sphere

centered at the observing location and interpolated to accu-

rately represent visible boundaries of occluding objects. The

following construction of visibility was introduced in [1].

Assume a point cloud P is uniformly sampled from the

occluding surfaces in the bounded domain Ω by the range

sensing device. Given a vantage point x0 and a point x in

Ω, let ν(x0, x) := (x − x0)/|x − x0| be the view direction

from x0 to x. For any direction defined by a unit vector p
construct a piecewise continuous function on a unit sphere:

ρx0
(p) :=

{

minx∈Ω{|x − x0| : ν (x0, x) = p}, if exists

∞, otherwise
(1)

Define the visibility indicator

Ξ(x, x0) := ρx0
(ν(x, x0)) − |x − x0|, (2)

such that {Ξ(x, x0) ≥ 0} is the set of visible regions and

{Ξ(x, x0) < 0} is the set of invisible regions from x0.

Enumerate all the points yi ∈ P . Define a projection

operator πx0
: Rd → Sd−1, mapping a point onto a unit

sphere centered at x0. Then define a piecewise constant

approximation to ρx0
by

ρ̃x0
(z) := min{ρx0

(z), |x0−yi|}, for every yi ∈ πx0
B(yi, ǫ),

(3)

where ǫ > 0 is chosen as in [1].

Analytically, ρ is piecewise continuous with jumps cor-

responding to the location of horizons, i.e. points where

ν(x, x0) · n(x) = 0, n(x) is outer normal vector to the

occluder’s boundary. Smoothness of ρ in each its contin-

uous piece corresponds to smoothness of visible portion

of the occluding surface. We use discontinuity preserving

Essentially Non-oscillatory (ENO) interpolation introduced

by Harten et al. [2] to construct a piecewise p-th order

polynomial approximation ρ
ENO(p)
x0

to ρx0
from ρ̃x0

. Our

approximation ρ
ENO(p)
x0

is then used to compute derivatives

on the occluding surfaces (away from the edges) and easily

extract various geometric quantities, such as curvature. Fig.

1 depicts visibility map obtained via (2) and Fig. 2 illustrates

corresponding ρENO(4), its derivatives, and curvature.

Fig. 1. Visibility map generated from artificial data: dark regions - invisible,
light regions - visible, red star - vantage point (−0.2, 0.4), magenta circles
- visible boundary, yellow circles - horizon points.

IV. APPLICATION OF VISIBILITY INTERPOLATION TO

NAVIGATION PROBLEM

In this paper we consider application of Visibility Interpo-

lation to the problem of exploration of an unknown bounded

two-dimensional region which may contain obstacles. Simi-

larly to [16], we navigate in the environment by approaching

one of the edges corresponding to horizons of the visibility

function ρ defined on a unit circle. The shape of obstacles

may be arbitrary. During exploration we construct a map of

“seen” environment, i.e. boundaries of obstacles.

We set the following restrictions on the path traveled by

the observer: the path should be continuous and consist of
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Fig. 2. ENO interpolated visibility function ρENO(4)(θ) corresponding to
Fig. 1 with edges marked by red circles; first and second derivatives of
ρENO(4)(θ), and the curvature.

discrete steps; the number of steps should be finite, and

the total distance traveled must be finite. Below we first

introduce the basic algorithm for a single observer. Then

we describe its extension to multiple observers.

Algorithm 1 (Single observer).

1) For the given x0 outside the occluding objects con-

struct the visibility function ρx0
(θ);

2) Find all the discontinuities (edges) on the (θ, ρx0
(θ))

map and choose the edge to approach, say, in the

direction of θe (store unexplored edges in a list). The

choice of an edge depends on particular aspects of the

problem and will be discussed below.

If ρx0
(θe) < ρx0

(θe + δ), choose the direction

θe + δ;

Else choose the direction θe − δ;

here δ is chosen so that the observer does not approach

the obstacle closer then some fixed distance parameter

λ.

3) Move x0 along the chosen direction by amount r =
min{tan

(

π
3

)

1
κ
, d}, where κ is the curvature of an edge

and d is a parameter controlling the maximum step-

size. If κ = 0, shift x0 by small amount to see the

next edge.

4) Finish when all the edges are “removed” from the list;

otherwise proceed to Step 1 with current location of

x0.

The above algorithm always converges. Its optimality

depends on the choice of edge in Step 2. In [1], the

nearest edge to the observer at x0 is chosen, as opposed

to the random edge in [16]. Another alternative would be to

approach the edge with corresponding largest curvature κ,

which maximizes the area revealed.

In our experiments, the choice of the next edge to approach

in Step 2 is dictated by the specifics of the sensor design

described in section V. We prefer to move around the

obstacles in the counter-clockwise fashion to minimize the

effects of errors produced by the sensors. Thus, in Step 2 of

Algorithm 1 we choose the right-most edge of the object.

Consider the following extension for multiple observers.

Let {xj}
n
j=1 be a set of observing locations. Also, let Ξj be

a visibility indicator map defined by (2) corresponding to xj .

In addition, let Θj = {θj,1, . . . , θj,k} be a set of edges visible

from the vantage point at xj . The algorithm for multiple

observers is as follows.

Algorithm 2 (Multiple observers).

1) For each xj outside the occluding objects construct the

visibility function ρxj
(θ);

2) Compute Ξ = maxj{Ξj};

3) Find the set of edges Θj corresponding to each xj . For

each j, exclude those θj,k for which Ξ ≥ 0;

4) If there remain edges for observer at xj to

approach, do so as in Algorithm 1, Steps 2

and 3;

Else move observer at xj in the direction perpen-

dicular to the direction of the nearest xi to see

new edges;

5) Finish when all the edges are “explored”; otherwise go

to Step 1 with current locations xj .

Note that in Step 3 of the above algorithm we are

excluding those edges corresponding to xj , which are visible

by another observer xi and thus do not need to be further

explored. The perpendicular move in Step 4 is chosen to

maximize chance of “seeing” more new area.

We would like to remark on different modes of execution

of Algorithm 2. In concurrent mode all observers process

sensor data simultaneously. This way, the next vantage point

of each observer depends only on their previous positions.

In sequential mode the observers are ordered as a sequence,

and only one may move at a time. In this situation, position

of the next observer depends on new positions of previous

observers. The ordering may change according to decision to

optimize joint visibility. Further details on these algorithms

will be reported in a forthcoming paper [20]. In our experi-

ments, we implement the concurrent mode.

Results of implementation of Algorithm 2 will be dis-

cussed in detail in section VI.

V. TEST-BED AND RANGE SENSORS

The results in this paper were obtained using the second

generation [3] of an economical micro car test-bed developed

FrB15.6

5427



in [21]. The purpose of the test-bed is to design a cost

effective platform to study cooperative control strategies. The

dimensions of the test-bed floor are 200×160 cm. The second

generation vehicles communicate at 30 Hz and possess

onboard processing and onboard range sensing. Tank-based

vehicles with caterpillar-style drive are used to allow for a

zero turning radius. The tank has dimensions 7 × 3.8 × 4.6
cm and weighs 65 g with batteries. Such a tank is depicted

in Fig. 3. The position of the vehicles is tracked by overhead

cameras. An off-board computer is used for communication

with the overhead cameras and for processing sensor data

from the vehicles. All the basic motion maneuver, sensor

acquisition, and communication routine is processed on-

board by a 16 MHz Atmel (Atmega 8) microprocessor. The

tank drives two belts independently, resulting in turns of

arbitrary radius, while moving forward and backward. One

can obtain more details about the test-bed and the vehicles

in [3].

Fig. 3. Tank with the attached sensor.

Now we shall describe the range sensors used in our

experiments. We work with sensors manufactured by Sharp

(model 2YOAO2 F58) of range 20 − 150 cm. The sensors

are equipped with a PSD onto which the light is focused. IR

EM radiation is emitted via LED at the front of the sensor.

The wavelength range in use is 850 nm ± 70 nm. The half-

intensity angle of the device is 1.5◦. See Fig. 4 for schematic

sensor layout.

Fig. 4. Schematic sensor layout and ray patterns.

The sensor must be mounted so that the line between LED

output and receiver is parallel to the ground (see Fig. 3) to

minimize the effect of sensor sensitivities to the boundaries,

i.e. sharp differences in texture or color of the object. For

simplicity, we have idealized our environment by covering

the occluding objects with white paper for uniformity in

color, texture, and reflected ambient light.

Here we describe the process of sensor data calibration.

The sensor takes readings at a rate 25 Hz. Sensor readings

are produced by Analog Digital Converter (ADC), which

outputs values proportional to voltage output (V×204.8). The

raw data obtained from the sensor over a period of several

seconds is depicted in Fig. 5. We use the most frequent

reading as the value at current position. In Fig. 6 we plot

values at given distances from the object measured along

the normal to the surface of an object.
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Fig. 5. Sensor ADC output 60 cm away from the object; green line
corresponds to the most frequent value.
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Fig. 6. Sensor ADC output corresponding to distance to reflective object
measured along the normal to the surface; green vertical lines mark working
sensor range.

In Fig. 7 we show several range curves constructed from

different angles to the surface of the object. As one can see

from Fig. 7, the range calibration curves are shifted with

respect to one another for different viewing angles (upward,

when the object is viewed from the right, downward, when

object is viewed from the left). This results in the same

sensor output value for two different sensor positions. For

example, sensor output at a distance of 90 cm from the object

at an angle −85◦ to the normal to the surface is the same as

the sensor output at a distance of 45 cm at an angle +75◦

and yet the same as the output at a distance of 60 cm along

the normal to the surface.

If we take as a reference the range curve measured along

the normal to the surface of reflective object, we obtain
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Fig. 7. Sensor ADC output corresponding to distance to reflective object
measured along different angles to the normal to the surface; red marks
correspond to points on the range curves with similar sensor output.

inaccuracies when looking at an object from a different angle.

For example, one can see from Fig. 8 the tilt in the measured

surface position with respect to the actual one.

The results may be improved by taking several measure-

ments along a given direction. This way we can find a

matching range curve from which we can deduce the distance

to the object and the incident angle. However, this solution

is too expensive and thus we did not implement it.

In addition, we note that the shift is only significant when

looking at an object from the right. Thus, a path-planning

algorithm is modified with a bias towards moving in a

counter-clockwise manner. See Fig. 8 for an example.

VI. RESULTS AND CONCLUSION

In summary, we implement a multi-vehicle environment

mapping algorithm based on a Visibility Interpolation formu-

lation introduced in [1]. The algorithm does not require any

shape priors for the occluding objects. We use two boxes as

our sample obstacles for easy representation. The positions,

shapes, and quantities of obstacles are unknowns.

Two tank-based vehicles equipped with the range sensors

are initially positioned on the test-bed floor outside the

obstacles. Each tank makes a 360◦ sweep to gather range

data from its surrounding environment. About 80 samples

are taken in one sweep. Each sweep takes less then a minute

to complete. Then, a visibility map and next position of each

vehicle is computed off-board based on sensor output. The

next observer’s position is transmitted to the robots and they

proceed to collect data from new vantage point. This process

is repeated until the whole region has been explored as in

Algorithm 2 above. In the example, exploration took two

steps by each observer.

The obtained range data is fit to the range calibration curve

in Fig. 6 via cubic interpolation. Then the data is processed

in the following way. Whenever we get a hit which is outside

of the range of the sensor or its x, y position is outside the

test-bed floor, we assign the value of “infinity”, which is set

to be at 120 cm.

Joint visibility maps after each step are depicted in Fig. 8.

Actual obstacle boundaries are represented by yellow lines

on each figure. Red stars represent positions of the robots

after each step. The red lines mark the path of each vehicle up

until its current location. Dark regions are invisible at current

step and lighter regions are visible. Magenta circles represent

shadow boundary obtained via ENO high order interpolation

of the obtained range data. Black circles represent horizon

points which will be approached in the next step.

The complete visibility map is depicted in Fig. 9. It is

constructed by taking the union of visibility maps of all

observers at all steps. From this map, one can estimate the

quantity, size, and locations of the obstacles. However, the

boundaries are not accurately represented due to low sensor

accuracy and small number of samples.

As was mentioned above, the results may be improved by

correcting for the angle of incidence of the IR beam. Overall,

the quality of the results is satisfactory taking into account

hardware limitations.

Fig. 8. Exploration of environment with 2 observers. Red stars are
observers’ positions; magenta circles are the sensor output converted to
range data; big dark circles are the next edges to be approached; yellow
boxes are the actual obstacle outlines; dark regions are currently invisible;
light regions are currently visible.
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