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Abstract— Two approaches, extended Kalman filter (EKF)
and moving horizon estimation (MHE), are discussed for
state estimation for nonlinear dynamical systems over packet-
dropping networks. For EKF, we provide sufficient conditions
that guarantee a bounded EKF error covariance. For MHE,
a natural scheme on organizing the finite horizon window
is proposed to handle intermittent observations. A nonlinear
programming software package, SNOPT, is employed in MHE
and the formulation for constraints is discussed in detail.
Examples and simulation results are presented.

Index Terms— State estimation, nonlinear dynamical systems,
extended Kalman filter, moving horizon estimation, packet-
dropping networks.

I. INTRODUCTION

Because of the technical advances in communication and

computation, networks have become ubiquitous in today’s

environment and the theory of networked control systems

(NCSs) is an active research area [1]. Fig. 1 shows the

structure of a typical NCS. Unlike traditional control theory,

measurements and control signals in an NCS travel through

non-ideal communication networks in which information

may be delayed, re-ordered, or even dropped. In this paper

we study an interesting problem in the NCS theory: state

estimation for nonlinear dynamical systems over packet-drop

networks.
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Communication
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Fig. 1. Diagram of a typical networked control system.

Some exciting progress has been reported in the area of

linear estimation over packet-dropping networks. Studies on

filtering with intermittent observations can be traced back

to [2] and [3]. Other researchers try to model the Kalman

filter with missing observations as a jump linear system,
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which is a stochastic hybrid system with linear dynamics

and discrete Markov chains. Certain convergence criterions

are given for expected estimation error covariance in [4]

and [5]. More recently, Sinopoli et al. in [6] study the

behavior of the Kalman filter over an i.i.d. Bernoulli packet-

dropping channel. They notice that there exists a critical

dropping probability, (i.e. a phase transition), above which

the estimation error covariance diverges. Jin et al. in [7] show

that the multiple-description code can dramatically improve

the stability and performance of Kalman filters over packet-

dropping links while efficiently using the communication

bandwidth. Although the work of [6] and [7] provide great

insights into the state estimation problem with unreliable

communication links, their results are restricted to linear dy-

namics with Gaussian noises. State estimation with nonlinear

dynamics and non-Gaussian noises over a packet-dropping

communication network has not been widely investigated yet.

Part of the difficulty with nonlinear dynamics and non-

Gaussian noises is that theoretical guarantees are often hard

to come by. Many strategies exist for online nonlinear esti-

mation and we focus on two such strategies in this paper: the

extended Kalman filter (EKF) and moving horizon estimation

(MHE). Due to the ease of implementation and a widespread

range of applications, many theoretical properties of the EKF

have been explored: [8] shows that, when either the initial

estimate is close enough to the true value or the nonlinearity

of the system is small enough, the EKF converges locally.

Sufficient conditions that guarantee stochastic stability are

derived in [9]. In [10], the authors linked the convergence

behavior of the EKF to the derivative of the nonlinear dy-

namics. However, as noted by some researchers, the existing

convergence conditions are generally too conservative so that

they are mainly of the theoretical interest.

MHE is an approach for online state estimation problem

with nonlinear dynamics, constrained variables, and non-

quadratic costs. The computation complexity is bounded

by using a finite-size moving horizon window. As new

measurements become available, old measurements are dis-

carded, and the state estimation problem is resolved inside

the horizon window. It has been shown in [11] that this

approach can be used in some applications where the EKF

is not appropriate. If the arrival cost is known exactly, then

MHE provides the optimal Bayesian estimate. However, the

arrival cost is difficult to compute in practice, and thus must

be approximated. In such case, there are no known optimality

guarantees. For a more in-depth discussion of MHE, we refer

readers to [11].

Despite the lack of general performance guarantees, non-
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linear systems arise often in practice. In today’s networked

environment, it is important to understand the performance

of nonlinear estimation schemes. We investigate the perfor-

mance of both EKF and MHE for estimating the state of

a nonlinear dynamical system with white Gaussian distur-

bance and observation noise over a packet-dropping network.

Comparing with the result on the EKF, which is a straight

extension from the linear case, using MHE to deal with

packet drops is a brand-new idea. We use a large-scale

nonlinear programming software package, SNOPT, to solve

the numerical optimization problem that arises in MHE.

The remainder of this paper is organized as follows. In

Section II, the formulation of an extended Kalman filter

with an i.i.d. Bernoulli packet-dropping network is presented.

We give a sufficient condition on the boundedness of the

expected EKF error covariance. In Section III, we discuss

the method of moving horizon estimation with the details

of SNOPT programming, where a new estimation strategy

for packet-dropping is proposed. Examples and simulation

results are provided in Section IV and we conclude with

remarks on future research directions in Section V.

II. EXTENDED KALMAN FILTER WITH OBSERVATION

LOSS

For simplicity, we consider a nonlinear discrete-time dy-

namical system without control inputs

xk+1 = f(xk) + wk

yk = h(xk) + vk
(1)

where xk ∈ R
n is the state, yk ∈ R

mis the output, wk and vk

are independent zero-mean, white Gaussian noise processes

with covariances Q > 0 and R > 0, respectively. We assume

that f(·) and h(·) are at least twice differentiable.

A. EKF without packet-dropping

The extended Kalman filter can be represented in two

parts: the time update

{
x̂−

k+1
= f(x̂k)

P−
k+1

= AkPkAT
k + Q

(2)

and the measurement update
{

x̂k = x̂−
k + Kk(yk − h(x̂−

k ))
Pk = (I − KkCk)P−

k

(3)

where

Ak = ∂f
∂x

(x̂k),
Ck = ∂h

∂x
(x̂−

k ),
Kk = P−

k CT
k (CkP−

k CT
k + R)−1.

(4)

Let gk(·) denote the Riccati update for the error covariance

gk(X) = AkXAT
k + Q

−AkXCT
k

(
CkXCT

k + R
)−1

CkXT AT
k .

(5)

Since Ak and Ck are time-variant and they depend on the

estimate at each step, it is difficult to give general conditions

on uniform boundness of the error covariance. Let us define

the map H : R
n → R

m×n as

H(x) = [h(x);h(f(x)); · · · ;h(fn−1(x))] (6)

where

fn−1(x) = f
(
f(· · · f(·))

)

︸ ︷︷ ︸

n−1

denotes function composition.

A nonlinear system is said to satisfy the observability rank

condition if the rank of

∂H

∂x
(x0) =








∂h
∂x

(x0)
∂h
∂x

(x1)
∂f
∂x

(x0)
...
∂h
∂x

(xn−1)
∂f
∂x

(xn−2) · · ·
∂f
∂x

(x0)








(7)

equals n for any x0 ∈ R
n. According to [8], [9], if

system (1) satisfies the observability rank condition, the

uniformly bounded error covariance of the associated EKF is

a sufficient condition for the estimation error ek = xk − x̂k

of the EKF to be exponentially bounded, as long as either the

initial guess is close enough to the true value or the function

f(·) is only weakly nonlinear. For a precise statement of the

sufficient condition, we refer readers to Theorem 3.1 of [9]

or Theorem 5.2 of [8]. The exact statement is omitted to

avoid excess notations.

B. EKF with packet-dropping

We model the packet-dropping process as an i.i.d.

Bernoulli random process. A sequence of Bernoulli random

variables γk is used to indicate whether a packet is success-

fully transmitted at time k. More precisely, if γk = 1 then the

packet goes through the communication network; otherwise,

γk = 0 and the packet is dropped. This random process is

characterized by a single parameter λ:

γk =

{
1 with probability λ
0 with probability 1 − λ

(8)

When a packet is lost, we proceed naturally with the time-

update step. In the case of linear systems and Gaussian noise,

this has been shown to be optimal in [6]. The Riccati update

for the EKF is

g0
k(X) = AkXAT

k + Q (9)

when γk = 0, and

g1
k(X) = AkXAT

k + Q

−AkXCT
k

(
CkXCT

k + R
)−1

CkXT AT
k

(10)

when γk = 1. Thus, the error covariance recurrence of the

EKF is stochastic and we have the following theorem.

Theorem 2.1: Consider the nonlinear system (1) with the

following properties

1) The system satisfies the observability rank condition

in Equation (7);

2) The first-order derivative ∂f
∂x

is invertible for any x ∈
R

n;
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3) There exists a detectible pair (A,C) such that

A ≥
∂f

∂x

∣
∣
∣
∣
x=x0

and CT R−1C ≤
∂h

∂x

T

R−1 ∂h

∂x

∣
∣
∣
∣
x=x0

for all x0 ∈ R
n.

Then, the expected error covariance E[P−
k ] is uniformly

bounded if

λ > 1 − 1/ρ(A)2

where ρ(A) is the spectral radius of A.

Proof: The first two properties guarantee that P−
k is

uniformly bounded without packet drops [8], [9]. In order to

show E[P−
k ] > 0 is uniformly bounded with packet drops,

we need to find an upper bound. Let

g̃0(X) = AXAT + Q

and

g̃1(X) = AXAT + Q

−AXCT
(
CXCT + R

)−1
CXT AT .

It is true that
{

g0
k(X) ≤ g̃0(X)

g1
k(X) ≤ g̃1(X)

(11)

for any k. The first inequality is obvious from the definition

of A. For the second inequality, note that the update for error

covariance in the EKF can be re-written using the matrix

inversion lemma.
{

P−
k+1

= AkPkAT
k + Q

P−1

k = (P−
k )−1 + CT

k R−1Ck.
(12)

Thus, with the same initial conditions, the error covariance

P−
k is bounded by the error covariance P̃−

k . Here, P̃−
k

corresponds to the Kalman filter error covariance for the

linear system
{

xk+1 = Axk + wk

yk = Cxk + vk.
(13)

So we have

E[P−
k ] ≤ E[P̃−

k ].

According to [6], [7], the expected value E[P̃−
k ] evolves

according to the modified ARE

gλ(X) = AXAT + Q

−λAXCT
(
CXCT + R

)−1
CXT AT .

(14)

And it has been shown in [6], [7] that E[P̃−
k ] converges to

a unique positive definite matrix, i.e. uniformly bounded, as

k → ∞ if the packet-dropping rate 1 − λ satisfies

1 − λ < 1/ρ(A)2.

This theorem states a sufficient condition on the uniform

boundedness of the error covariance of the EKF with packet-

dropping. It indicates that the EKF exhibits a similar phase

transition as the Kalman filter with respect to packet drops.

However, we have the following comments on this result:

• First, this condition is conservative since the behavior

of the EKF is bounded by a Kalman filter of an approx-

imate linear system. This conservativeness is verified in

Section IV by simulation results.

• It is well known that the Riccati update is only a

first-order approximation to the true error covariance.

In other words, the uniform boundedness of P−
k does

not necessarily indicate the boundedness of ek. Other

conditions on the linearity of f(·) and h(·) as well as

the precision of the initial guess must be considered.

For the EKF with packet-dropping, Theorem 2.1 can

only be used to judge the boundedness of E[P−
k ]. The

behavior of E[ek] is still under investigation.

III. MOVING HORIZON ESTIMATION WITH

PACKET-DROPPING

Other than EKF, moving horizon estimation (MHE) is

another method to estimate a nonlinear system (1), which is

formulated as an optimization problem to handle constraints

explicitly. For simplicity, we assume that h(x) = x. The

optimization problem solves

min
x0,{wk}

T−1

k=0

T−1∑

k=0

‖wk‖
2
Q−1 + ‖vk‖

2
R−1 + ‖x0 − x̂0‖

2
Π−1 (15)

at time T . As T increases, more observation data are taken

into account and the optimization increases in size. To limit

the amount of computation, MHE considers a finite-size

horizon window. Fig. 2 illustrates this concept. When the

time step increases by one, the horizon window moves one

step to the right by including one new observation data and

discarding the oldest one. More precisely, MHE solves the

following optimization at each time T

min
xT−N+1,{wk}

T−1

T−N

∑T−1

k=T−N ‖wk‖
2
Q−1 + ‖vk‖

2
R−1

+ZT−N+1(xT−N+1)
(16)

where N is the horizon window size and ZT−N+1(xT−N+1)
is called the arrival cost, which summarizes the past infor-

mation up to time T −N +1. For general nonlinear systems

with the form (1), it is difficult to determine the true arrival

cost. As often done in practice, we run an EKF with MHE

at the same time and use the weighted deviation from the

result of the EKF as the arrival cost. In symbols,

ZT−N−1(xT−N−1) = ‖xT−N−1 − x̂T−N−1‖
2 · Π−1

T−N−1

(17)

where ΠT−N−1 is the error covariance of the EKF.

A. Formulation of MHE with SNOPT

A MHE scheme needs to solve an optimization prob-

lem at each step. We use SNOPT [12], a general-purpose

software package, as our numerical solver. In the cost

function (16), there are 2N + 2 variables total and they

are {xT−N+1, wT−N+1, · · · , wT−1, vT−N+1, · · · , vT }. Our

goal is to solve (16) subject to the following N−1 nonlinear
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Time step

Output

Horizon Window

Fig. 2. Diagram of MHE with no packet-dropping.

constraints:






f(xT−N+1) + vT−N+2 + wT−N+1 − yT−N+2 = 0
f(yT−N+2 − vT−N+2) + vT−N+3

+wT−N+2 − yT−N+3 = 0
...

f(yT−1 − vT−1) + vT + wT−1 − yT = 0
(18)

and one linear constraint

xT−N+1 + vT−N+1 − yT−N+1 = 0. (19)

These equality constraints arise from the system dynamics.

Additional inequality constraints on variables can be intro-

duced to model, for example, bounded noise.

To compute the Jacobian matrix of those constraints, we

order those variables as follows

{xT−N+1, vT−N+2, · · · , vT ,
︸ ︷︷ ︸

N nonlinear Jacobian variables

wT−N+1, · · · , wT−1, vT−N+1
︸ ︷︷ ︸

N linear Jacobian variables

}

to yield the sparse Jacobian matrix as










∂f
∂xT−N+1

1 1

. . .
. . .

. . .
∂f

∂vT−1
1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1











(20)

where the left-upper (N − 1) × (N − 1) sub-matrix is the

nonlinear Jacobian matrix and the last row corresponds to

the linear constraint.

After solving this optimization problem, the estimation of

xT can be calculated by

xT−N+2 = f(xT−N+1) + wT−N+1

xT−N+3 = f(xT−N+2) + wT−N+2

↓
xT = f(xT−1) + wT−1.

(21)

B. Estimation strategy for packet-dropping

When a packet is dropped in the communication network,

the estimator has to predict the state value at that time step.

For the EKF, it is natural to proceed with the time update

step until a packet is successfully received. For MHE, we

propose the following strategy to handle packet loss.

Time step

Output
Horizon Window

Fig. 3. Diagram of MHE with packet-dropping.

TABLE I

RECEIVED PACKET HISTORY AND TIME INTERVALS

Time index i1 i2 · · · iN−1 iN
Packet value yi1

yi2
· · · yiN−1

yiN

Time m1 = m2 = · · · mN−1 =

intervals i2 − i1 i3 − i2 iN − iN−1

If the packet is dropped at time k, i.e. the estimator does

not receive yk. We estimate the state at time k as

x̂k = f(x̂k−1). (22)

This one-step propagation method is used whenever the

packet is dropped. If consecutive packets are dropped, we

perform this time update multiple times.

If the packet is received at time k, the estimator uses the

latest N received observation data as nonlinear constraints.

Because multiple packets may be dropped in succession,

the time indices of the last N received packets may not

be consecutive. Fig. 3 shows this strategy. The width of the

horizon may vary at each step, but the number of successfully

received observation packets inside the window is constant.

When a new packet arrives, the horizon window moves to

the right by discarding the oldest observation data. Based on

this strategy, the estimator only needs to store the latest N
received packets at any time. Table I shows an example of

the memory and time intervals.

Due to the packet loss, we must use a different cost

function in the optimization as

min
xi1

,{wk}
iN

i1

iN∑

k=i1

‖wk‖
2
Q−1 + ‖vk‖

2
R−1 + ‖xi1 − x̂i1‖

2 · Π−1

i1
.

(23)

The arrival cost is again based on the output of an EKF at

time i1. The new optimization variables are

{ xi1 , vi2 , · · · , viN
,

︸ ︷︷ ︸

N nonlinear Jacobian variables

wi1−1, · · · , wiN−1
, vi1

︸ ︷︷ ︸

N linear Jacobian variables

}.
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The nonlinear constraints are






fm
1 (xi1) + vi2 + wi1 − yi2 = 0

fm
2 (yi2 − vi2) + vi3 + wi2 − yi3 = 0

...

fm
N−1 (yiN−1

− viN−1
) + viN

+ wiN−1
− yiN

= 0
(24)

and the linear constraint

xi1 + vi1 − yi1 = 0. (25)

The difference between constraints in (18) and (24) is that the

nonlinear function f(·) is replaced by compositions fm(·).
While the Jacobian matrix has the same form as in Equation

(20).

IV. EXAMPLES AND SIMULATION RESULTS

In this section, we apply the aforementioned estimation

strategies to two scalar nonlinear systems as examples.

A. Example: a stable nonlinear system

Let us first consider the system
{

xk+1 = xk − 0.001 · xk(xk + 2)(xk − 5) + wk

yk = xk + vk,
(26)

where wk and vk are zero-mean white Gaussian noise pro-

cesses with covariances Q = 0.01 and R = 6, respectively.

This system satisfies the observability rank condition and

has three equilibrium points {0,−2, 5}, where −2 and 5 are

stable equilibrium points and 0 is unstable. As a comparison,

we first consider the case with no packet-drops. Fig. 4 shows

the performance of EKF and MHE with window size 70. It is

apparent that with Gaussian noise and stable dynamics, the

EKF is almost as good as MHE. Fig. 5 shows the horizon

window of MHE. The red interval represents the estimated

state values inside the horizon window based on the results

of the numerical solver, SNOPT. The green curve shows the

actual states, the cyan dots are the noisy observations, and the

blue is the estimated trajectory according to MHE. We ran

simulations on a desktop computer with an Intel(R) Xeon(R)

CPU at 2.66 GHz and 1 GB of RAM. The update rate of

MHE about 1 Hz.
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Fig. 4. EKF and MHE with no packet-dropping.
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Horizon window of MHE

Fig. 5. Horizon window of MHE with no packet-dropping.

Fig. 6 shows the simulation result of the EKF under

various packet-dropping conditions. Large packet drop rates

degrade estimator performance regardless which approach is

used. We get the similar figure for MHE as well. Since

the dynamics are stable, both EKF and MHE eventually

converge to the stable state. The output of estimator breaks

into discontinuous pieces at high packet-dropping rate. Each

piece corresponds to an interval of prediction due to con-

tinuous packet drops. When a packet successfully received,

the estimator updates its output and the estimated trajectory

jumps. Fig. 7 shows a typical horizon window of MHE.

The red cross represents the estimated state values inside the

horizon window. The green curve shows the true states, the

cyan dots denote the received noisy outputs which is quite

sparse due to the high loss rate (40%), and the black is the

estimated trajectory. Since the system (26) is rather tame, we

can attribute the comparable performance to the fact that the

arrival cost of MHE is determined by an EKF.

0 50 100 150 200 250 300
−1
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1
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4
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Time index

V
a

lu
e

s

Real states

Dropping rate 20%

Dropping rate 40%

Dropping rate 60%

Dropping rate 80%

Dropping rate 90%

Fig. 6. EKF with packet-dropping.

B. Example: an unstable nonlinear system

The second system that we consider is
{

xk+1 = 1.1 · xk + 0.2 · sin(xk) + wk

yk = xk + vk,
(27)
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Fig. 7. Horizon window of MHE with 20% packet-dropping.

where wk and vk are zero-mean Gaussian white noise pro-

cesses with covariances Q = 0.01 and R = 6, respectively.

This system only has one equilibrium point at 0 and it is

unstable.

Obviously, the nonlinear system (27) satisfies the observ-

ability rank condition since yk = xk + vk. The derivative of

f(·) is bounded by

0.9 ≤
∂f

∂x
≤ 1.3.

According to Theorem 2.1, the sufficient condition for

uniform boundedness of the expected error covariance is

λ > 0.41, i.e., the packet-dropping rate should be below

59%. Fig. 8 shows the simulation result for the EKF where

the average error covariance dose not start to diverge until

the packet-dropping rate is over 80%. This is a good example

of the conservativeness of Theorem 2.1.

For the estimated trajectories of EKF and MHE, they are

similar to Fig. 6. We omit them due to space limitations.
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Fig. 8. Average error covariance of the EKF with different packet-dropping
rates.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the state estimation problem

for nonlinear dynamical systems with packet drops. For

the EKF, we state a sufficient condition on the uniform

boundness of the expected error covariance. Even though

this condition is conservative, it indicates the existence of

a phase transition in an EKF, which is similar to the linear

case. For MHE, we introduced an estimation strategy to deal

with the intermittent data. When packet-dropping occurs, the

estimator conducts prediction. When a packet is received,

the packet history stored in the estimator is updated and

the nonlinear constraints in MHE are reformulated corre-

spondingly. Simulation results are presented for two scalar

nonlinear dynamics for both EKF and MHE. The simulation

results verify the expected behaviors of these two estimators.

The future work includes a few issues. First of all, we

would like to study the case with non-Gaussian noise so that

we can compare the statistical behaviors of error covariance

of EKF and MHE; Second, it is interesting to investigate

the behavior of expected error ek of the EKF with packet

drops. Lastly, we would like to investigate whether multiple

description codes can improve the performance.
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