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Abstract—TCP-AQM can be interpreted as distributed primal-
dual algorithms to maximize aggregate utility over source rates.
We show that an equilibrium of TCP/IP, if exists, maximizes aggre-
gate utility over both source rates and routes, provided congestion
prices are used as link costs. An equilibrium exists if and only if
this utility maximization problem and its Lagrangian dual have no
duality gap. In this case, TCP/IP incurs no penalty in not splitting
traffic across multiple paths. Such an equilibrium, however, can be
unstable. It can be stabilized by adding a static component to link
cost, but at the expense of a reduced utility in equilibrium. If link
capacities are optimally provisioned, however, pure static routing,
which is necessarily stable, is sufficient to maximize utility. More-
over single-path routing again achieves the same utility as multi-
path routing at optimality.

Index Terms—Congestion control, routing, TCP-AQM/IP,
utility maximization.

I. INTRODUCTION

RECENT studies have shown that any TCP congestion con-
trol algorithm can be interpreted as carrying out a dis-

tributed primal-dual algorithm over the Internet to maximize
aggregate utility, and a user’s utility function is (often implic-
itly) defined by its TCP algorithm, see, e.g., [15], [19], [24],
[23], [21], [16], [18] for unicast and [13], [7] for multicast. See
also [20], [14], [27] for recent surveys and further references.
All of these works assume that routing is given and fixed at
the timescale of interest, and TCP, together with active queue
management (AQM), attempt to maximize aggregate utility over
source rates. In this paper, we study cross-layer utility maxi-
mization at the timescale of route changes.

We focus on the situation where a single minimum-cost route
(shortest path) is selected for each source-destination pair (Sec-
tion II). This models IP routing in the current Internet within an
Autonomous Systems using common routing protocols such as
OSPF [25]1 or RIP [11]. Routing is typically updated at a much
slower timescale than TCP-AQM. We model this by assuming
that TCP and AQM converge instantly to equilibrium after each
route update to produce source rates and “congestion prices” for
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1Even though OSPF implements a shortest-path algorithm, it allows multiple
equal-cost paths to be utilized. Our model ignores this feature.

that update period. These congestion prices may represent de-
lays or loss probabilities across network links. They determine
the next routing update in the case of dynamic routing, similar
to the system analyzed in [10]. Thus TCP-AQM/IP form a feed-
back system where routing interacts with congestion control in
an iterative process. We are interested in the equilibrium and sta-
bility properties of this iterative process. To simplify notation,
we will henceforth use TCP-AQM/IP and TCP/IP interchange-
ably.

A. Summary

Here are our main results. In the case of pure dynamic routing,
i.e., when link costs are the congestion prices generated by TCP-
AQM, it turns out that we can interpret TCP/IP as a distributed
primal-dual algorithm to maximize aggregate utility over both
source rates (by TCP-AQM) and routes (by IP), in the following
sense (Section III). We consider the problem, and its Lagrangian
dual, of maximizing utility over source rates and over routing
that use only a single path for each source-destination pair. Un-
like the TCP-AQM problem or the multipath routing problem
(see below) that are convex optimizations with no duality gap,
the single-path TCP/IP problem is nonconvex and generally has
a duality gap. An equilibrium of the TCP/IP system exists if and
only if this problem has no duality gap. In this case, a TCP/IP
equilibrium solves both the primal and the dual problem. More-
over, it incurs no penalty for not splitting traffic across mul-
tiple paths: optimal single-path routing achieves the same ag-
gregate utility as optimal multipath routing. Multipath routing
can achieve a strictly higher utility only when there is a duality
gap between the single-path primal and dual problems, but in
this case, the TCP/IP iteration does not even have an equilib-
rium, let alone solving the utility maximization problem.

Even when the single-path problem has no duality gap and
TCP/IP has an equilibrium, the equilibrium is generally unstable
under pure dynamic routing. It can be stabilized by adding a
sufficiently large static component to the definition of link cost.
The existence and characterization of TCP/IP equilibrium when
the link costs are not pure congestion prices, however, are open
problems. To proceed, we specialize to a ring network with a
common destination and demonstrate an inevitable tradeoff be-
tween utility maximization and routing stability (Section IV).
Specifically, we show that the TCP/IP system over the special
ring network is indeed unstable when link costs are pure prices.
It can be stabilized by adding a static component to the link cost,
but at the expense of a reduced utility in equilibrium. The loss in
utility increases with the weight on the static component. Hence,
while stability requires a small weight on prices, utility max-
imization favors a large weight. We present numerical results
to validate these qualitative conclusions in a general network
topology. They also suggest that routing instability can reduce
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aggregate utility to less than that achievable by (the necessarily
stable) pure static routing.

Indeed we show that if the link capacities are optimally pro-
visioned, then pure static routing is enough to maximize utility
even for general networks (Section V). Moreover, it is optimal
within the class of multipath routing: again, there is no penalty
at optimality in not splitting traffic across multiple paths.

Finally, we discuss some implications and limitations of these
results (Section VI).

B. Related Work

Our goal is to understand equilibrium and stability issues
in cross-layer optimization of TCP/IP networks. Another ap-
proach to joint routing and congestion control is to allow mul-
tipath routing, i.e., a source can transmit its data along multiple
paths to its destination. In this formulation, a source’s decision
is decomposed into two—how much traffic to send (conges-
tion control) and how to distributed it over the available paths
(multi-path routing or load balancing)—in order to maximize
aggregate utility. This has been analyzed in, e.g., [8], [15], [12].
The general intuition is that, for each source-destination pair,
only paths with the minimum, and hence equal, “congestion
prices” will be used and this minimum price determines the total
source rate as in the single-path case. In contrast to TCP/IP net-
works, this formulation assumes that both decisions operate on
the same timescale. It however provides an upper bound to the
problem TCP/IP attempts to solve (see Section III-A).

The multipath problem is equivalent to multicommodity flow
problem which has been extensively studied; see, e.g., [1], [5].
The standard formulation is to maximize aggregate throughput,
corresponding to a common and linear utility function. It is then
a linear program and therefore can be solved in polynomial
time, though there are combinatorial algorithms for this class
of problems that are more efficient. Recently, fast approxima-
tion algorithms and their competitive ratios have been devel-
oped for network flow, and other, problems, e.g., [26], [10], [2].
Since multipath problem upper bounds the TCP/IP problem, the
work on network flow problems provides insight on the perfor-
mance limit of TCP/IP. There are however differences. First, our
single-path routing problem is NP-hard (see Section III-A) and
generally has a duality gap, whereas the network flow problem
is generally a linear program that is in P and has no duality gap.
Second, the utility functions that correspond to common TCP al-
gorithms are strictly concave whereas they are typically linear,
in fact, identity, functions in network flow problems. Third, the
algorithms developed for network flow problems are typically
centralized and therefore cannot model TCP/IP iterations or be
carried out in a large network where they must be decentralized.

Instability of single-path routing is not surprising as it is well-
known that stability generally requires that the relative weight
on the dynamic (traffic-sensitive) component of the link cost be
small. Indeed, our conclusions are similar to those reached in
[4], [17] that study the same ring network for routing stability
using different link costs. Here, since the dynamic component
is the dual-optimal price for the utility maximization problem
computed by TCP-AQM, this implies a tradeoff between routing
stability and utility maximization.

II. MODEL

In general, we use small letters to denote vectors, e.g., with
as its th component; capital letters to denote matrices, e.g.,

, or constants, e.g., ; and script letters to de-
note sets of vectors or matrices, e.g., . Super-
script is used to denote vectors, matrices, or constants pertaining
to source , e.g., .

A. Network

A network is modeled as a set of uni-directional links with
finite capacities , shared by a set of
source-destination pairs, indexed by (we will also refer to the
pair simply as “source ”). There are acyclic paths for source

represented by a 0-1 matrix where

Let be the set of all columns of that represents all the
available paths to under single-path routing. Define the
matrix as

where . defines the topology of the network.
Let be a vector where the th entry represents the

fraction of ’s flow on its th path such that

and

where is a vector of an appropriate dimension with the value
1 in every entry. We require for single path routing,
and allow for multipath routing. Collect the vectors

, into a block-diagonal matrix . Let
be the set of all such matrices corresponding to single path

routing defined as

Define the corresponding set for multipath routing as

(1)

As mentioned above, defines the set of acyclic paths avail-
able to each source, and represents the network topology.
defines how the sources load balance across these paths. Their
product defines a routing matrix that specifies
the fraction of ’s flow at each link . The set of all single-path
routing matrices is

(2)

and the set of all multipath routing matrices is

(3)

The difference between single-path routing and multipath
routing is the integer constraint on and . A single-path
routing matrix in is an 0-1 matrix:
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A multipath routing matrix in is one whose entries are in
the range [0, 1]:

The path of source is denoted by , the
th column of the routing matrix .

B. TCP-AQM/IP

We consider the situation where TCP-AQM operates at a
faster timescale than routing updates. We assume a single path
is selected for each source-destination pair that minimizes
the sum of the link costs in the path, for some appropriate
definition of link cost. In particular, traffic is not split across
multiple paths from the source to the destination even if they are
available. This models, e.g., IP routing within an Autonomous
System. We focus on the timescale of the route changes, and
assume TCP-AQM is stable and converges instantly to equi-
librium after a route change. As in [18], we will interpret the
equilibria of various TCP and AQM algorithms as solutions
of a utility maximization problem defined in [15]. Different
TCP algorithms solve the same prototypical problem (4) with
different utility functions [18], [21].

Specifically, suppose each source has a utility function
as a function of its total transmission rate . We assume

is strictly concave increasing (which is the case for common
TCP algorithms [18]). Let be the (single-path)
routing in period . Let the equilibrium rates
and prices generated by TCP-AQM in period
, respectively, be the optimal solutions of the constrained

maximization problem

(4)

and its Lagrangian dual

(5)

The prices , are measures of congestion, such
as queueing delays or loss probabilities [18], [21]. We assume
the link costs in period are

(6)

where , and are constants. Based on these
costs, each source computes its new route indi-
vidually that minimizes the total cost on its path:

(7)

In (6), are traffic insensitive components of the link cost
, e.g., . If represent the fixed propagation de-

lays across links and the queueing delays at links , then
represent total delays across links . The protocol parame-

ters and determine the responsiveness of routing to network

traffic: corresponds to static routing, corresponds
to purely dynamic routing, and the larger the ratio of , the
more responsive routing is to network traffic. As we will see
below, they determine whether an equilibrium exists, whether it
is stable, and the achievable utility at equilibrium.

An equivalent way to specify the TCP-AQM/IP system as a
dynamical system, at the timescale of route changes, is to re-
place (4)–(5) by their optimality conditions. The routing is up-
dated according to

(8)

where and are given by

(9)

(10)

(11)

This set of equations describe how the routing , rates ,
and prices evolve. Note that and depend only on

through (9)–(11), implicitly assuming that TCP-AQM con-
verges instantly to an equilibrium given the new routing .

We say that is an equilibrium of TCP/IP if it is
a fixed point of (4)–(7), or equivalently, (8)–(11), i.e., starting
from routing and associated , the above iterations
yield in the subsequent periods.

III. EQUILIBRIUM OF TCP/IP

In this section, we study the condition under which TCP/IP as
modeled by (4)–(7) or (8)–(11) has an equilibrium, and charac-
terize the equilibrium as the optimal solution of an optimization
problem. Since (8)–(11) is a system of mixed integer nonlinear
inequalities, characterization of its equilibrium, even the basic
question of existence and uniqueness, is in general difficult to
determine. The case of pure dynamic routing, and ,
is the simplest and most instructive.

A. Pure Dynamic Routing: Main Results

In the following, we completely characterize the case of pure
dynamic routing, and . Without loss of generality,
we set in (7) and (8) when .

Consider the problem

(12)

and its Lagrangian dual

(13)

where is the th column of with . While (4)–(5)
maximize utility over source rates only, problem (12) maxi-
mizes utility over both rates and routes. While (4) is a convex
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program without duality gap, problem (12) is nonconvex be-
cause the variable is discrete, and generally has a duality gap.2

The interesting feature of the dual problem (13) is that the max-
imization over takes the form of minimum-cost routing with
prices generated by TCP-AQM as link costs. This suggests
that TCP/IP might turn out to be a distributed algorithm that at-
tempts to maximize utility, with proper choice of link costs. This
is indeed true—when equilibrium of TCP/IP exists.

Theorem 1: Suppose .

1) An equilibrium of TCP/IP exists if and only
if there is no duality gap between (12) and (13).

2) In this case, the equilibrium is a solution of
(12) and (13).

Hence, one can regard the layering of TCP and IP as a de-
composition of the utility maximization problem over source
rates and routes into a distributed and decentralized algorithm,
carried out on two different timescales, in the sense that an equi-
librium of the TCP/IP iteration (8)–(11), if it exists, solves (12)
and (13). An equilibrium may not exist. Even if it does, it may
not be stable—an issue we address in Section IV.

Example 1: Duality Gap: A simple example where there is a
duality gap and equilibrium of TCP/IP does not exist consists
of a single source-destination pair connected by two parallel
links each of capacity 1, as shown in Fig. 2 (take ).
Clearly, under pure dynamic single-path routing, equilibrium of
TCP/IP does not exist, because the TCP/IP iteration (8)–(11)
will choose one of the two routes in each period to carry all
traffic. TCP-AQM will generate positive price for the chosen
route and zero price for the other route, so that in the next period,
the other route will be selected, and the cycle repeats. The proof
that there is a duality gap between the primal problem (12) and
the dual problem (13) is given in Appendix VII.A (take ).
Intuitively, either path is optimal (both for primal and for dual
problem). For the primal problem the optimal rate is ,
constrained by link capacity, whereas for the dual problem, the
optimal rate is , primal infeasible. Hence the primal
optimal value is , strictly less than the dual optimal value
of .

The duality gap is a measure of “cost of not splitting”.3 To
elaborate, define the Lagrangian [3], [22]

The primal (12) and dual (13) can then be expressed respectively
as

2The nonlinear constraint Rx � c can be converted into a linear con-
straint—see Proof of Theorem 2—so integer constraint on R is the real source
of difficulty.

3A term apparently coined by Bruce Hayek.

If we allow sources to distribute their traffic among multiple
paths available to them, then the corresponding problems for
multipath routing are

(14)

Since . The next result clarifies the rela-
tion among these four problems.

Theorem 2:

According to Theorem 1, TCP/IP has an equilibrium exactly
when there is no duality gap in the single-path utility maxi-
mization, i.e., when . Theorem 2 then says that in
this case, there is no penalty in not splitting the traffic, i.e.,
single-path routing performs as well as multipath routing,

. Multipath routing achieves a strictly higher utility
precisely when TCP/IP has no equilibrium, in which case the
TCP/IP iteration (8)–(11) cannot converge, let alone solving
the single-path utility maximization problem (12) or (13). In
this case the problem (12) and its dual (13) do not characterize
TCP/IP, but their gap measures the loss in utility in restricting
routing to single-path and is of independent interest.

Even though minimum-cost routing is polynomial, it is shown
in [28] that single-path utility maximization is NP-hard. This is
not surprising since, e.g., a related problem on load balancing
on a ring has been proved to be NP-hard in [6].

Theorem 3: The primal problem (12) is NP-hard.
Theorem 3 shows that the general problem (12) is NP-hard,

by reducing all instances of the integer partition problem to
some instances of the primal problem (12). Theorem 2 however
implies that the sub-class of the utility maximization problems
with no duality gap are in P, since they are equivalent to multi-
path problems which are concave programs and hence polyno-
mial-time solvable. It is a common phenomenon for sub-classes
of NP-hard problems to have polynomial-time algorithms (e.g.,
satisfiability is NP-hard, and yet 2-SAT is in P). Informally, the
hard problems are those with nonzero duality gap.

B. Pure Dynamic Routing: Proofs

In this subsection, we present Proofs for Theorems 1–3. We
will first prove Theorem 2. Then we show that an equilibrium
of TCP/IP must solve the dual problem (13). This together with
Theorem 2 imply Theorem 1. Finally, we present a Proof for
Theorem 3.

Proof of Theorem 2: The inequality follows from the weak
duality theorem [3]. We now prove and .

We have
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where with from (2). Similarly, from (3)
we have

Define functions and as:

In order to show that , we only need to show that
. Clearly since

. From (1), noting that , we have

Since this is a linear program for the given and , at least one
of the optimal points lies on the boundary, i.e., or for
all and , and hence is in . Such a point solves both

and , i.e., .
To show , transform into a convex optimiza-

tion with linear constraints, which hence has no duality gap; see,
e.g., [3]. Now, is equivalent to the problem

(15)

Note that this is not a convex program since the feasible set
specified by is generally not convex. Define the
vectors in terms of the scalar and the vectors as
the new variables

(16)

The mapping from to is one-to-one: the inverse of
(16) is and .

Now change the variables in (15) and (14) from to
—substituting and into (15)

and (14). We obtain an equivalent problem

and its Lagrangian dual. This is a convex program with linear
constraint and hence has no duality gap. This proves

.

Proof of Theorem 1: It is easy to show that optimal solu-
tions exist for both the primal problem (12) and its dual (13),
so the issue is whether there is a duality gap. We will prove the
theorem in two steps. First, given an equilibrium of
TCP/IP, we will show that it solves both the primal (12) and the
dual (13), and hence there is no duality gap. Then, given a so-
lution of the primal and the dual problems, we will
show that it is an equilibrium of TCP/IP.

Step 1: Necessity. Let be an equilibrium of TCP/IP,
i.e., a fixed point of (4)–(7) with . Then

(17)

(18)

where, again, are the th columns of routing matrix .4

We will show that solves the dual problem (13). Then,
since the dual problem (13) upper bounds the primal problem
(12) (Theorem 2), and is a single-path routing and
hence primal feasible, also solves the primal (12).

To show that solves the dual problem, we use the
fact that the dual problem has an optimal solution, denoted by

, and show that both achieve the same dual objective
value, i.e., . Now

(19)

Let

Then (18) implies and (19) implies
. Since , we have

and hence

On the other hand

where the third equality follows from (17). Therefore,
and .

Moreover, is an optimal solution of the dual problem.
Step 2: Sufficiency. Assume that there is no duality gap and

is an optimal solution for both the primal problem

4One can exchange the order of min and max in (18) since given ~R, there is
no duality gap in max U (x ) s.t. ~Rx � c.
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Fig. 1. Network to which integer partition problem can be reduced.

(12) and its dual (13). We claim that it is also an equilibrium of
(4)–(7) with and , i.e., we need to show that

(20)

(21)

where are the th columns of . The second equality in
(21) follows from the fact that there is no duality gap for the
TCP-AQM problem.

Since solves the dual problem (13), the optimal
routing matrix satisfies (20) by the saddle point theorem
[3]. But also solves the primal problem (12). In
particular, solves the utility maximization problem over
source rates and its Lagrangian dual, with as the routing
matrix, i.e., satisfies (21).

Proof of Theorem 3: We describe a polynomial time pro-
cedure that reduces an instance of integer partition problem ([9],
pp. 47) to a special case of the primal problem. Given a set of
integers , the integer partition problem is to find a
subset such that

Given an instance of the integer partition problem, consider the
network in Fig. 1, with sources at the root, two relay nodes,
and receivers, one at each of the leaves. The two links
from the root to the relay nodes have a capacity of
each, and the two links from each relay node to receiver have
a capacity of . All receivers have the same utility function
that is increasing. The routing decision for each source is to
decide which relay node to traverse. Clearly, maximum utility
of is attained when each receiver receives at rate ,
from exactly one of the relay nodes, and the links from the root
to the two relay nodes are both saturated. Such a routing exists if
and only if there is a solution to the integer partition problem.

C. Remark: Case

The case of for general network is completely open. If
and , routing , for all , is the static

Fig. 2. A ring network.

minimum-cost routing with as the link costs. An equilib-
rium always exists in this case. Even though

minimizes routing cost and solves (4)–(5), it
is not known if jointly solves any optimization
problem.

For the case of and , even the existence of
equilibrium is unknown for general networks.

IV. STABILITY OF TCP/IP

Theorem 1 suggests using pure prices generated by
TCP-AQM as link costs because in this case, an equilibrium
of TCP/IP, when it exists, maximizes aggregate utility over
both rates and routes. We show in this section however that
the equilibrium can be unstable. Routing can be stabilized by
including a strictly positive traffic-insensitive component in the
link cost , but at a reduced achievable utility. There thus
seems to be an inevitable tradeoff between achievable utility
and routing stability.

To make this precise, we analyze a special ring network with a
common destination. As remarked in the last section, for a gen-
eral network, we do not even know if an equilibrium exists when

, let alone characterizing it. For the ring network, however,
not only does equilibrium always exists (if we ignore the integral
gap), but we can also study rigorously its stability and achiev-
able utility, and their tradeoff under minimum-cost routing. We
illustrate through a numerical example that the qualitative con-
clusions derived from the ring network seem to generalize to a
general network.

A. Ring Network

Consider a ring network with nodes, indexed by
. Nodes are sources and their common desti-

nation is node 0; see Fig. 2. For notational convenience we will
also refer to node 0 as node . Each pair of nodes is con-
nected by two links, one in each direction. We will refer to the
two unidirectional links between node and as link ; the di-
rection should be clear from the context. The fixed delay on link

is denoted as , in each direction. As
before, the cost on link in period is where

is the price on link . At time , source routes all its traffic
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in the direction, counterclockwise or clockwise, with the smaller
cost. The ring network is particularly simple because the routing
of the whole network can be represented by a single number .
Note that under minimum-cost routing, if node sends in the
counterclockwise direction, so must node , and if node
sends in the clockwise direction, so must node . Hence, we
can represent routing on the network by with
the interpretation that nodes send in the counterclock-
wise direction and nodes send in the clockwise
direction.

For this special case, we now show that the duality gap is
trivial, that minimum-cost routing based just on prices

indeed solves the primal and dual problems as Theorem 1
guarantees, but the equilibrium is unstable. Using a continuous
model, we then show that routing can be stabilized if the weight

on the fixed delay is nonzero and the weight on price is
small enough. The maximum achievable utility however de-
creases with smaller . There is thus an inevitable tradeoff be-
tween utility maximization and routing stability.

B. Utility and Stability of Pure Dynamic Routing

Suppose all sources have the same utility function ,
and all links have the same capacity of unit. We assume
that is strictly concave increasing and differentiable. Then
at any time, only link 1, in the counterclockwise direction, and
link , in the clockwise direction, can be saturated and
have strictly positive price. The utility maximization problem
(12) reduces to the following simple form:

(22)

and (23)

When routing is , nodes see price on their
paths while nodes see price on their
paths. Since these rates and prices are primal and
dual optimal, they satisfy [19]

(24)

(25)

This implies that and
.

It is easy to see that the optimal routing or . Hence
both constraints are active at optimality, implying that [from
(23)]

(26)

(27)

The problem (22)–(23) thus becomes

Dividing the objective function by and using the strict con-
cavity of , we have

with equality if and only if . This implies that the
optimal routing is

(28)

and the maximum utility is

(29)

where is the largest integer less or equal to and is the
smallest integer greater or equal to .

It can be shown that there is no duality gap for the ring net-
work considered here when is even, by verifying that routing

in (28), rates in (27), and prices
in (24)–(25) are indeed primal-dual optimal.5 When is odd,
there is generally a duality gap due to integral constraint on ;
see Appendix VII.A for a proof. This duality gap disappears in
the convexified problem when routing is allowed to take real
value in , a model we consider in the next subsection. This
suggests that TCP together with minimum-cost routing based on
prices can potentially maximize utility for this ring network. We
next show, however, that minimum-cost routing based only on
prices is unstable.

Given routing , we can combine (24)–(25) and (27) to obtain
the prices and on links 1 and

and (30)

The path cost for node in the counterclockwise direction is

(31)

and the path cost in the clockwise direction is

(32)

In the next period, each node will choose counterclock-
wise or clockwise direction according as or
is smaller. Define as

(33)

Then the resulting routing satisfies the recursive relation

5This also follows from Theorem 1 and the fact that r = N=2 is by symmetry
the equilibrium routing when N is even.
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Theorem 4: If and , then starting from any
routing , except the equilibrium when is even, the
subsequent routing oscillates between 0 and .

Proof: For any , we have

If is even, then is the unique equilibrium routing that
solves . Suppose . If

, then . Since is
strictly decreasing, and hence

and . Similarly, if
, then and . Hence

oscillates between 0 and henceforth.
Even though purely dynamic routing based on prices

maximizes utility, Theorem 4 says that it is unstable. We will
henceforth, without loss of generality, set and consider
the effect of on utility maximization and stability.

C. Maximum Utility of Minimum-Cost Routing

As mentioned above, the duality gap for the ring network we
consider is of a trivial kind that disappears when integer con-
straint on routing is relaxed. For the rest of this section, we
consider a continuous model where every point on the ring is
a source. A point on the ring is labeled by and the
common destination is the point 0 (or equivalently 1). The utility
maximization problem becomes

(34)

(35)

(36)

As in the discrete case, both constraints are active at optimality,
and hence the problem reduces to

which, by concavity, yields the optimal routing and max-
imum utility

and (37)

To see that there is no duality gap, note that the problem
(34)–(36) is equivalent to:

Define the Lagrangian as

It is easy to verify that

(38)

are primal-dual optimal and there is no duality gap; see Ap-
pendix VII-B.

We now look at the maximum utility achievable by the equi-
librium of minimum-cost routing.

Let the delay from to the destination in the counterclockwise
direction be

and the delay in the clockwise direction be

where , is given. Here, corresponds to link
cost in the discrete model. Given routing , the price in
the counterclockwise direction is and the price in the
clockwise direction is . Then the cost of source
in the counterclockwise direction is

(39)

and the cost in the clockwise direction is

(40)

A routing is in equilibrium if the costs of source in both
directions are the same.

Definition 5: A routing is called an equilibrium routing if
. It is denoted by or .

By definition, is the solution of

(41)

Since , and , the equilibrium is
in (0, 1) and is unique.

Given a routing , its utility is

The maximum utility achieved by minimum-cost routing, with
parameter , is then . The next result
implies that varies between and and converges mono-
tonically to as . As a result, the loss
in utility also approaches 0 as . Denote the interval in
which and vary as .
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Theorem 6: Suppose exists and is bounded on . For all
is a strictly decreasing function of . Moreover,

as and approach 0.
Proof: The (41) defines the equilibrium routing

as an implicit function of . By the implicit function theorem,
satisfies

The right-hand side is positive since is strictly concave.
Hence has the same sign as the term in the square bracket,
i.e., since is decreasing,

(42)

This implies that is a strictly decreasing function of ;
see Fig. 3.

Hence converges to a limit as . Since
is bounded on the closed interval , so is . Hence, from (41),
we must have

Since is strictly decreasing, this implies that
.

To show that also converges to 0, note that
and hence we have, by Taylor expansion,

for some between and . Here

where is the upper bound of on . Hence

Since , the proof is complete.
The shape of in (42) implies that, if then

for all but decreases to as , and
if then for all but increases to
monotonically, as illustrated in Fig. 3. This is a consequence of
the continuity of .

D. Stability of Minimum-Cost Routing

We now turn to the stability of . For simplicity, we will take
, the utility function of TCP Vegas [21]. With log

utility function, and hence Theorem
6 can be strengthened to show that is a strictly

Fig. 3. r(a).

decreasing function of , and hence converges monotonically
to 0 as .

Given , let denote the solution of

It is in the range [0, 1] if and only if , or if and
only if

We will assume that . Then exists and

(43)

The routing iteration is

(44)

where .
Definition 7: The equilibrium routing is (globally) stable

if starting from any routing defined by (43)–(44) con-
verges to as .

Example 2: Uniform : Suppose delay is uniform on the
ring, for all , so that . From
(41), the equilibrium routing is

coinciding with the utility-maximizing routing .
Suppose . Then the routing iteration becomes

Since is a contrac-
tion mapping and hence is globally stable for all .

Hence for the uniform delay case, adding a static component
to link cost stabilizes routing provided the weight on prices is
smaller than link delay. Moreover, the static component does not
lead to any loss in utility . The stability condition gen-
eralizes to the general delay case. The following theorem says
that if is smaller than the minimum ‘link delay’, then is
globally stable; if is bigger than the maximum ‘link delay’,
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then it is globally unstable (diverge from any initial routing ex-
cept ); otherwise, it may converge or diverge depending on
initial routing.

Theorem 8:

1) If then is globally stable.
2) Suppose . Then there exists such

that
a) If or then subsequent routings oscillate

between and .
b) If or then subsequent routings after a

finite number of iterations oscillate between 0 and 1.
c) If then converges to provided

.
3) If then starting from any initial

routing , subsequent routings after a finite
number of iterations oscillate between 0 and 1.

Proof:

1. We show that the routing iteration (44) is a contraction
mapping if . Now

for some between and , by the mean value theorem.
Hence is a contraction mapping and starting from
any converges exponentially to .

2. Define

Then the routing iteration can be written as

(45)

Define the following sequences:

Note that is a routing sequence going back-
ward in time. The following lemma is proved in the Ap-
pendix, following [17].

Lemma 9: Let . Then

Since the sequences are monotone, the lemma implies that
there are and with such that

and

By continuity of and , we have

and

This implies that starting from or , the sub-
sequent routings oscillate between and .

To show the second claim, suppose . Specifically,
suppose for some . If
(possible since ), then and subsequent rout-
ings oscillate between 0 and 1. Otherwise, from (45),

, and hence . Since
is strictly decreasing, we have by

definition of . Hence, since is strictly increasing,
. The same argument then shows that
. Hence we have shown that implies
. This proves the second claim.

The proof of the third claim follows the same argument of
part 1.

3. By the mean value theorem, we have, for all in [0,
1],

for some between and . Hence the iteration map

is a contraction provided . This im-
plies that the sequence converges and, since

is the unique fixed point of .
The assertion then follows from part 2(b).

E. General Network

It seems difficult to derive an analytical bound on to guar-
antee routing stability or to compute optimal routing for general
networks. In this section, we present numerical results to illus-
trate that the intuition from the simple ring network analyzed in
the previous subsections extends to general topology.

We generate a random network based on Waxman’s algo-
rithm [29]. The nodes are uniformly distributed in a two dimen-
sional plane. The probability that a pair of nodes are con-
nected is given by

where the maximum probability controls connectivity,
controls the length of the edges with a larger fa-

voring longer edges, is the Euclidean distance between
nodes and , and is the maximum distance between any
two nodes. In our example, we set the number of nodes

, which generated 90 bidirectional links;
see Fig. 4. The fixed delay of each link is randomly chosen
according to a uniform distribution over [100, 400] ms. The link
capacities are randomly chosen from the interval [1000, 4000]
packets/sec, also with uniform distribution. There are 60 flows
on the network with randomly chosen source and destination
nodes. Routing on this network is computed using Bellman-
Ford minimum-cost algorithm, with link cost
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Fig. 4. A random network.

Fig. 5. Aggregate utility as a function of a for the random network in Fig. 4.

in each update period , on a slower timescale than congestion
control. In each routing period , we first solve the link prices
based on the current routing, using the gradient projection al-
gorithm of [19]. We iterate the source algorithm to update rates
and the link algorithm to update prices, until they converge. The
link prices are then used to compute the minimum-cost for the
next period.

We measure the performance of the scheme at different
by the sum of all source’s utilities. If the routing is stable (at
small ), the aggregate utility is computed using the equilibrium
routing. Otherwise, the routing oscillates and the time-averaged
aggregate utility is used. The result is shown in Fig. 5.

As expected, when is small, routing is stable and the aggre-
gate utility increases with , as in the ring network analyzed in
Section IV-C (Theorem 6). When , the static delay dom-
inates the link cost and the routes computed with remain
the same as with static routing , and hence the aggregate

utility is independent of . Routing becomes unstable at around
. Even though the time-averaged utility continues to rise

after routing instability sets in, eventually it peaks and drops to
a level less than the utility achievable by the necessarily stable
static routing.

V. RESOURCE PROVISIONING

Results in the previous sections show that even though an
equilibrium of TCP/IP, when it exists, maximizes utility under
pure dynamic routing, it can be unstable and hence not attain-
able by the TCP/IP system. In this section, we show that if the
link capacities are optimally provisioned, however, pure static
routing is enough to maximize utility. Moreover, it is optimal
even within the class of multipath routing: again, there is no
penalty in not splitting traffic across multiple paths.

Suppose it costs amount to provision a unit of capacity
at link and let be the vector of unit costs.
For instance, a longer link may have a larger . The total ca-
pacity cost over the entire network is . Suppose the budget
for provisioning the capacity is . Consider the problem of op-
timally selecting capacities, routing, and source rates to maxi-
mize utility:

(46)

(47)

(48)

where are concave increasing utility functions. Note that
ranges in , and hence multipath routing is allowed and the
problem has no duality gap. This problem may arise when op-
tical lightpaths can be dynamically reconfigured at connection
timescale.

Theorem 10: Suppose for all and . At
optimality:

1) there is an optimal solution where
is a single-path routing.

2) moreover, is pure static routing using as link costs.
3) , i.e., there is no slack capacity.
4) , i.e., there is no slack in budget.
5) link prices generated by TCP-AQM are proportional to

the provisioning costs, for some .
Proof: It is easy to show the existence of an equilibrium.

Define the Lagrangian of (46)–(48) as

At optimality, the KKT condition holds: there exist and
such that

(49)

(50)

(51)

From (49), we obtain the last claim in the theorem. Moreover,
(49) and imply that and for all
, since . Hence, from (50), (51) and primal feasibility,
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equality holds in (47) and (48), proving the third and fourth
claims.

To prove the first two claims, express the routing matrix as
where . Using the equalities in (47) and

(48) to eliminate , we can transform the utility maximization
problem (46)–(48) into

where diag . Since is nondecreasing and both the
objective and the constraints above are separable in , in order
to maximize utility, should be chosen to be a solution of

Since this is a linear program, there exists an optimal point
on the boundary. Hence there is an optimal , i.e.,
minimum-cost single-path routing using as link costs is
optimal.

VI. CONCLUSION

Given a routing, TCP-AQM can be interpreted as a dis-
tributed primal-dual algorithm over the Internet to maximize
aggregate utility over source rates. In this paper, we study
whether TCP-AQM together with IP (modeled by min-
imum-cost routing) can maximize utility over both source rates
and routing, on a slower timescale. We show that we can indeed
interpret TCP/IP as attempting to maximize utility in the sense
that its equilibrium, if exists, solves the utility maximization
problem and its dual, provided congestion prices generated by
TCP-AQM are used as link costs. TCP/IP equilibrium exists if
and only if there is no penalty in not splitting traffic across mul-
tiple paths. Even if equilibrium exists, however, TCP/IP with
pure dynamic routing can be unstable. Specializing to a special
ring network, we show that routing is indeed unstable when
link costs are congestion prices, it can be stabilized by adding
a static component to the definition of link cost, but the static
component reduces the achievable utility. There thus seems to
be an inevitable tradeoff between routing stability and utility
maximization, for any given set of link capacities. We show,
however, that if link capacities are optimally provisioned, then
pure static (and hence stable) routing is sufficient to maximize
utility even for general networks and link costs are proportional
to the provisioning costs. Moreover single-path routing can
achieve the same utility as multipath routing. Hence, one can
regard the layering of TCP and IP as a decomposition of the
utility maximization problem over source rates and routes
into a distributed and decentralized algorithm, carried out on
different timescales, at least when network capacities are well
provisioned.

The duality model of TCP-AQM has been useful in un-
derstanding the equilibrium properties, including throughput,
packet loss, delay, and fairness, of large-scale networks under
TCP-AQM control. This paper is a first, and preliminary,

attempt to apply the same methodology to understand the
cross-layer interaction of TCP-AQM, minimum-cost routing
and resources allocation. Our model is simplistic—it ignores
finite duration flows and randomness in real networks, and
reduces the rich behavior of IP to minimum-cost routing. Even
within this highly abstract model, many questions remain open.
First, even though numerical examples suggest that the tradeoff
between routing stability and utility maximization is present
in a more general network than the special ring network we
studied, we have not been able to find an analytical proof.
One of the major difficulties is that, in a general network,
minimum-cost routing cannot be as conveniently represented as
in the ring network. Second, when static component is included
in link cost , it is not known if TCP/IP has an equilibrium,
whether the equilibrium jointly solves a certain optimization
problem, and under what condition it is stable. Third, it would
be interesting to estimate the duality gap in the single-path
problem. Even though this problem is not directly related to
the TCP/IP iteration when the duality gap is nonzero, the gap
measures the penalty of not splitting traffic among multiple
paths.

APPENDIX

A. Duality Gap When Is Odd

We prove that there is generally a duality gap between the
primal problem (22)–(23) and its dual when is odd.

It is easy to see that the primal optimal routing is

Suppose without loss of generality that (the
other case is similar). Then, the source rates are

and

yielding a primal objective value of

where the last inequality follows from the strict concavity of
. We now show that the right-hand side is the optimal dual

objective value, and hence there is a duality gap.
The dual problem of (22)–(23) is (e.g., [19])

where
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First, note that the minimizing must satisfy
, for otherwise, if (say) , then the dual objective

value is

and can be reduced by decreasing to . Hence the dual
problem is equivalent to

(52)

Let denote the minimizer and
denote the corresponding maximizers (they are equal for all by
symmetry). Then we have

(53)

Differentiating the objective function in (52) with respect to
and setting it to zero, we have

(54)

Using (53), we have

and hence the minimum dual objective value is

as desired.

B. Primal-Dual Optimality

We prove that the solution given by (38) is primal-dual
optimal using the saddle-point theorem (e.g., ([3], pp. 427)).
Clearly, is primal feasible and is
dual feasible. We now show that is a
saddle point, i.e., for all

(55)

For the right inequality, substitute from (38)
into to get, for all

But , establishing the right
inequality.

For the left inequality, denoting , from (38)
we have

(56)

Fig. 6. Lemma 9.

with , where equality holds if and only if
since is strictly concave. Notice that the right-hand

side is maximized over if and only if satisfies

This implies that since is strictly
monotonic. Substitute into (56) yields, for all

as desired, since .

C. Proof of Lemma 9

We will prove the lemma by induction. Note that
implies that . Since
and (see Fig. 6). Hence

This implies that satisfies

Since , we
have

Let the induction hypothesis be

Then and that
. Hence,

This implies that , which in turn implies
that . This completes the induction.
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