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Abstract— This paper considers low resolution scalar quanti-
zation for a memoryless Gaussian source with respect to absolute
error distortion. It shows that slope of the the operational rate-
distortion function of scalar quantization is infinite at the point
Dmax where the rate becomes zero. Thus, unlike the situation
for squared error distortion, or for Laplacian and exponential
sources with squared or absolute error distortion, for a Gaussian
source and absolute error, scalar quantization at low rates is
far from the Shannon rate-distortion function, i.e. far from the
performance of the best lossy coding technique.

I. INTRODUCTION

This paper considers the asymptotic low resolution, i.e. low

rate, performance of scalar quantization for a Gaussian source

and absolute error distortion measure. It follows a path some-

what similar to that taken in [1], where a Gaussian source and

squared error distortion measure is considered. Specifically,

we find the slope of the operational rate-distortion function

of scalar quantization, R(D), at D = Dmax, where Dmax is

the minimum distortion attainable with zero rate. This slope

determines the speed with which R(D) → 0 as D → Dmax.

Following [1], we write

R(D) = s
(
1 − D

Dmax

) [
1 + o

D→Dmax

]
,

where o
D→Dmax

is a quantity that tends to zero as D goes to

Dmax, and s is the magnitude of the slope with respect to

normalized distortion.

The values of s in the case of exponential and Laplacian

sources with both absolute and squared error distortion mea-

sures have been given in [2]; the values in the case of a

uniform source and both distortion measures can be deduced

from [3]; the value of s for Gaussian source and squared error

was provided in [1]; finally, the value of s for a Gaussian

source and absolute error is given in this paper. Table I below

summarizes these values.

We observe from Table I that since the slopes of R(D) at

D = Dmax equal 0 for exponential and Laplacian sources with

squared error, they must equal the slopes of the corresponding
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exponential Laplacian uniform Gaussian

squared error 0 0 ∞ log2 e
2

absolute error 1 log2 e ∞ ∞
TABLE I

MAGNITUDE OF THE SLOPE OF THE OPERATIONAL RATE-DISTORTION

FUNCTION R(D) AT D = Dmax .

Shannon rate-distortion functions (because the latter’s magni-

tudes could be no larger). Furthermore, for a Gaussian source

with squared error, and for Laplacian and exponential sources

with absolute error, the Shannon rate-distortion functions are

known [4], [5]3, and their slopes match the corresponding

slopes of R(D). Thus, in low resolution, scalar quantization

for these sources and distortion measures is asymptotically

optimal, i.e. as good as any quantization technique — vector or

otherwise. For a uniform source with both distortion measures,

and for a Gaussian source with absolute error, the slopes

of R(D) at D = Dmax are negatively infinite, whereas the

slopes of the corresponding Shannon rate-distortion functions

cannot be negatively infinite, i.e., they must be finite (because

these functions are convex). Thus, for these sources and

distortion measures, low resolution scalar quantization is far

from optimal.

The remainder of this paper is organized as follows. Sec-

tion II provides background and introduces notation. The main

result is given in Section III. Section IV offers concluding

remarks. Finally, one lemma proof is left to the appendix.

II. BACKGROUND

The assumption throughout the paper is that the source to

be quantized is stationary, memoryless and Gaussian with zero

mean and variance σ2. We denote this source by N (0, σ2).
A scalar quantizer q is a partition of the real line into cells

Sk, each of which contains a reconstruction level rk such that

when the input lies in Sk, the output of the quantizer is rk. The

3Reference [5] makes a small error in applying its Theorem 2 to compute
the rate-distortion function, with respect to absolute error, of an exponential
source. Specifically, for f(x) = αe−αx, α > 0, a correct application of this
theorem yields R(D) = − ln (2(1 − e−αD)), rather than the formula given
in (24) of [5].
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number of cells may be finite or infinite. Pk is the probability

of the input lying in Sk. The (output) entropy of quantizer q
is given by H(q) = −∑

k Pk log Pk, where all logarithms in

this paper have base 2. The mean absolute error induced by

the quantizer is

d(q) =
∫ ∞

−∞
|x − q(x)|f(x) dx =

∑
k

∫
Sk

|x − rk|f(x) dx,

where f is the Gaussian density of the source. It is well

known that reconstruction levels at cell medians minimize

mean absolute error, for a given partition. Specifically, for a

contiguous cell Sk, i.e. Sk = [ak, bk), where it matters not if

the interval is open or closed on either side, the median rk

satisfies ∫ rk

ak

f(x) dx =
∫ bk

rk

f(x) dx . (1)

The operational rate-distortion function of scalar quantiza-

tion for a Gaussian source with variance σ2 and absolute error

distortion measure is defined as follows:

Rσ2(D) = inf
d(q)≤D

H(q) ,

which specifies the least entropy of any scalar quantizer with

distortion D or less.

Let Dmax denote the minimum distortion attainable when

the rate is zero. Specifically, for a Gaussian source with

variance σ2 we have Dmax =
√

2
π σ.

Following the notation in [1], let the entropy function

be defined as H(. . . , z−1, z0, z1, . . .) = −∑∞
k=−∞ zk log zk,

where 0 < zk ≤ 1 for all k, are a finite or countably infinite

set of numbers that need not sum to one. Let ox,y denote

a quantity that converges to zero when both x → ∞ and

y → ∞. If this quantity depends on parameters other than x
and y, its convergence to zero is uniform in such parameters.

Finally, G(x) = 1√
2π

e−
x2
2 denotes the Gaussian density with

zero mean and unit variance.

III. MAIN RESULT

The following lemma is used to show Theorem 2 below.

Lemma 1: Consider a scalar quantizer applied to a

N (0, σ2) source. If the cell containing the origin has bound-

aries −a and b, has reconstruction level at the median, and

contributes Do to the mean absolute error of the quantizer,

then

Dmax − Do = σ
(
G(

a

σ
) + G(

b

σ
)
)
[1 + oa,b] .

Proof: Let ro denote the median of the cell (−a, b), and let f
denote the Gaussian density with zero mean and variance σ2.

We evaluate Do as follows:

Do =
∫ ro

−a

(ro − x)f(x) dx +
∫ b

ro

(x − ro)f(x) dx

= ro

[ ∫ ro

−a

f(x) dx −
∫ b

ro

f(x) dx
]

−
∫ ro

−a

xf(x) dx +
∫ b

ro

xf(x) dx

(a)
=

∫ b

ro

xf(x) dx −
∫ ro

−a

xf(x) dx

(b)
= σ

(
2G

(ro

σ

) − G
( a

σ

) − G
( b

σ

))
,

where (a) is due to the fact that ro is the median of (−a, b),
and (b) follows from having

∫ ∞
x

t G(t) dt = G(x). Next, we

observe that Dmax =
∫ ∞
−∞ |x|f(x) dx = 2σ G(0). Therefore,

Dmax −Do = σ
(
G

( a

σ

)
+G

( b

σ

)
+2

[
G(0)−G

(ro

σ

)])
. (2)

Finally, we have

2σ
[
G(0) − G(

r0

σ
)
]

= 2σ

∫ r0
σ

0

xG(x) dx

≤ 2σG(0)
(r0

σ

)2

= σ
(
G

( a

σ

)
+ G

( b

σ

))
oa,b , (3)

where the last equality is due to having
(

r0
σ

)2 =
(
G

(
a
σ

)
+

G
(

b
σ

))
oa,b, as shown by Lemma A1 of the appendix. The

lemma now follows from (2) and (3) �
The following theorem is the principle result of this paper.

Theorem 2: For a N (0, σ2) source and absolute error dis-

tortion, the operational rate-distortion function of scalar quan-

tization satisfies

lim
D→Dmax

Rσ2(D)
Dmax − D

= ∞ .

Proof: It suffices to consider only scalar quantizers with

contiguous cells, as follows from [6]. By definition of Rσ2(D),
for any D ∈ (0, Dmax) there exists a quantizer qD such that

H(q
D

) ≤ Rσ2(D) + ε(D) and d(q
D

) ≤ D , (4)

where ε(D) is some function of D such that ε(D) > 0
and limD→Dmax

ε(D)
Dmax−D = 0. (The choices of q

D
and ε(D)

are not unique, but any fixed choices will do.) Let So,D =
(−AD, BD), denote the cell of qD containing the origin (it

is immaterial if the cell is open or closed on either side). As

D → Dmax, AD, BD → ∞. Note that either AD or BD

(but not both simultaneously) might be infinite. Let Do,D

be the contribution to distortion of cell So,D, where the

reconstruction level of So,D lies at the median of the cell.

It follows from Lemma 1 that

Dmax −Do,D = σ
(
G(

AD

σ
)+G(

BD

σ
)
)

[1+ o
AD,BD

] . (5)
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Next, applying Lemma 5 from [1], which shows that

H(
Q(x)

)
= log e

2 xG(x)
[
1 + ox

]
, where Q(x) =

∫ ∞
x

G(t) dt
is the usual “Q function”, we obtain

H(
Q(

AD

σ
)
)

+ H(
Q(

BD

σ
)
)

=
log e

2

(AD

σ
G(

AD

σ
) +

BD

σ
G(

BD

σ
)
)

[1 + oAD,BD
] .

(6)

Finally, we have that

lim inf
D→Dmax

Rσ2(D)
Dmax − D

(a)

≥ lim inf
D→Dmax

H(q
D

) − ε(D)
Dmax − d(q

D
)

(b)

≥ lim inf
D→Dmax

H(
Q(AD

σ )
)

+ H(
Q(BD

σ )
)

Dmax − Do,D

(c)
= ∞ ,

where (a) follows from (4), (b) is due to an elementary

property of entropy and from having Do,D ≤ d(qD), and

(c) derives from (5) and (6). Thus, limD→Dmax

Rσ2 (D)

Dmax−D =
lim infD→Dmax

Rσ2 (D)

Dmax−D = ∞, as needed to show. �

IV. CONCLUSIONS

This paper considered the asymptotic low resolution perfor-

mance of scalar quantizers for a Gaussian source with absolute

error distortion measure. This performance is determined by

the slope of the operational rate-distortion function of such

quantizers at D = Dmax. It has been shown that the slope of

the operational rate-distortion function of scalar quantization

is infinite, and hence does not match the slope of the Shannon

rate-distortion function, which is finite. Consequently, scalar

quantization is not an optimal coding technique, in asymptoti-

cally low rate, for the given source and distortion measure.

This is somewhat surprising since, as noted earlier, scalar

quantization is optimal for a Gaussian source and squared error

distortion measure, and for Laplacian source and both squared

and absolute error distortion measures.

APPENDIX

Lemma A1: Let −a and b be the boundaries of the cell

containing the origin for a quantizer applied to a N (0, σ2)
source. Let ro be the median of (−a, b). Then,

(r0

σ

)2 =
(
G

( a

σ

)
+ G

( b

σ

))
oa,b .

Proof: From (1) we obtain that

Q(
r0

σ
) =

Q
(−a

σ

)
+ Q

(
b
σ

)
2

=
1 − Q

(
a
σ

)
+ Q

(
b
σ

)
2

. (A1)

Next, let v ∈ R be arbitrary. If v ≥ 0, then

Q(v) =
∫ ∞

v

G(x) dx =
1
2
−

∫ v

0

G(x) dx ≤ 1
2
−vG(v) ,

from which it follows that 0 ≤ v ≤ 1
2−Q(v)

G(v) . Similarly, if

v < 0, then

Q(v) = 1 − Q(|v|) = 1 −
(1

2
−

∫ |v|

0

G(x) dx
)

=
1
2

+
∫ |v|

0

G(x) dx ≥ 1
2

+ vG(v) =
1
2
− vG(v) ,

from which it follows that
1
2−Q(v)

G(v) ≤ v < 0. These two bounds

to v imply v2 ≤
( 1

2−Q(v)

G(v)

)2

. This is now used as follows:

(r0

σ

)2 ≤
( 1

2 − Q( r0
σ )

G( r0
σ )

)2 (a)
=

( 1
2 − 1

2 + Q( a
σ )

2 − Q( b
σ )

2

G( r0
σ )

)2

(b)
=

(Q( a
σ ) − Q( b

σ )
2√
2π

[1 + oa,b]

)2 (c)
=

(
Q

( a

σ

) − Q
( b

σ

))
oa,b

(d)
=

(G
(

a
σ

)
a/σ

[1 + oa] − G
(

b
σ

)
b/σ

[1 + ob]
)

oa,b

=
(
G

( a

σ

)
[1 + oa] oa − G

( b

σ

)
[1 + ob] ob

)
oa,b

=
(
G

( a

σ

)
+ G

( b

σ

))
oa,b ,

where (a) follows from (A1), (b) is obtained from the fact

that r0
σ → 0 as both a and b tend to infinity, (c) follows from

having Q( a
σ ) − Q( b

σ ) → 0 as both a and b tend to infinity,

and (d) derives from having Q(x) = 1
x G(x)

[
1 + ox

]
for any

x > 0, which is obtained from the fact that for any x > 0,
1
x (1− 1

x2 ) G(x) < Q(x) < 1
x G(x), as shown in [7, pp. 82-83].

�
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