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Abstract—In this work, we construct a unified family of
cooperative diversity coding schemes for implementing the
orthogonal amplify-and-forward and the orthogonal selection-
decode-and-forward strategies in cooperative wireless networks.
We show that, as the number of users increases, these schemes
meet the corresponding optimal high-SNR outage region, and
do so with minimal order of signaling complexity. This is an
improvement over all outage-optimal schemes which impose
exponential increases in signaling complexity for every new
network user.

Our schemes, which are based on commutative algebras of
normal matrices, satisfy the outage-related information theoretic
criteria, the duplex-related coding criteria, and maintain reduced
signaling, encoding and decoding complexities.

I. INTRODUCTION

Cooperative wireless networks seek to emulate point-to-
point MIMO communications and to reap the reliability gains
that result from using multiple transmit antennas in wireless
communications with fading. Cooperative diversity strategies
relate each network user with a segment of a point-to-point
communication scheme and have these users manipulate the
signal they receive from the information source and then
retransmit it in a meaningful manner.

A. Previous cooperative diversity schemes

Such cooperation strategies were recently presented in [1]-
[4] where the task is to minimize the volume of the network’s
high SNR outage region, and achieve the corresponding fun-
damental diversity-multiplexing gain (D-MG) tradeoff [12].
To achieve this tradeoff, these cooperation strategies, such as
the orthogonal selection-decode-and-forward (O-SDAF [2])
and the non-orthogonal amplify-and-forward (N-AAF [4]),
were thought to require infinite time duration, infinite decod-
ing complexity and infinite signaling complexity.

Recently though ([5]-[11]), implementations of these co-
operation strategies were constructed that are D-MG optimal,
i.e. met the corresponding strategy’s high-SNR outage region,
and did so in finite time duration, finite sphere-decoding
complexity and finite but large signaling complexity. These
constructions are valid for all numbers of network users
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and for any set of statistically symmetric! (and sometimes
asymmetric) fading distributions.

The ability of these schemes to provide for the D-MG
optimal (approximately universal [13]) performance in finite
time duration is mainly due to the fact that they utilize subsets
of the unified family of approximately universal schemes
constructed in [14] and the unified family of approximately
universal and information lossless perfect space-time code
constructions ([15], [16]). The existence of the above schemes
lead to a constructive improvement of the information theo-
retic performance bounds for the O-SDAF and the O-AAF
strategies (see [11]). Furthermore, the ability of the codes
to tend to maximize mutual information provides the related
networks with good performance, conditioned on the strategy,
in the low SNR regimes as well.

B. Problem statement

However, all the above optimal schemes have a drawback:
they meet the outage region of the corresponding coopera-
tive strategy only after employing signaling complexity that
increases exponentially with the introduction of each new
network user. This is a serious problem since, especially
for high multiplexing gains, the signaling set elements are
extremely close to one another and they require a quantizer
that is unrealistically large, especially for small relays. This
prohibitive proximity of the signaling elements is illustrated in
Figure 2 for the N-AAF scheme. Consequently, the inability
of these small relays to faithfully distinguish between the
different signaling transmitted elements, results in substantial
performance degradation, especially in the more sensitive low
SNR regime.

The goal of this work is to present a family of cooperative-
diversity schemes that avoid the exponential increase of
signaling complexity, though they maintain proximity to D-
MG optimality especially as the number of network users
increases. More precisely, we will introduce the unified
integral orthogonal selection-decode-and-forward and inte-
gral orthogonal amplify-and-forward cooperative diversity
schemes which asymptotically (in the number of users) meet
the high-SNR outage region of the O-SDAF and O-AAF
strategies for any rotationally invariant set of statistics, and do

I'Statistical symmetry corresponds to the fact that all fading coefficients
are drawn in an i.i.d. manner
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so with a signaling cardinality whose order does not depend
on the number of users. The schemes are constructed for all
numbers of users.

The paper is organized as follows. In Section II, we describe
the network model we are assuming, and the problem of
exponential increase of signal complexity. In the next Section,
we give a general criterion for D-MG optimality, which allows
us to get a design criterion for the diversity schemes. Based on
it, we then present the integral cooperative diversity scheme
itself. We conclude by summarizing the properties of our
scheme.

II. NETWORK MODELS

Before presenting the schemes, we start by giving a de-
scription of the network model we consider. We then detail
the problem of exponential increase of the signal complexity.

A. Describing the network

As in [1], the network consists of a set
R = {R17 R27 e 7Rn7 Rn+1}

of n 4+ 1 different cooperating terminals/relays, each with
the ability to communicate over n + 1 different orthogonal
frequencies F = {v1,va,*+ ,Vp, Vnt1}. A certain relay R;,
wanting to communicate with relay d(R;), broadcasts its
information over frequency v;. Depending on the availability
of each intermediate relay, the set

D(R;) C {R\{R; Ud(Ri)}} M

is then the set of all intermediate relays that cooperate with R;.
Consequently, each relay R; € D(R;) transmits a possibly
modified version of the received signal over frequency v;.
By the end of the transmission, d(R;) has received the
information from R; over frequency v;, essentially in a form
of a superposition of faded versions of signals originating
from R; and from D(R;).

We will consider the case where communication takes place
in the presence of additive receiver noise, and in the pres-
ence of spatially independent quasi-static fading. Furthermore,
we will assume complete knowledge of the fading channel
at the receiver of the final destination, and depending on
the cooperative diversity strategy, we will assume complete
knowledge (O-SDAF) or absolutely no knowledge of the
channel at the receivers of the intermediate relays (implying
a long term power constraint). Such a strategy that does not
require channel knowledge at the intermediate relays, is the
orthogonal linearly-transform-and-forward (O-LTAF [3]), and
a variant of the O-AAF (O-RAF) and of the N-AAF (N-RAF).

Finally, the half-duplex condition is imposed, due to prac-
tical considerations such as the large ratio between the trans-
mission and reception powers at the relay antennas ([1], [2],
[4]).

a) Instance of a network: From [1] we see that without
loss of generality we can analyze the overall network per-
formance just by focusing on a snapshot of the network, as
shown in Figure 1, where S is now the information source,
D the destination, Rs,--- , R,, are the intermediate relays, g;
is the fading coefficient between S and intermediate relay
R;, h; is the fading from R; to D and g; is the fading

Fig. 1. Snapshot of wireless network, where terminal S utilizes its peers
(R2,- -+, Rp) for communicating with D.

coefficient from S to D. For now, we consider h;,g; to
be independently distributed circularly symmetric CN(0, 1)
random variables. These fading coefficients remain constant
throughout the transmission, and change in an i.i.d. manner for
every new codeword. Vectors v; and w contain the elements
v;; and w; corresponding to the additive receiver noise
respectively affecting R; and D at time ¢t = j. Unless we
state otherwise, we ask that all v; ; and w; be independently
distributed CA/(0, 1) random variables.

B. Exponential increase of signaling complexity

As mentioned in the introduction, all the cooperative di-
versity coding schemes that optimally met the high-SNR
outage region of the corresponding cooperative strategies, did
so only after employing signaling complexity that increases
exponentially with the introduction of each new network
user. This drawback is accentuated by the small nature of
the wireless-network nodes. In the half-duplex constrained
networks operating at a network rate of R bits per network
channel use (bpncu), the cardinality of the signaling set for
the N-AAF (N-RAF) scheme in [6] and [7] is

8|~ %7 and || & (27200

respectively, and for the O-SDAF and O-AAF (O-RAF)
schemes in [11], the signaling set has cardinality

51~ (2R,

Figure 2 provides for a visual representation of the signaling
set for the N-AAF scheme and for an idea of the prohibitive
nature of the constellation’s cardinality.

We now proceed with a new criterion for designing codes
that are D-MG optimal over a family of MISO channels. Once
this criterion is available, we will actually build codes that
satisfy it, and then based on these codes, we will describe the
integral O-SDAF scheme, and then re-introduce with further
details the scheme in [6] for the O-RAF case. Our schemes
will be shown to asymptotically (in the number of network
users) satisfy the information theoretic criteria placed by the
networks’ outage limitations, as well as satisfy the coding
criteria due to the half-duplex constraint.

III. A NEW CLASS OF D-MG OPTIMAL CODES FOR SOME
FAMILIES OF MISO CHANNELS

We first begin with a theorem on the D-MG optimality of
a specific class of rate-one codes. It relates to constructing

2730

ISIT 2006, Seattle, USA, July 9 - 14, 2006



D-AAF signaling set for 5 users, at 6dB and 2-bpncu

imaginary

Fig. 2. SNR-normalized signaling set of the D-AAF network. Constellation
corresponds to high but valid multiplexing gains. Unit-variance of the additive
noise is assumed.

space-time codes with three main properties: full diversity,
discreteness, and normality.

Recall the following definition: a matrix X is said to be
normal if it satisfied X X1 = XTX.

Our criterion for D-MG optimality is the following.

Theorem 1: Consider an n x n full-diversity space-time
code X, that maps n information symbols from a discrete
alphabet C Z[]. If the signaling set is also discrete and
the difference of any two code-matrices is always a normal
matrix, then the code is D-MG optimal over all n x 1
rotationally invariant MISO channels.

Proof: Directly from [19, p.77, 4.21.2] and [20, Lemma
2.11] we know that for £ a set, for H C C(L,L) a
commutative algebra of matrices of dimension n and for £’
a set such that |£’| = |£|, then there exists a unitary matrix
S € C(L, L) diagonalizing H if and only if every matrix in
‘H is normal. Consequently the code of normal matrices X,
is transformed by S into its dual code

Kgua = STX,,S (€3

consisting only of diagonal matrices. In any circularly sym-
metric channel, the two codes X, and Xy, perform the same
since the single pair of diagonalizing unitary matrices S, S
remains constant and is thus absorbed into the channel whose
statistics remain unchanged by rotation.

Furthermore, before SNR normalization, the product of the
eigenvalues of the matrices of X, is an n-degree polyno-
mial in £Z[2], where k is a small constant of order SNR’,
Consequently, the product of the diagonal elements of the
dual Xy, is non-vanishing with increasing spectral efficiency.
This non-vanishing product distance, together with the code’s
diagonal nature and together with the fact that the information
constellation A satisfies |A] = SNR" (see [18]), were shown
in [13] to be sufficient conditions for the code to meet the
outage region of all n x 1 MISO channels with statistical
symmetry (i.i.d. fading coefficients). |

IV. THE INTEGRAL COOPERATIVE SCHEMES

We apply the design criterion of the previous Section, to
show cooperative-diversity schemes that implement the O-
SDAF and O-AAF (O-RAF) strategies in an asymptotically
D-MG optimal manner, and with minimal order of signaling
complexity.

A. The statistically symmetric integral O-SDAF network

For the O-SDAF wireless network with n+1 single-antenna
users, operating in half-duplex over a statistically symmetric
channel, the proposed coding scheme asks for the source S
to sequentially transmit, during time ¢t = 1,2,--- ,n, the n-
length vector

k=0f=0lf1 f2 - ful €))

where the f; are from a discrete information constellation A
such as QAM or HEX, that scales with SNR as |A| = SNR"
and where 6 is the normalization factor such that, in the high-
SNR scale of interest, |0f;|?> < SNR.

The approximate universality of the first stage transmission,
as seen by the receivers of Ry, .-, R, at time n, is proven
in [13].

During the second stage, the set of participating relays will
be formed based on the following rule:

R; € D(S) & R <logy(1+SNR|g|*), j=2,--,n.
C))
Consequently, by ¢ = n, due to the approximate universal-
ity of the first stage transmission, each intermediate relay
R; € D(S) has correctly decoded f and will be asked to
sequentially transmit during the next n time slots the vector

@izeirnfi
where
0 0 0 ~
1 0 0 0
r—| 01 0 0 )
0 0 1 0

As shown in Section III, in order to get D-MG optimality, we
need at least the matrix I" to be normal. A straightforward
computation shows that

I =TT=1, < H?=1

Furthermore, we have to guarantee (still by the Theorem of
Section III) that we have fully diverse space-time codes. The
problem of designing such a v has been discussed for more
general classes of matrices in [16]. We can thus use the result
from [16] that a suitable ~y is given by

v = % € Q(z), where mymj = ¢ =1(mod 4), (6)
1
q a prime that generates Z;, for some prime p = 1 (mod n).
Such « is available for all n, and thus the above cooperation
scheme applies for all numbers of users.
Consequently, the receiver at time ¢ = 2n has essentially
received

y = 0HX 4w @)
where ipnq
fr\n72

H = [g ho hn ] . X = T (8)
fT°

As a result, the D-MG performance of the corresponding
integral O-SDAF network is a direct function of the D-MG
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performance of the code with elements as the above matrix
X, over a Rayleigh fading, point-to-point 7 x 1 channel. It
is also a function of the half-duplex constraint, the effect
of which is described in detail in [6] and which will be
stated later on. Finally the overall performance also relates to
how well the underlying, second-stage cooperation structure is
maintained when some of the rows of the cooperation-defining
matrices are deleted as a result of having some intermediate
relays being unable to cooperate due to the channel conditions.
This issue was addressed in [2] where it was shown through
random coding arguments that there exist random Gaussian
codes that will optimally utilize the second stage channel of
reduced dimension, even when such codes are truncated. Such
‘residually D-MG optimal’ codes were explicitly constructed
in [17] and were introduced in cooperative wireless networks
in [5], [11].

B. The statistically symmetric integral O-RAF network

Same as the construction in [6], the source’s single antenna
sequentially transmits during time ¢ = 1,2,--- ,n, the n-
length vector k = 0f = 0[f1 fo -+ fu]. Each intermediate
relay R;, 1 =2,3,- -, n then receives the n-length vector

ry =0g9if + v, ©)

and transmits
(10)

. n—i
T, = L‘F .

Consequently, the receiver at time ¢ = 2n has essentially seen

y = OHX +W (1D
where
iF"fl
anfQ
H = [ g1 g2h2 gnhn } ) X = o :
I
n
W= Y hwAi+w (12)
i=1

In [6], [11] this second stage equivalent n x 1 ‘two-product’
channel described by (11)-(12), was shown to have the same
outage region volume, for SNR — oo, as the Rayleigh-fading
n X 1 channel. It can be shown that in the high-SNR scale of
interest, both channels are statistically symmetric and rotation-
ally invariant (their statistics are not altered by multiplication
of the channel matrices-vectors by unitary matrices). With the
volume of the outage region known for both channels, the task
is now to present the D-MG optimality of the code and its
ability to meet the extra coding requirements due to the half-
duplex constraint.

C. The integral restriction normal code

We now discuss and summarize some properties of the
specific code, called integral restriction normal code that
supports the two integral cooperative diversity schemes. The
code is seen from (8) and (12) to be:

n—1
Xip = {X =D A" fue A}
k=0

where fr and T' are respectively as in (3) and (5). For
the special case of having |y| = 1, the code utilizes n
unitary linear dispersion matrices. This directly provides for
the code’s normality, i.e. that (XX = XTX, VX € &;,).
Note also that the integral restriction CDA code with |y| # 1
is not normal and not diagonalizable. As a direct result of
the signaling set’s discrete nature, the product of the code-
eigenvalues is in ;—;Z[z] and thus does not vanish as the
spectral efficiency increases. Consequently Theorem 1 directly
applies and gives:

Corollary 2: The integral restriction normal code is D-MG
optimal over all rotationally invariant MISO channels.

The dual code to the integral restriction normal code is a
code X, of diagonal matrices:

Xd:STX,»TS:{\/ﬁ-diag(i-S*), ieAn} 13)

Let (,, denote a primitive n-th root of unity. The diagonal-
izing matrix S is given by:

1 1 1 *
Cn’yll/n 2 CZZ'YIl/n 2 ’Yll/n2
S = (Cn’Y /n) ( nY /n) (’Y /n) s
(Cn,yl/n)n—l (C?L’Yl/n)n_l (,_Yl/n)n—l

14
since the columns of S* are eigenvectors of X,. The rest of
the proof is omitted here for lack of space.

For example, for n = 2, it can be checked that for any ~

AL 200 el ]
VAR /2 hofo | B /2 51/
o]

0 fo— fiy'/?

= diag {\fo»fﬂ [ 711/2 wl“"’H

The codes meet the outage region of both the Rayleigh-
fading as well as the two-product channels for high SNR.
At this high SNR regime, we know from [12] that for the
Rayleigh fading MISO channel, the high-SNR probability of
outage is

Pou(r) = SNR™77) 0 <r <1 (15)

and from [6] we know that the same optimal diversity gain
of d(r) = n(1 — r) holds for the two-product channel. As a
direct consequence of the fact that the code is drawn from an
n-dimensional commutative algebra of normal matrices, the
code has:

o unaltered first-stage signals in one of its rows: To utilize
the direct transmission from the source S, one of the
code-matrix rows needs to be the exact transmitted
sequence sent by S or a sequence where any element
of the transmitted sequence is substituted with a zero.

e one discrete information symbol per channel use: To
minimize the effect of half-duplex, the n x n code needs
to carry exactly n discrete information elements.

Together with the

o approximate universality of the first stage transmission
the above conditions apply towards limiting the network
transmission duration to be exactly double the duration of

2732

ISIT 2006, Seattle, USA, July 9 - 14, 2006



use of the second stage equivalent channel. Together with the
D-MG optimality over the second stage, we have
Proposition 3: The D-MG performance of the integral O-
SDAF and the integral O-AAF (O-RAF) schemes, is given
by
dir(r) = n(1 —2r).
As the number of users increases, the above performance
approaches the optimal D-MG performance of the O-AAF
(O-RAF) dop,0-aaF(r) = n(1 — 5" ) which is also a lower
bound on the optimal D-MG performance of the O-SDAF.
Remark 1: As a small practical note, we observe that
limiting cooperation in the region of » < (n — 1)/(2n — 1),
results in the integral-networks’ D-MG performance of

2n—1
n—1

dry=mn-1)(1-r Y4 (1 —7)

which, for large n, approaches that of the N-AAF (N-RAF)
given by d(r) = (n — 1)(1 —2r)T + (1 —r).

Asymptotic optimality of the integral non-dynamic schemes
4,

=== optimal performance
— integral network performance

0 02 04 06 08 1

r
Fig. 3. D-MG performance of the 5-node integral O-SDAF or integral O-
RAF network compared with the corresponding optimal performance. In all
cases, the network is assumed to have the ability to abstain from cooperation.
Proximity to D-MG optimality increases with the number of network users.

new ND-RAF signaling set

D-AAF signaling set
5 users, 6dB, 2-bpncu
2

5 users, 6dB, 2-bpncu

3 15
2 1t
=1 =05
e 2
50 5 0
& &
£ Eos
9 -1t
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Fig. 4. Comparison of the SNR-normalized signaling sets of the D-AAF
network (left) v.s. the new integral networks.

2The ability of the network to abstain from cooperation is inherent in the
O-SDAF strategy due to knowledge (at the relays) of the average power-
constraints, average R and average SNR, whereas in the O-RAF it can be
achieved with a small fraction of a bit of feedback to the transmitter (feedback
only when the statistics of the channel change)

V. CONCLUSION

The properties of commutative sets of normal matrices were
used to construct schemes that implement cooperative diver-
sity strategies without constellation expansion. In terms of the
D-MG performance, the implementation is asymptotically, in
the number of network users, optimal. Furthermore, the inte-
gral O-RAF version provides for all of these without channel
knowledge at the intermediate relays, without decoding at the
intermediate relays, with fast encoding at all relays, and with
small sphere decoding complexity at the final destination.
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