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SI Text

This SI Text is divided into four sections. Light Propagation in Single-Segment Nonlinear Fiber is devoted to analyzing the light propa-
gation in the fiber with a Kerr medium. In Steady-state solutions and fluctuations in fibers, we establish the nonlinear motion equations
to describe the light propagation in the horizontal and vertical fibers. By solving the motion equations, we investigate the properties of
steady states and Bogoliubov fluctuations. To get insight into the steady-state stability of the whole network, in Nonlinear Fabry—Perot
cavity, we analyze the stability of steady states in a single nonlinear Fabry—Perot cavity as a paradigmatic example.

Using the S matrices at each node (Steady-State Solutions in the main text) and in fibers (Light Propagation in Single-Segment
Nonlinear Fiber), in Scattering Equations on Different Geometries we derive a nonlinear scattering equation in the network with different
geometries, which determines the steady-state properties.

In Robustness of Broadband Setups, we show that broadband models are able to be immune to losses and perturbations. To illustrate
the advantages of broadband models compared with the narrow ones, we build a new setup, in which the width of the topological
bandgap can be tuned. The edge currents in the networks with the broad and narrow bands are shown to reveal the robustness of edge
modes in the broadband network, where the intrinsic losses are the same in the two networks. In Propagation Matrices of Bogoliubov
Excitations, the matrices used in the Bogoliubov fluctuation analysis are defined.

Light Propagation in Single-Segment Nonlinear Fiber. This section is divided into two subsections. In Steady-state solutions and fluctuations
in fibers, the light propagation in a fiber with the nonlinear Kerr medium is analyzed. In Nonlinear Fabry—Perot cavity, a simple nonlinear
system, i.e., the Fabry—Perot cavity, is analyzed, where the stability of steady states is investigated.

Steady-state solutions and fluctuations in fibers. The formal solutions of Eqs. 4 and 5 in Light Propagation in Fibers of the main
text are

¢7‘,’VLTIL(I7 t) = [ar,nm + 6¢7‘,'nm($> t)}eikr(x_ll) e_iwt7
(bl,nmfl(xg t) = [al,nmfl + 6¢l,nm71(-r7 t)}eiiklzeiiwi [Sl]

where d¢r nm and 3¢y nm—1 are the fluctuation fields around the steady state. For the closed network, the characteristic frequency
w = £ is the eigenfrequency, and w = wq is the frequency of the driving field applied to the open network. The steady-state solution
gives rise to the relation 6 in the main text.

The fluctuation field 0¥ = (8¢ nm, 0¢1,nm—1, 0Dy nms DT nm—1) T obeys the linearized motion equation

1010V + X0,00 = MpdV, [S2]
where the matrices are
1 0 0 O
0 -1 0 O
Y= , [S3]
0 0 1 0
0o 0 0 -1
and
2 ~ 2 ~
|a'f7"m‘ 2al*,nmfla‘hnm ar,nm 2ar,nm Al pm—1
~ ~ 2 ~ ~2
2a, al, nm—1 |al nm—1 20 nm 0L nm—1 a; 1
MH:X T,nm* ’ 2 *‘ ~ % ) 2 * ,nm; . [S4]
—0r nm 40y Ay —1 _|a‘7“»"m| —40p nm M,nm—1
2 * ~ % ~ % 2~* ~ 2
- ar,nmal,nmfl _al,nmfl - al,nmflaT,nm _|alx”m*1|

The Bogoliubov mode 6¥ = §1pe~*f* with the fluctuation frequency wr around w obeys the equation

Wféw + 28151/} = MH(S'lﬁ, [S5]
where the time-independent field
M) = (5¢r,nm, 6wl,nm—17 51/1:,%“ 51#?,7177171)71- [S6]
The formal solution of Eq. S5 leads to the relation
e_inago(sbr,nm 5ar7nm
—inofg
S(wp-Mp)L | € dar,mm—1 | _ [ 0bi,nm—1
€ eino‘@g §b:,nm - 501:77”” [S7]
6171000(50,1*,,,””71 6bl*,nm—1
of the input and output fluctuation fields
5ar,nm = 67/1r,nm(L)y 5al,mnfl = eino’GO 67/}l,nm71 (0)7 [Ss]
and
(5b,-,nm = einu@o 5¢r,nm(0)7 6bl,nm71 = 6wl,nm71(L)7 [Sg]

around the steady-state amplitudes a,,nm (8@, nm—1) and by nm (b1 nm—1)-
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The same analysis is applied to light propagation in the vertical fiber connecting nodes (n, m) and (n + 1, m), which leads to Eq. 9
in Light Propagation in Fibers in the main text. By linearizing the motion equation in the vertical fiber around the steady-state solution
Gy, nm (@d,n+1m) and by, nm (ba,n+1m ), We establish the relation

6bu,nm 5au,nm
Y(wg—My )L 5ad,n+1m _ 6bd,n+1m S10
u,nm Ay, nm
* *
6ad,n+1m 6bd,n+1m

of the input and output fluctuation fields d au,nm (@d,n+1m) and dby, nm (004, n+1m ), Where

2 * 2
|au,nm| 2ad’n+1mau,nm Ay m 2au,nmad,'n+1m
* 2 2
MV:X 2au,nmfd,n+lm ‘Zd,nJrl;nl Qau,mnad,nglm fd’n+lm ) [Sll]
— Gy nm 72au,nmad,n+1m 7|aua"m| 720’u,nmad,n+1m
2 * * *2 2 * 2
— 40y nm Ad n4+1m —Ad n+1m =404 n41m Qu,nm _lad,n+1m|

Nonlinear Fabry-Perot cavity. Before studying the steady-state properties and the stability of the light in the whole network, we use
a paradigmatic example, i.e., the single Fabry—Perot cavity with nonlinear Kerr medium (47), to show the stability analysis of steady
states. Our goal is to understand better the stability analysis for more complex 2D arrays of nonlinear fibers and beam splitters.

As shown in Fig. S1, the cavity with a perfect right end mirror is driven by the light with frequency wq through a partially transmissive
mirror at the left end. In the cavity, the phase plate is placed next to the transmissive mirror. In propagation from left to right, the light
acquires the phase factor e =%, Here, 6y # 0 (o = 0) corresponds to the single horizontal (vertical) fiber in the network.

The relations

e b, = e Hrla, b = e Mhy [S12]
of input a, (a;) and output amplitude b, (b;) follow from Eq. 8 in the main text, where L is the cavity length, and
b = wa = (e + 2laf?),
ki = wa — x(a]* + 2|a?). [S13]

At the end mirrors, the boundary conditions are a, = b;, and

br \ [ tem ireBMm A©
(Aé?ft)_(imm tBm a ) [S14]

where tgm (rBM) is the real transmission (reflection) coefficient of the left end mirror, and Ai(g) (Ag?l)t) is the input (output) amplitude
of the cavity.

By eliminating the output amplitude b, (b;) in Eqs. S12 and S14, we obtain the nonlinear equation

tBM A~(O) 67i90

= — : S15
Ur = "GTWE _ jrpg el [S15]
that determines the amplitude a, = |a,| ', where k, = k; = k = wa — 3x|a.|*, and the output amplitude
&L | . —ikL
AD, = irgn AL + tgya = STUBME 4O [S16]

e—kL — jrgn ekl in

of the cavity is determined by the relation a; = ¢'% e™Fq,. In the good cavity limit tgyy — 0, Eq. S15 determines the intensity-
dependent frequency
_nmr_ T 2
En = T il + 3x|ar| [517]
of the closed cavity, where n is an integer.
For different driving frequency wq, the relation
v = — [+ rdy + 2reusin(2wa L — 6y)] [S18]
1—-r5u

2
of y = x|a,|? and the input intensity z = X’Ai(?‘ is shown in Fig. S2.4 and B, where L = 1 is taken as a unit and rsm = 0.85,0.9, 0.95.

When the driving frequency wyq is resonant with the intrinsic frequency &,, of the closed cavity, the output field Aé?l)t = —z’Ai(g ),

2
Fig. S2 A and B shows that for a given wq, the driving field with a fixed intensity ‘Ai(g) ‘ can generate multiple intracavity intensities.

To analyze the stability of these multiple steady states, we investigate the energy spectrum of Bogoliubov fluctuations. It follows from
Eq. S7 that the fluctuation fields satisfy

eii_zo(st dar
wp— UTML U, e "%aq ob

o S(wr = UM Us) L e*’o(sb:l = 5@} , [S19]
e §a; b/
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where the matrix

1 2e kL 1 2l
2eikL 1 2eikL eQikL
M. = x|a,|? . » S20
X|(I ‘ -1 —%¢ ikL 1 _261kL [ ]
_9p—thL  _  =2kL  _g —ikL ]

for the single fiber, and the unitary matrix Us = I & erGT I> is determined by the 2D identity matrix I>.
The fluctuation Eq. S19 leads to the relation 6B = Uy U, ' U, UgdA of 6B = (b, 5b;, 6b7,5b7)" and 6A = (3a,,dai,da),5a;)",
where the matrices
1 —1's,12 0 - s,14
0 Psa2 0 Psoa
0 —PFPsz2 1 —Pssas
0 Psaz 0 Psaa

Psii 0 Psiz O
—Pso1 1 —PFPsa3 0

U, =

BEEERENAS - PINAS  PNAS

=1 Pa 0 P 0 [S21]
—Psa1 0 —Psuz 1
are determined by the propagating matrix P, = e=(«f~UIM:U)L and the diagonal matrices
0 0 e 0 0 0
0 0 ~ 0 1 0 0
Vo = 1o [0 0 e oo (5221
0 e 0 0 0 1
On the other hand, the boundary conditions at the end mirrors are da, = db;e~** and
Sbre”* L\ _ (tem irem ) [0Ain
( 0 Aout ) B <i7‘13M tBm dar )° [523]
By eliminating the fluctuation field § B, we obtain the scattering equation
(f]e Ub_an Uy — UkRBM)(SA: tem UrdAy [S24]
with the driving term 6A4 = (6§ Ain, 0, § A}, O)T, where the matrices Uy = e*'I; @ e~ *L], and
0 #sm O 0
{1 0o 0o o0
Bev=109 0 0 —irpu [525]
0 0 1 0
The zeros D(&;) = 0 of the determinant
D(wr) = det(Up U, ' Uy Up — Uy Rpm) [S26]

determine the stability of the steady-state solution, where the steady state is stable if all Im& < 0.
For the good cavity limit ¢tgm — 0, the momentum kL = nm — 7/4, and the eigenfrequency of Bogoliubov fluctuations is & = ng,
where ns is an integer. For the open cavity, the condition D (&) = 0 leads to the two transcendental equations
ReD(:cl -+ ixz) =0,
ImD(z; + iz2) =0, [S27]
2
for 1 =Re&r and 22 =Im&;. In Fig. S2 C and D, we show the two curves given by Eq. S27 for different driving intensities X’Ai(? ,

where the intersection of two curves determines the solution z; and z,. As shown in Fig. S2D, the positive coordinates z> > 0 at points
of intersection imply an unstable steady state. In Fig. S2.4 and B, the stable regimes are marked by the black circles, where these stable

2
solutions are in the positive slope regimes of x|a;|* vs. X‘Afg) curves.

Scattering Equations on Different Geometries. In this section, we use Eqs. 8 and 9 in the main text to derive the scattering equation for
the steady-state amplitudes a,,.,;,¢ in the nonlinear network. Here, in terms of different boundary conditions, we analyze the scattering
equations describing the closed and open networks on three kinds of geometries.

Combining Eqs. 8 and 9 and the node S-matrix 3 in the main text, we obtain the scattering equation

Qr nm Ar nm+1
SO Aoy, nm — e*iwLeix./\/'nmL Qyyn—1m [st]
A, nm al,nm—1
ad, nm Ad,n+1m
for the input amplitudes at the bulk nodes, where the phase shift induced by the Kerr nonlinearity is depicted by the intensity matrix
‘ar,nm+l|2 +2‘al,nm|2 0 0 0
0 lGun—1m|* + 2|ad,nm|? 0 0
Nnm = ’ s [829]
0 0 ‘al,nm71|2 +2|ar,nm‘2 0
0 0 0 |ad,n+1m|2 +2|au,nm|2
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Without the Kerr nonlinearity, i.e., x = 0, the scattering Eq. S28 becomes Eq. 17 in the main text for the linear network.

Closed network. The boundary conditions for networks in the torus, cylinder, and open plane are given by Eqs. 11-13 in Full Networks
in the main text. For the networks in the torus and cylinder, due to the translational symmetry, the solution has the form 19 in the main
text, and the scattering Eq. S28 becomes

ar,n aT'x”L
a - P X Ay n—
SO kz u,m —¢ 'LELe'LNwNnL w,m—1 [830]
a a ’
n ,n
ad,n ad,n+1

where the intensity matrix along the row of the network is

|arn|® + 2]an|? 0 0 0
0 |aun—1]" + 2|aan| 0 0
= ’ ’ 1
N, 0 0 lain|? + 2|arn|? 0 [S31]
0 0 0 lad,nt1]” + 2| au,n |

By taking into account the boundary conditions 11 and 12 in the main text, the scattering equation for the entire closed network in the
torus and cylinder can be written as

So(ks)a = e EleimNnly [S32]

in the basis a = (ar,n7 Qy,ny Qlyn s ad,n) T~
Similarly, by the boundary condition 13 in the main text, the scattering equation for the closed networks in the plane reads

Spa = e ELe NIy [S33]

in the basis a = (ar,nm, Gu,nm, G, nm, ad,nm)T

In the main text, we numerically solve Eqs. 32 and 33 for the linear closed network, i.e., x = 0, and show the spectra £ of the
network with different geometries. For the closed nonlinear network, i.e., x # 0, the solutions are unstable in general. To generate
and stabilize the state of light with Kerr nonlinearities, we drive the network through the top boundary mirrors of the cylindrical open
network.
Open network. For the open network in the cylinder shown in Fig. 2 4 and C of the main text, the nonlinear scattering equation for
the amplitude a = (ar 1, Gu,n, G1,n; Ga,n) " reads

RemSo(ks)a = e walelfNuly _ yp e iwal/2A(0) [S34]
where Rpw is obtained by replacing the diagonal matrix element Izn,+1,3n,+1 Of the 4 Ny-dimensional identity matrix I by irgnm, and

Ai(r?) = Ai(r?) (0;0;0;1)" is composed of the N,-dimensional null vector 0 and 1 = (1,0, ..., 0). The solution of the scattering Eq. S34
determines the outgoing amplitude AL by Eq. 24 in the main text.

out

Similar to the case for the linear network, when the driving frequency wgq is resonant with the eigenfrequency £ of the closed system,
aq,1 and the phase shift 6 are determined by Eqgs. 25 and 26 in the main text. In the main text, we consider linear and nonlinear open
networks in the cylindrical geometry. In the linear case, we study the detection of the energy spectrum through the phase shift §o. In
the nonlinear case, we numerically solve Eq. S34 for the network with size 24 x 12 and show the light distributions for different &, and
wq in Fig. 7 C and D of the main text.

For the open network in the plane shown in Fig. 2 B and D of the main text, the scattering equation for the amplitude a =
(ar,nm7 Qu,nm Al,nm ad,nm)T reads

—iwq L yixN'L —iwqL/2 p (0)

in ?

[S35]

where Rpy is obtained by replacing the diagonal matrix elements 1 1 and Jzn, v, 35, n, Of the 4N, N,-dimensional identity matrix
by #rsm, and Afff) = A.(O)(l; 0;0;0)” is composed of the N, N,-dimensional null vector 0 and 1 = (1,0, ..., 0). The solution of the

scattering Eq. S35 determines the reflection and transmission amplitudes by Eq. 28 in the main text.
In the main text, we study the light transmission to the linear network in the open plane. The solution of Eq. S35 with x = 0

2
1(2) , which are shown in Fig. 4B of the

RemSoa = e a— tgme

determines the light distribution in the linear network and the transmission probability ‘AT /A

main text for different driving frequency wg.

Robustness of Broadband Setups. In this section, we investigate the robustness of broadband models. To tune the topological bandwidth,
we construct a new network, where the construction of the fiber is the same as that in Fig. 1C of the main text. As shown in Fig. S3,
the node is built by four mirrors and one beam splitter in the center, where two birefringent elements (E, F') described by the Jones
matrix o, in close proximity to the mirrors are connected to the horizontal fibers.

By the same procedure introduced in Nodes in the main text, we obtain the S-matrix Spode = S; 'Sz for each node, where

1 .
S = t—[L; + 02 @ (rMTbs0s — irmtbs 12)],
M
1 X .
SQ = r(tb514 + irhslo @ 05 + iMoo ® 12) [536]
M

are determined by the 4 x 4 (2 x 2) matrix 4 (I2) and the reflection and transmission coefficients v (1bs) and én (tbs) of the mirrors
(beam splitter).

Shi et al. www.pnas.org/cgi/content/short/1708944114 40f7


http://www.pnas.org/cgi/content/short/1708944114

The scattering equation at the bulk node in the linear network is

L T

Qr nm Qr nm+1
So Ay, nm _ e—iwL Ay,n—1m 7 [S37]
al,nm Al nm—1
ad,nm Ad, n4+1m
where
e 0 0 0
0 1 0 0
" SO - 0 0 eingeo 0 Snode~ [S38]
~ | 0 0 0 1
[&)

We focus on the o -polarized light with o = 1. With the different boundary conditions 11-13 in the main text, we can study the energy
spectrum in the closed networks in the torus, cylinder, and open plane. We show the energy spectra in the cylindrical networks with
different reflectivities Ry = |mv|? = {0.5,0.95,0.98} in Fig. S4 A-C, where the chiral edge modes appear in the bandgaps. When Ry
is increasing, the topological bandwidth becomes narrow.

The steady-state configuration of edge modes in the open linear network can be obtained by Eq. S35, where the pump field drives
the network through the node (1,1), and the node and each birefringent element have 0.1% intrinsic loss. As shown in Fig. S4 D-F,
for the network with the same intrinsic loss, the steady edge state completely circulates around the boundary in the broadband setup
with Ry = 0.5; however, the steady edge states can travel only a half or a quarter of the boundary in the narrow-band setup with
Ry =0.950r0.98, where [ =3 _ |as,nm|? is the light intensity at the node (n, m), and I, is the intensity of the pump field.

Propagation Matrices of Bogoliubov Excitations. In this section, we define the propagation matrices of Bogoliubov excitations in Bogoli-

ubov Excitations in Nonlinear Optics in the main text. The propagation matrices Py = e@rMmL gnd Py = ¢>@r~MVIL for the
Bogoliubov excitations in the horizontal and vertical fibers are determined by the matrices

9 o B o _
|ar,n 2¢ ke pl)afnar,n af,n 2¢hs pz)aT,nal,n
—i(ky— —i(kg— ~ ~9
My — X 2 kemp) gx Gy |, 2e "t ke=p) g Gy, aj [S39]
- *2 i(ky— ® o~k 2 1(ky— * o~ )
N:E —Qr —2e (ke pz)ar,nal,n 7|a7"7"| —2e (k= pr)ag,na‘l,n
—i(ky— k o~k ~ %2 —i(ky— ~ % ~
—2e (ke pm)av',na‘l,n _al,n —2e (ke pm)a‘l,na”‘yn _|a’l:n|
and
2 * 2
|a/ua"| 2a’d,n+1au,n Ay 2C’/uﬂLa/d,n«l»l
2aF 2 2 2
M _ X Ay Ad,n+1 |ad,n+1 Qu,yn Ad,n+1 Aq n+1 [840]
vV = N. *2 2 * * 2 2 *
x _au,n - au,nad,n+1 _|au,n| - au,nad,nJrl
) * * o _92 * _| 2
Ay, A 41 Ag n+1 A, n410u,n Ad,n+1

where @, = e "™ %q, .

Kerr medium

Fig. S1. A ssingle Fabry-Perot cavity with Kerr nonlinearity and an anisotropic phase plate placed next to the left end mirror to mimic the horizontal link,
where the driving field with frequency wy is applied.
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Fig. S2. Steady-state solutions and stability analysis, where L is taken as a unit. (A and B) The relation of the light intensity x|a,|? in the cavity and the

2
driving field intensity x’Ai‘ﬁ) in steady state for the driving frequencies wy = 37 /4 (A) and wy = 7/2 (B). Here, the stable regimes are marked by the black

circles. The solid (blue), dashed (red), and dashed-dotted (green) curves denote the light intensities for rgm = 0.85, 0.9, and 0.95, respectively. (C and D)
For wy = 37 /4, the first and second equations in Eq. 27 are shown by the solid (blue) and dashed (red) curves, where X|Ain|2 =1, X|a,|2 = 1.12 (C) and
X|Anl? = 5, x|ar|? = 1.21 (D).

Fig. $3. The new setup with tunable topological bandgaps. Here, the fiber is constructed similar to that in Fig. 1C of the main text, but now each node is
built by four transmissive mirrors A with reflection amplitude ry and one beam-splitter B with reflection amplitude ry,s. Two birefringent elements (E, F) in
close proximity to the mirrors are described by the Jones matrix o.

Shi et al. www.pnas.org/cgi/content/short/1708944114 6 of 7


http://www.pnas.org/cgi/content/short/1708944114

PNAS

L
9

—7T

Fig. S4.
edge modes in the open planar network with 16 x 16 nodes for R, = |ru|? = {0.5, 0.95, 0.98}, where the node and each birefringent element have 0.1%
intrinsic loss.
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(A-C) The energy spectra of the cylindrical network with 48 x 48 nodes for Ry, = |rm |z = {0.5, 0.95, 0.98}. (D-F) The light intensities of the steady
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