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SI Text
This SI Text is divided into four sections. Light Propagation in Single-Segment Nonlinear Fiber is devoted to analyzing the light propa-
gation in the fiber with a Kerr medium. In Steady-state solutions and fluctuations in fibers, we establish the nonlinear motion equations
to describe the light propagation in the horizontal and vertical fibers. By solving the motion equations, we investigate the properties of
steady states and Bogoliubov fluctuations. To get insight into the steady-state stability of the whole network, in Nonlinear Fabry–Perot
cavity, we analyze the stability of steady states in a single nonlinear Fabry–Perot cavity as a paradigmatic example.

Using the S matrices at each node (Steady-State Solutions in the main text) and in fibers (Light Propagation in Single-Segment
Nonlinear Fiber), in Scattering Equations on Different Geometries we derive a nonlinear scattering equation in the network with different
geometries, which determines the steady-state properties.

In Robustness of Broadband Setups, we show that broadband models are able to be immune to losses and perturbations. To illustrate
the advantages of broadband models compared with the narrow ones, we build a new setup, in which the width of the topological
bandgap can be tuned. The edge currents in the networks with the broad and narrow bands are shown to reveal the robustness of edge
modes in the broadband network, where the intrinsic losses are the same in the two networks. In Propagation Matrices of Bogoliubov
Excitations, the matrices used in the Bogoliubov fluctuation analysis are defined.

Light Propagation in Single-Segment Nonlinear Fiber. This section is divided into two subsections. In Steady-state solutions and fluctuations
in fibers, the light propagation in a fiber with the nonlinear Kerr medium is analyzed. In Nonlinear Fabry–Perot cavity, a simple nonlinear
system, i.e., the Fabry–Perot cavity, is analyzed, where the stability of steady states is investigated.
Steady-state solutions and fluctuations in fibers. The formal solutions of Eqs. 4 and 5 in Light Propagation in Fibers of the main
text are

φr,nm(x , t) = [ar,nm + δφr,nm(x , t)]e ikr (x−L)e−iωt ,

φl,nm−1(x , t) = [ãl,nm−1 + δφl,nm−1(x , t)]e−iklxe−iωt , [S1]

where δφr,nm and δφl,nm−1 are the fluctuation fields around the steady state. For the closed network, the characteristic frequency
ω = E is the eigenfrequency, and ω = ωd is the frequency of the driving field applied to the open network. The steady-state solution
gives rise to the relation 6 in the main text.

The fluctuation field δΨ = (δφr,nm , δφl,nm−1, δφ
∗
r,nm , δφ

∗
l,nm−1)T obeys the linearized motion equation

i∂tδΨ + Σ∂x δΨ = MH δΨ, [S2]

where the matrices are

Σ = i

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

, [S3]

and

MH=χ


|ar,nm |2 2ã∗l,nm−1ar,nm a2

r,nm 2ar,nm ãl,nm−1

2a∗r,nm ãl,nm−1 |ãl,nm−1|2 2ar,nm ãl,nm−1 ã2
l,nm−1

−a∗2r,nm −2a∗r,nm ã∗l,nm−1 −|ar,nm |2 −2a∗r,nm ãl,nm−1

−2a∗r,nm ã∗l,nm−1 −ã∗2l,nm−1 −2ã∗l,nm−1ar,nm −|ãl,nm−1|2

. [S4]

The Bogoliubov mode δΨ = δψe−iωf t with the fluctuation frequency ωf around ω obeys the equation

ωfδψ + Σ∂x δψ = MH δψ, [S5]

where the time-independent field

δψ = (δψr,nm , δψl,nm−1, δψ
∗
r,nm , δψ

∗
l,nm−1)

T
. [S6]

The formal solution of Eq. S5 leads to the relation

eΣ(ωf−MH )L


e−inσθ0δbr,nm
e−inσθ0δal,nm−1

e inσθ0δb∗r,nm
e inσθ0δa∗l,nm−1

 =

 δar,nm
δbl,nm−1

δa∗r,nm
δb∗l,nm−1

 [S7]

of the input and output fluctuation fields

δar,nm = δψr,nm(L), δal,nm−1 = e inσθ0δψl,nm−1(0), [S8]

and

δbr,nm = e inσθ0δψr,nm(0), δbl,nm−1 = δψl,nm−1(L), [S9]

around the steady-state amplitudes ar,nm (δal,nm−1) and br,nm (bl,nm−1).
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The same analysis is applied to light propagation in the vertical fiber connecting nodes (n,m) and (n + 1,m), which leads to Eq. 9
in Light Propagation in Fibers in the main text. By linearizing the motion equation in the vertical fiber around the steady-state solution
au,nm (ad,n+1m) and bu,nm (bd,n+1m), we establish the relation

eΣ(ωf−MV )L

 δbu,nm
δad,n+1m

δb∗u,nm
δa∗d,n+1m

 =

 δau,nm
δbd,n+1m

δa∗u,nm
δb∗d,n+1m

 [S10]

of the input and output fluctuation fields δau,nm (δad,n+1m) and δbu,nm (δbd,n+1m), where

MV =χ


|au,nm |2 2a∗d,n+1mau,nm a2

u,nm 2au,nmad,n+1m

2a∗u,nmad,n+1m |ad,n+1m |2 2au,nmad,n+1m a2
d,n+1m

−a∗2u,nm −2a∗u,nma∗d,n+1m −|au,nm |2 −2a∗u,nmad,n+1m

−2a∗u,nma∗d,n+1m −a∗2d,n+1m −2a∗d,n+1mau,nm −|ad,n+1m |2

. [S11]

Nonlinear Fabry–Perot cavity. Before studying the steady-state properties and the stability of the light in the whole network, we use
a paradigmatic example, i.e., the single Fabry–Perot cavity with nonlinear Kerr medium (47), to show the stability analysis of steady
states. Our goal is to understand better the stability analysis for more complex 2D arrays of nonlinear fibers and beam splitters.

As shown in Fig. S1, the cavity with a perfect right end mirror is driven by the light with frequency ωd through a partially transmissive
mirror at the left end. In the cavity, the phase plate is placed next to the transmissive mirror. In propagation from left to right, the light
acquires the phase factor e−iθ0 . Here, θ0 6= 0 (θ0 = 0) corresponds to the single horizontal (vertical) fiber in the network.

The relations

e−iθ0br = e−ikrLar , e
iθ0bl = e−iklLal [S12]

of input ar (al ) and output amplitude br (bl ) follow from Eq. 8 in the main text, where L is the cavity length, and

kr = ωd − χ(|ar |2 + 2|al |2),

kl = ωd − χ(|al |2 + 2|ar |2). [S13]

At the end mirrors, the boundary conditions are ar = bl , and(
br

A
(0)
out

)
=

(
tBM irBM

irBM tBM

)(
A

(0)
in

al

)
, [S14]

where tBM (rBM) is the real transmission (reflection) coefficient of the left end mirror, and A
(0)
in (A(0)

out) is the input (output) amplitude
of the cavity.

By eliminating the output amplitude br (bl ) in Eqs. S12 and S14, we obtain the nonlinear equation

ar =
tBMA

(0)
in e−iθ0

e−ikL − irBMe ikL
[S15]

that determines the amplitude ar = |ar | e iθr , where kr = kl ≡ k = ωd − 3χ|ar |2, and the output amplitude

A
(0)
out = irBMA

(0)
in + tBMal =

e ikL + irBMe−ikL

e−ikL − irBMe ikL
A

(0)
in [S16]

of the cavity is determined by the relation al = e iθ0e ikLar . In the good cavity limit tBM → 0, Eq. S15 determines the intensity-
dependent frequency

En =
nπ

L
− π

4L
+ 3χ|ar |2 [S17]

of the closed cavity, where n is an integer.
For different driving frequency ωd, the relation

x =
y

1− r2
BM

[1 + r2
BM + 2rBM sin(2ωdL− 6y)] [S18]

of y = χ|ar |2 and the input intensity x = χ
∣∣∣A(0)

in

∣∣∣2 is shown in Fig. S2 A and B, where L = 1 is taken as a unit and rBM = 0.85, 0.9, 0.95.

When the driving frequency ωd is resonant with the intrinsic frequency En of the closed cavity, the output field A
(0)
out = −iA(0)

in .

Fig. S2 A and B shows that for a given ωd, the driving field with a fixed intensity
∣∣∣A(0)

in

∣∣∣2 can generate multiple intracavity intensities.
To analyze the stability of these multiple steady states, we investigate the energy spectrum of Bogoliubov fluctuations. It follows from
Eq. S7 that the fluctuation fields satisfy

eΣ(ωf−U†
s MsUs)L


e−iθ0δbr
e−iθ0δal
e iθ0δb∗r
e iθ0δa∗l

 =

δarδbl
δa∗r
δb∗l

, [S19]

Shi et al. www.pnas.org/cgi/content/short/1708944114 2 of 7

http://www.pnas.org/cgi/content/short/1708944114


where the matrix

Ms = χ|ar |2


1 2e−ikL 1 2e ikL

2e ikL 1 2e ikL e2ikL

−1 −2e−ikL −1 −2e ikL

−2e−ikL −e−2ikL −2e−ikL −1

 [S20]

for the single fiber, and the unitary matrix Us = I2 ⊕ e2iθr I2 is determined by the 2D identity matrix I2.
The fluctuation Eq. S19 leads to the relation δB = ŨθU

−1
b UaUθδA of δB = (δbr , δbl , δb

∗
r , δb

∗
l )T and δA = (δar , δal , δa

∗
r , δa

∗
l )T ,

where the matrices

Ua =

1 −Ps,12 0 −Ps,14

0 Ps,22 0 Ps,24

0 −Ps,32 1 −Ps,34

0 Ps,42 0 Ps,44

,

Ub =

 Ps,11 0 Ps,13 0
−Ps,21 1 −Ps,23 0
Ps,31 0 Ps,33 0
−Ps,41 0 −Ps,43 1

 [S21]

are determined by the propagating matrix Ps = eΣ(ωf−U†
s MsUs)L, and the diagonal matrices

Uθ =


1 0 0 0
0 e−iθ0 0 0
0 0 1 0
0 0 0 e iθ0

 , Ũθ =


e iθ0 0 0 0

0 1 0 0
0 0 e−iθ0 0
0 0 0 1

. [S22]

On the other hand, the boundary conditions at the end mirrors are δar = δble
−ikL and(

δbre
−ikL

δAout

)
=

(
tBM irBM

irBM tBM

)(
δAin

δal

)
. [S23]

By eliminating the fluctuation field δB , we obtain the scattering equation

(ŨθU
−1
b UaUθ −UkRBM)δA = tBMUkδAd [S24]

with the driving term δAd = (δAin, 0, δA
∗
in, 0)T , where the matrices Uk = e ikLI2 ⊕ e−ikLI2 and

RBM =

0 irBM 0 0
1 0 0 0
0 0 0 −irBM

0 0 1 0

. [S25]

The zeros D(E f) = 0 of the determinant

D(ωf) = det(ŨθU−1
b UaUθ −UkRBM) [S26]

determine the stability of the steady-state solution, where the steady state is stable if all ImEf < 0.
For the good cavity limit tBM → 0, the momentum kL = nπ − π/4, and the eigenfrequency of Bogoliubov fluctuations is Ef = nfπ,

where nf is an integer. For the open cavity, the condition D(E f) = 0 leads to the two transcendental equations

ReD(x1 + ix2) = 0,

ImD(x1 + ix2) = 0, [S27]

for x1 =ReEf and x2 =ImEf . In Fig. S2 C and D, we show the two curves given by Eq. S27 for different driving intensities χ
∣∣∣A(0)

in

∣∣∣2,
where the intersection of two curves determines the solution x1 and x2. As shown in Fig. S2D, the positive coordinates x2 > 0 at points
of intersection imply an unstable steady state. In Fig. S2 A and B, the stable regimes are marked by the black circles, where these stable

solutions are in the positive slope regimes of χ|ar |2 vs. χ
∣∣∣A(0)

in

∣∣∣2 curves.

Scattering Equations on Different Geometries. In this section, we use Eqs. 8 and 9 in the main text to derive the scattering equation for
the steady-state amplitudes ar,u,l,d in the nonlinear network. Here, in terms of different boundary conditions, we analyze the scattering
equations describing the closed and open networks on three kinds of geometries.

Combining Eqs. 8 and 9 and the node S -matrix 3 in the main text, we obtain the scattering equation

S0

ar,nm
au,nm
al,nm
ad,nm

 = e−iωLe iχNnmL

ar,nm+1

au,n−1m

al,nm−1

ad,n+1m

 [S28]

for the input amplitudes at the bulk nodes, where the phase shift induced by the Kerr nonlinearity is depicted by the intensity matrix

Nnm =


|ar,nm+1|2 + 2|al,nm |2 0 0 0

0 |au,n−1m |2 + 2|ad,nm |2 0 0
0 0 |al,nm−1|2 + 2|ar,nm |2 0
0 0 0 |ad,n+1m |2 + 2|au,nm |2

. [S29]
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Without the Kerr nonlinearity, i.e., χ = 0, the scattering Eq. S28 becomes Eq. 17 in the main text for the linear network.
Closed network. The boundary conditions for networks in the torus, cylinder, and open plane are given by Eqs. 11–13 in Full Networks
in the main text. For the networks in the torus and cylinder, due to the translational symmetry, the solution has the form 19 in the main
text, and the scattering Eq. S28 becomes

S0(kx )

ar,n
au,n
al,n
ad,n

 = e−iELe
i χ
Nx
NnL

 ar,n
au,n−1

al,n
ad,n+1

, [S30]

where the intensity matrix along the row of the network is

Nn =


|ar,n |2 + 2|al,n |2 0 0 0

0 |au,n−1|2 + 2|ad,n |2 0 0
0 0 |al,n |2 + 2|ar,n |2 0
0 0 0 |ad,n+1|2 + 2|au,n |2

. [S31]

By taking into account the boundary conditions 11 and 12 in the main text, the scattering equation for the entire closed network in the
torus and cylinder can be written as

S0(kx )a = e−iELe
i χ
Nx
NnLa [S32]

in the basis a = (ar,n , au,n , al,n ; ad,n)T .
Similarly, by the boundary condition 13 in the main text, the scattering equation for the closed networks in the plane reads

S0a = e−iELe iχNLa [S33]

in the basis a = (ar,nm , au,nm , al,nm , ad,nm)T .
In the main text, we numerically solve Eqs. 32 and 33 for the linear closed network, i.e., χ = 0, and show the spectra E of the

network with different geometries. For the closed nonlinear network, i.e., χ 6= 0, the solutions are unstable in general. To generate
and stabilize the state of light with Kerr nonlinearities, we drive the network through the top boundary mirrors of the cylindrical open
network.
Open network. For the open network in the cylinder shown in Fig. 2 A and C of the main text, the nonlinear scattering equation for
the amplitude a = (ar,n , au,n , al,n ; ad,n)T reads

RBMS0(kx )a = e−iωdLe
i χ
Nx
NnLa− tBMe−iωdL/2A(0)

in , [S34]

where RBM is obtained by replacing the diagonal matrix element I3Ny+1,3Ny+1 of the 4Ny -dimensional identity matrix I by irBM, and
A(0)

in = A
(0)
in (0; 0; 0; 1)T is composed of the Ny -dimensional null vector 0 and 1 = (1, 0, ..., 0). The solution of the scattering Eq. S34

determines the outgoing amplitude A
(0)
out by Eq. 24 in the main text.

Similar to the case for the linear network, when the driving frequency ωd is resonant with the eigenfrequency E of the closed system,
ad,1 and the phase shift δ0 are determined by Eqs. 25 and 26 in the main text. In the main text, we consider linear and nonlinear open
networks in the cylindrical geometry. In the linear case, we study the detection of the energy spectrum through the phase shift δ0. In
the nonlinear case, we numerically solve Eq. S34 for the network with size 24× 12 and show the light distributions for different kx and
ωd in Fig. 7 C and D of the main text.

For the open network in the plane shown in Fig. 2 B and D of the main text, the scattering equation for the amplitude a =

(ar,nm , au,nm , al,nm , ad,nm)T reads

R̄BMS0a = e−iωdLe iχNLa− tBMe−iωdL/2A(0)
in , [S35]

where R̄BM is obtained by replacing the diagonal matrix elements I1,1 and I3NxNy ,3NxNy of the 4NxNy -dimensional identity matrix I

by irBM, and A(0)
in = A

(0)
in (1; 0; 0; 0)T is composed of the NxNy -dimensional null vector 0 and 1 = (1, 0, ..., 0). The solution of the

scattering Eq. S35 determines the reflection and transmission amplitudes by Eq. 28 in the main text.
In the main text, we study the light transmission to the linear network in the open plane. The solution of Eq. S35 with χ = 0

determines the light distribution in the linear network and the transmission probability
∣∣∣AT/A

(0)
in

∣∣∣2, which are shown in Fig. 4B of the
main text for different driving frequency ωd.

Robustness of Broadband Setups. In this section, we investigate the robustness of broadband models. To tune the topological bandwidth,
we construct a new network, where the construction of the fiber is the same as that in Fig. 1C of the main text. As shown in Fig. S3,
the node is built by four mirrors and one beam splitter in the center, where two birefringent elements (E ,F ) described by the Jones
matrix σz in close proximity to the mirrors are connected to the horizontal fibers.

By the same procedure introduced in Nodes in the main text, we obtain the S -matrix Snode = S−1
1 S2 for each node, where

S1 =
1

tM
[I4 + σx ⊗ (rMrbsσx − irMtbsI2)],

S2 =
1

tM
(tbsI4 + irbsI2 ⊗ σx + irMσx ⊗ I2) [S36]

are determined by the 4× 4 (2× 2) matrix I4 (I2) and the reflection and transmission coefficients rM (rbs) and tM (tbs) of the mirrors
(beam splitter).
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The scattering equation at the bulk node in the linear network is

S0

ar,nm
au,nm
al,nm
ad,nm

 = e−iωL

ar,nm+1

au,n−1m

al,nm−1

ad,n+1m

, [S37]

where

S0 =


e−inσθ0 0 0 0

0 1 0 0
0 0 e inσθ0 0
0 0 0 1

Snode. [S38]

We focus on the σ+-polarized light with σ = 1. With the different boundary conditions 11–13 in the main text, we can study the energy
spectrum in the closed networks in the torus, cylinder, and open plane. We show the energy spectra in the cylindrical networks with
different reflectivities RM = |rM|2 = {0.5, 0.95, 0.98} in Fig. S4 A–C, where the chiral edge modes appear in the bandgaps. When RM

is increasing, the topological bandwidth becomes narrow.
The steady-state configuration of edge modes in the open linear network can be obtained by Eq. S35, where the pump field drives

the network through the node (1, 1), and the node and each birefringent element have 0.1% intrinsic loss. As shown in Fig. S4 D–F,
for the network with the same intrinsic loss, the steady edge state completely circulates around the boundary in the broadband setup
with RM = 0.5; however, the steady edge states can travel only a half or a quarter of the boundary in the narrow-band setup with
RM = 0.95 or 0.98, where I =

∑
s=r,u,l,d |as,nm |

2 is the light intensity at the node (n,m), and Ip is the intensity of the pump field.

Propagation Matrices of Bogoliubov Excitations. In this section, we define the propagation matrices of Bogoliubov excitations in Bogoli-
ubov Excitations in Nonlinear Optics in the main text. The propagation matrices P̄H = eΣ(ωf−M̄H )L and P̄V = eΣ(ωf−M̄V )L for the
Bogoliubov excitations in the horizontal and vertical fibers are determined by the matrices

M̄H =
χ

Nx


|ar,n |2 2e i(kx−px )ã∗l,nar,n a2

r,n 2e i(kx−px )ar,n ãl,n
2e−i(kx−px )a∗r,n ãl,n |ãl,n |2 2e−i(kx−px )ar,n ãl,n ã2

l,n

−a∗2r,n −2e i(kx−px )a∗r,n ã
∗
l,n −|ar,n |2 −2e i(kx−px )a∗r,n ãl,n

−2e−i(kx−px )a∗r,n ã
∗
l,n −ã∗2l,n −2e−i(kx−px )ã∗l,nar,n −|ãl,n |2

, [S39]

and

M̄V =
χ

Nx


|au,n |2 2a∗d,n+1au,n a2

u,n 2au,nad,n+1

2a∗u,nad,n+1 |ad,n+1|2 2au,nad,n+1 a2
d,n+1

−a∗2u,n −2a∗u,na
∗
d,n+1 −|au,n |2 −2a∗u,nad,n+1

−2a∗u,na
∗
d,n+1 −a∗2d,n+1 −2a∗d,n+1au,n −|ad,n+1|2

, [S40]

where ãl,n = e−inσθ0al,n .

Fig. S1. A single Fabry–Perot cavity with Kerr nonlinearity and an anisotropic phase plate placed next to the left end mirror to mimic the horizontal link,
where the driving field with frequency ωd is applied.
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Fig. S2. Steady-state solutions and stability analysis, where L is taken as a unit. (A and B) The relation of the light intensity χ|ar|2 in the cavity and the

driving field intensity χ
∣∣∣A(0)

in

∣∣∣2
in steady state for the driving frequencies ωd = 3π/4 (A) and ωd = π/2 (B). Here, the stable regimes are marked by the black

circles. The solid (blue), dashed (red), and dashed-dotted (green) curves denote the light intensities for rBM = 0.85, 0.9, and 0.95, respectively. (C and D)
For ωd = 3π/4, the first and second equations in Eq. 27 are shown by the solid (blue) and dashed (red) curves, where χ|Ain|2 = 1, χ|ar|2 = 1.12 (C) and
χ|Ain|2 = 5, χ|ar|2 = 1.21 (D).

1

2

3

y

1 2 3

X nM

x

L

E F

A
B

ra

lb

uadb

la

rb

da ub

Fig. S3. The new setup with tunable topological bandgaps. Here, the fiber is constructed similar to that in Fig. 1C of the main text, but now each node is
built by four transmissive mirrors A with reflection amplitude rM and one beam-splitter B with reflection amplitude rbs. Two birefringent elements (E, F) in
close proximity to the mirrors are described by the Jones matrix σz.
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Fig. S4. (A–C) The energy spectra of the cylindrical network with 48× 48 nodes for Rm = |rM|2 = {0.5, 0.95, 0.98}. (D–F) The light intensities of the steady
edge modes in the open planar network with 16 × 16 nodes for Rm = |rM|2 = {0.5, 0.95, 0.98}, where the node and each birefringent element have 0.1%
intrinsic loss.
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