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Abstract. In AG coding theory is very 
important to work with curves with 
many rational points, to get good codes. 
In this paper, from curves defined over 

F2 with genus 1g we give sufficient 

conditions for getting maximal curves 

over F2
2g 

I. Introduction 
   Curves with many rational points are 
very interesting in Coding theory. In 
particular, Goppa geometric codes
obtained from Hermitian curves have 
been extensively studied [9],[10]. 
   If C is a smooth projective curve over 

the finite field Fq, with genus g, then  by   

the Hasse-Weil Theorem, the number of 
rational points is bounded by 

#C(Fq) qgq 21

   We have studied properties of 
Quasihermitian curves and the Goppa 
codes obtained from them [6], [7]. 
   We present here some results about 
sufficient conditions for getting maximal 

curves over F2
2g, and we apply these 

results to Quasihermitian curves.
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  Quasihermitian   curves   are     defined  

over Fq, with jq 2 , ba, Z, being     

a 2 ,    b>-a, 21 , Fq –{0}, by the 

affine equation 

021

baa xyy

   If  C is the curve the equation
                 

                  0baa xyy
                       

0
baa

xyy

with ba, Z, being  ,2a ab
aba ,2

 then 

its genus is [6] 
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where 

02 bba n
 with 0n  and 10b  odd 

021 sa s
 with 0s  and 10s odd 

12),,gcd( 00ba

    
  Among these Quasihermitian curves
there are many maximal curves, i.e., for 
the non-singular models of these curves, 

the number of Fq -rational points attains 

the Hasse-Weil upper bound 

qgq 21
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   Quasihermitian curves include some 
types of  known maximal curves. If 

02 jj   we  have   the   maximal   curves 
mxyy

j02

where m is a divisor of  )12( 0j
([1]). 

When 12 0jm , we have the 
Hermitian Curves, 

                      122 00 jj

xyy

122 00 jj

xyy

Maximal Quasihermitian curves are, for 
example: 

132 xyy  (maximal over F2
12 ) 

64 xyy  (maximal over F2
6 ) 

II. Zeta Function 

   Let C be a non-singular curve of genus 

g defined over Fq, s N and Pics(C) is 

the set of equivalent class of divisors of 
degree s. We suppose that #Pic0(C)=h. 
Then, for each s is  #Pics (C)=0 or h. If as

is the number of effective divisors of 
degree s on C, we define the Zeta function
[3] 
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this     series  converges  if     |t| < q and  

z(C, t) is the rational function in t

)1)(1(

)(
),(

qtt

tp
tCz

being  p(t) Z[t], such that  

p(t)= )1)(1( tztz ii

with    z1, ..., zg Z [i] and  |zi | = q

The Zeta function satisfies 
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So,

#C(Fq
r )
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III. Maximal Curves over F2
2g

   In this section, we present the main 
theorem with the sufficient conditions for 
obtaining maximal curves. 

   Lemma Let  C be a defined curve over 

F2 with genus g. If ,gj  #C(F2
j)=2j +1,

then
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   Proof.
   According to the definition of Zeta
function, we have that 

,r #C(F2
r)=zz ))((12 11

rrr zz

))(...)( 22

r
g

r

g

rr
zzzz

Moreover,

,gj #C(F2
j)= 12 j

Then 

0)(...)( 11 gg zzzz
0)(...)( 11 gg zzzz

0)(...)(
222

1
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1 gg zzzz
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Thus, if 

p(t)=

)1)(1)...(1)(1( 111 tztztztz gg

g

g

g

g ttt 2

2

12

121 ...1

then, we have proved that 

g 0... 1221 g
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Using  for  this  proof the  Newton  Identy 
[4] [5] 

So, we have that 
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And 

p(t)=
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gg

g tzzzz 2
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Theorem Let g be the genus of the curve 
C  defined    over   F2.    

If gj , #C(F2
j)= 2j 1, then C is 

maximal over F2
2g .

Proof.

According to Hasse-Weil bound 

#C(F2
2g )g

gg

By the Lemma 
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By hypothesis 

,gj  #C(F2
j)=2

j
+1 

Therefore, by the Lemma 
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So,

#C(F2
2g )
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#C(F2
2g)= ggg 12 212

The curve C is maximal on F2
2g .

IV. Conclusion 

   Let g be the genus of C and let #C(Fq)

be the number of Fq-rational points of C

(i.e., for the non-singular model of C).     

We can compute the values #C(Fq) using 

Zeta function program, so we can present, 
for example, the following maximal 
Quasihermitian curves according to the 
sufficient conditions of this Theorem. 

C : y2 +y+ x13 =0 

with g 6 and #C(F2
12 )=4,865 

C : y2 y x11 =0 

with g 5 and #C(F2
10 )=1,345 

C : y4 y x3 =0 

with g =3 and #C(F2
6 )=113 

C : y3 +y x5 =0 

with g 2 and #C(F2
4 )=33 
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